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The dark brown and white crystals of manganese and tin (Mn2Se3Cl2O7 and
SnSe3O4Cl) have been synthesized by solid-state reaction at 450 C. The
morphology and the elemental analysis of newly synthesized compounds were
studied by SEM and EDX Analysis. SEM analysis reveals that the particle size for
Mn2Se3Cl2O7 was found to be 0.2–2.5 μm and for SnSe3O4Cl 2.0–6.0 μm. The EDX
studies showed the presence of Mn, Se, O, Cl, and Sn elements. Powdered XRD
confirmed the presence of a new phase present in these compounds. Under UV-vis
irradiation, the kinetics of methylene blue (MB) degradation catalyzed by produced
nanoparticles were monitored. The dye degradation efficiency was estimated, and
results reveals that after 150 min of irradiation, almost 75% of the dyewas degraded in
the presence of Mn compound while 71% degradation was shown by Sn compound.
Both composites display antimicrobial activity against Staphylococcus aureus and
Escherichia coli with a maximum value of 34.5 mm. The maximum antimicrobial
activity shown by Mn-incorporated nanocomposites estimated at 32.5 mm was
against Gram-positive bacteria and 26.4 mm against Gram-negative bacteria.
Similarly, the maximum antifungal activity shown by Sn incorporated estimated at
33.9 mm was compared to Gram-positive bacteria and 27.8 mm against Gram-
negative bacteria.
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Introduction

Industrial wastes, especially waste liquids of synthetic dyes used in
the paper, food, agriculture, leather, textile and pharmaceutical
industries (Farahmandjou and Abaeiyan, 2017; Altaf et al., 2020a)
are highly toxic and biodegradable organic wastes that are critical to
the survival of organisms, becoming the biggest problem (Sivagowri
and Shivatharsiny, 2018). .Water is the most important element for life
on Earth. Due to rapid population growth, the demand for water is
increasing day by day (Shanmugaratnam, Rasalingam; Lv et al., 2020).
Many scientists have focused and worked on efficient techniques for
removing these non-biodegradable industrial pollutants from
wastewater before they enter the environment (Peng et al., 2020).
Several techniques such as adsorption, chlorination, filtration, and air
stripping, coagulation, and membrane processes are traditional
methods of treating water that are costly, time-consuming, and
sometimes hazardous (Ranson et al., 2015; von Gunten, 2018; Bethi
et al., 2016).

The treatment of drinking water has given rise to the advanced
oxidation process (AOPs). Numerous AOPs are accessible, including
moist air oxidation, electrochemical oxidation, hydrogen peroxide,
heterogeneous photocatalysts, and supercritical water oxidation (Chen
et al., 2018). The semiconductors with lower bandgaps that can
produce electrons to interact with water molecules are in a distinct
phase from the reaction system in heterogeneous photocatalytic
AOPs. The semiconductors utilized as a catalyst for AOPs need to
be affordable, easily accessible, stable, and chemically inert. They also
need to demonstrate strong photocatalytic activity and low toxicity. In
order to degrade organic molecules by photocatalysis, a variety of
materials and agents are accessible, including simple metal oxides,
transition metal oxides, nitrides, and complex oxides (O’Shea and
Dionysiou, 2012).

A catalytic reaction in which light is absorbed by a substrate is
referred to as photocatalysis by the International Union of Pure and
Applied Chemistry (IUPAC) (Schneider et al., 2016). When a
semiconductor photocatalyst is exposed to light with photon
energies above the bandgap energy, electrons in the valence band
(VB) are stimulated to the conduction band (CB), leaving holes in VB.
Due to the fact that photocatalytic reactions take place on the surface
of the photocatalyst, the photoinduced free charge carriers must first
diffuse to the active sites on the photocatalytic surface in order to cause
the reaction (Mills and Le Hunte, 1997; Castellote et al., 2011;
Photocatalysis, 2016). The distance between the substrate’s redox
potential and the semiconductor photocatalyst’s band edge,
however, determines whether a chemical reaction can take place on
the semiconductor photocatalyst on that substrate (Thermodynamic,
2012; Liu et al., 2014; Ohtani, 2014).

Researchers have been captivated by selenide compounds of
different transition metal oxides due to their significant potential
for use in industrial applications such as semiconductors, IR
detection, energy storage devices, laser diodes, catalysis,
photovoltaic electronics, and photo-detective devices. The
creation of inorganic semiconductor nanocomposites has caught
the interest of scientists because of their novel characteristics,
including reactivity, low melting point, electrical properties,
optical properties, and magnetic properties. Compared to their
bulk counterparts, nanomaterials have a high surface area-to-
volume ratio (Ou et al., 2017). Under solar radiation, a process
known as photocatalytic breakdown, the high reactivity of

nanocomposites is crucial for the removal of organic
contaminants from polluted water (Jabeen et al., 2017; Ye et al.,
2018). For inorganic semiconducting nanocomposites, bandgap
engineering and particle size control are considered essential tools
to tailor their properties for different applications across multiple
industries (Zhang et al., 2004). Nanocomposites have gained a lot of
attention from researchers due to their wide range of applications.
Nanocomposites are those materials that contain nanoscale particles
within a matrix of conventional materials. The applications of
nanocomposites are in the field of biomedicine, storage devices,
food and environmental sciences, electronic industry, and
automotive fields. The characteristic properties of nanocomposite
materials are that they are easy to synthesize, exhibit high
mechanical properties, and are thermally very stable.

The chemistry of selenites (SeIV) and selenates (SeVI) has
undergone extensive development during the past 20 years
(Choudhury et al., 2002; Krivovichev et al., 2005; Song et al., 2014;
Zhao et al., 2014; Kovrugin et al., 2015a; Berdonosov et al., 2018). Due
to the interaction of selenite groups, metals, and halide ions in soft-soft
and hard-hard interactions, metal oxyhalides with selenite anions
exhibit a complex and varied crystal chemistry (Aliev et al., 2014;
Kovrugin et al., 2015b; Kovrugin et al., 2015c; Kovrugin et al., 2016;
Charkin et al., 2017; Kovrugin et al., 2017).

The transition metals can bond with both halides and oxides ions in
the transition metals oxo halides. The lone pair on the chloride ion and
stereo chemically active Se+4 both performed the function of “Chemical
Scissors” resulting in the formation of low dimensional arrangement
(Johnsson et al., 2003; Zhang et al., 2009) and open crystal structures
which shows magnetic frustration such as Cu2Te2O5X2 and FeTe2O5X
(X = Cl, Br) (Johnsson et al., 2000; Becker et al., 2006). Up till now many
transitionmetal oxo-chalcogen halides are formed Co5(SeO3)4Cl2 (Becker
et al., 2007a), Cu5(SeO3)2O2Cl2 (Galy, 1979), Ni5(SeO3)4Cl2 (Shen et al.,
2005), β-Cu3(SeO3)2Cl2 (Becker et al., 2007b), Cu5(SeO3) OCl5
(Krivovichev et al., 2004), Cu5(SeO3)2O2Cl2 (Millet et al., 2001),
Cu9(SeO3)4O2Cl6 (Bastide et al., 2000), Cu3(SeO3)2Cl2 (Millet et al.,
2000), β-Cu9(SeO3)4O2Cl6 (Zhang et al., 2010), α-Cu3(SeO3)2Cl2
(Semenova et al., 1992), Zn2(SeO3) Cl2 (Ijaz, 2007), InTeO3Cl (Alonso,
1998), SbTeO3Cl (Secuk et al., 2014), Co2SeO3(OH)2 (Zhong and
DanruiNi, 2020).

In the present work, a simple, cost-effective solid-state method was
used to synthesize the metal selenium Oxo-halides of Mn and Sn. The
characterization technique like XRD and SEM-EDX were used to
analyze the new phase, structure, and composition of the compound.
Moreover, the optical and antimicrobial activity was also studied. The
main purpose of this study was to form the novel transition metal
selenium Oxo-halides with more effective optical and antibacterial
activity.

Experimental section

Chemicals

MnCl2.H2O and SeO2 and SnCl2 and Se used as starting material
for the synthesis of Mn2Se3Cl2O7 and SnSe3O4Cl were purchased
directly from Sigma Aldrich with 99% purity and used directly
without further purification. Double distilled water was used to
obtain a high-purity product. The Methylene blue dye used was
of analytical grade.
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Fabrication of Mn2Se3Cl2O7 and SnSe3O4Cl

For the synthesis of Mn2Se3Cl2O7, MnCl2.H2O and SeO2 were
taken as a starting material in a stoichiometric ratio of 1:2 (0.323 g and
0.443 g). Whereas for the synthesis of SnSe3O4Cl, solid SnCl2 was
reacted with elemental selenium in the stoichiometric ratio of 1:8
(0.947 g and 3.115 g) respectively. After introducing the mixture into
the crucibles, these were placed in a preheated muffle furnace at 450 C
for 48 h (Rabbani et al., 2019). The dark brown crystal products were
obtained after washing with distilled water followed by acetone. The
resultant product obtained was dried in an oven at 80 °C Figure 1 for
2 hrs and saved for further characterization.

Photocatalytic activity

To study the photocatalytic activity of synthesized compounds,
0.2 g of the compound was taken in the beaker containing 100 mL of
MB dye. The solution was stirred for 30 min to attain absorption
equilibrium the mixture was irradiated in direct sunlight. 5 mL
solution was taken out after regular intervals (30 min) and check
the absorption at the UV- Vis Spectrophotometer. The proportion
degradation of dye in the presence and absence of compounds was
calculated by formula (Pouretedal et al., 2009)

%D � Co − Ct/Co × 100

Antimicrobial activity

The antimicrobial activity was examined by using the disc
diffusion method against pathogenic bacterial strains (Escherichia
coli and Staphylococcus aureus) (Altaf et al., 2020b). For 30 min,
nutrient agar containing the following ingredients was placed in the
autoclave: peptone 5, beef extract 1, yeast extract 2, sodium chloride 5,
and agar 20.With the aid of sterile culture swabs, fresh cultures of each
test organism containing 1 of the colony-forming units (CFU)/ml were
applied to nutrient agar plates to grow bacteria. Different dilutions
(0.25, 0.5, and 1 mg/mL) were then developed to test the susceptibility
of the prepared nanocomposites. The negative control utilized was

deionized water (DIW). After being soaked in l of these dilutions, discs
were placed on agar plates and incubated for 24 h in an aerobic
environment at 37 C. Zone of inhibition was evaluated on a meter
scale (mm) at various values (Image J software). By doing the
experiment three times, the repeatability and reliability of the
results were verified.

Instrumentation

The microcrystalline phase information of Mn2Se3Cl2O7 and
SnSe3O4Cl was investigated using PAAnlytical Xpert PRO X-ray
diffraction (XRD) and Cu Kα radiation (λ ~ 1.5406 Å), yielding
data in the 2θ range 5°–80°. Using a FE-SEM (JSM-6460LV)
coupled to an EDX analyzer, the morphological properties and
composition of the goods were ascertained. Using a Genesys 10S
UV-visible spectrophotometer, optical absorption spectra in the
120–1,100 nm range were examined.

Results and discussion

Powder X-Ray diffraction analysis (XRD)

The resulting synthesized compound i.e., Mn2Se3Cl2O7 and
SnSe3O4Cl firstly ground and homogenized and placed on the
sample holder of XRD (D8- Discoverer Bruker Germany) and
measured 2oθ from 15–90° for almost 30 min. The search match
procedure was done by using XPERT-HIGHSCORE. The result
showed that the powder XRD pattern of both compounds did not
match with the binary and tertiary compounds of metal oxo chalcogen
halides of given elements i.e., Mn and Sn Figure 2 indicated that there
must be some new phase present in the compound which makes it
novel from other known compounds.

Scanning electron microscopy (SEM)

The result obtained from SEM as shown in Figure 3 showed that
the newly formed compound Mn2Se3Cl2O7 exhibits well-defined

FIGURE 1
Schematic diagram of Solid State Synthesis.
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edges and a smooth surface with a rod-like arrangement having a
particle size ranging from 0.2–2.5 μm. While the SEM graph of
SnSe3O4Cl shows that this compound has layers arrangement with
particle size ranging from 2.0–6.0 μm.

The elemental analysis and their stoichiometry were carried out
with the help of an EDX-Spectrometer (EDX, LINK AN10000). The
spectrum of Mn2Se3Cl2O7 confirmed the atom’s stoichiometry in the

compound and provided the mean compositional analysis of the
compound Table 1.Whereas the EDX spectrum of SnSe3O4Cl
insured the presence of all the elements (Sn, Se, O2, Cl) in specific ratio.

For the photocatalytic activity of two synthesized compounds
against methylene Blue (MB) dye, 100 mL of MB dye was taken in a
Petri dish with the addition of 0.2 mg of samples. To achieve
absorption-desorption equilibrium between the dye and produced

FIGURE 2
XRD pattern of synthesized compound (A) XRD of Mn2Se3Cl2O7 (B) XRD pattern of SnSe3O4Cl.

FIGURE 3
SEM-EDX of newly synthesized compounds (A) SEM image of Mn2Se3Cl2O7 (B) EDX of Mn2Se3Cl2O7 (C) SEM image of SnSe3O4C (D) EDX of SnSe3O4C.
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chemicals, the reaction mixture was agitated for 30 min in the dark
prior to exposure to radiation. These Petri dishes were placed in direct
sunlight for irradiation. 5 mL of the sample was taken out at regular
intervals (every 30 min) during light irradiation, filtered, and
centrifuged to obtain a pure solution (Shanmugam et al., 2015).
Then the filtrate is subjected to a UV-Visible spectrometer and
photodegradation was calculated by using the equation as follows.

%D � Co − Ct/Co × 100 (1)
Figure 4 shows the dye degradation during the different intervals

of time under light irradiation in the presence of two synthesized
compounds. As more hydroxyl radicals are generated as a result of

increased radiation falling on the catalyst surface, the degradation
efficiency rises. So with the passage of time, more and more free
radicals of oxygen are formed which are responsible for the
degradation of organic dye. The percentage degradation was
calculated by Eq. 1 and values are shown in Table 2. The data
clearly shows that after 150min of irradiation, almost 75% of the
dye was degraded in the presence of Mn compound while 71%
degradation was shown by Sn compound. The rate constant for the
degradation of dye was calculated by a first-order reaction equation
(Kannadasan et al., 2014).

lnCo/Ct � kt (2)
Where k is the rate constant. Figure 5 shows the plot illustrating the linear
relationship between time and ln Co/Ct and from the slope of the graph,
the rate constant is calculated. The value of the rate constant for the
SnSe3O4Cl compound is 0.00378 min-1 whereas the rate constant value of
theMn2Se3Cl2O7 compound is 0.00447 min -1 which shows that increases
in rate constant value increase the efficiency for photodegradation.

The Possible Mechanism for Photocatalytic
Degradation

During light irradiation, some electrons from the valance band
make a quantum jump to the conduction band and move to the

TABLE 1 Atomic percentage of the elements present in newly synthesized
compounds through EDX.

Mn2Se3Cl2O7 SnSe3O4Cl

Elements Atomic % Elements Atomic %

Mn 14.28 Sn 14.035

Se 21.41 Se 34.95

O 50 O 41.35

Cl 14.28 Cl 9.65

FIGURE 4
Dye Degradation of Methylene blue (A) Degradation of MB dye in Mn2Se3Cl2O7 (B) Degradation of MB dye in SnSe3O4Cl.

TABLE 2 Percentage degradation of Mn2Se3Cl2O7 and SnSe3O4Cl.

Time (Min) % Degradation of Mn2Se3Cl2O7 % degradation of SnSe3O4Cl

0 48 48

30 52 58

60 61 60

90 63 68

120 66 69

150 75 71
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surface for surface reaction. These electrons from the surface react
with the absorbed oxygen to form oxygen radicals. The concentration
of oxygen is responsible for the efficiency of photo-degradation. And
the holes in the valance band form during the excitation and react with
water molecules to produce hydroxyl radicals. The two oxygen radicals
and hydroxyl radicals are accountable for the oxidative photo-
degradation of methylene blue. The Possible Mechanism for
Photocatalytic Degradation is shown in Figure 6.

Antibacterial and antifungal activity

The disc diffusion method was used to analyze the bacterial
sensitivity against the synthesized compounds as shown in
Figure 7. The zone inhibition was measured against Gram-positive
and Gram-negative bacteria ranging from 0 mm to 32.4 mm in
diameter. The outcomes show an additive effect of nanocomposites’
concentrations and inhibition zones (mm). For the nanocomposite

FIGURE 5
Degradation ratio Vs. time.

FIGURE 6
Mechanism for photocatalytic activity.
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FIGURE 7
Zone inhibition to assess antibacterial activity (A) Activity of Mn2Se3Cl2O7 against E. coli (B) Activity of Mn2Se3Cl2O7 against S. Aureus (C) Activity of
SnSe3O4Cl against E. coli (D) Activity of SnSe3O4Cl against S. Aureus.

TABLE 3 Antimicrobial activity of Mn2Se3Cl2O7 and SnSe3O4Cl.

Antibacterial activity

Bacterial strains Samples Zone of inhibition (mm)

Blank (0.25 mg/mL) (0.5 mg/mL) (1 mg/mL)

S. Aureus Mn2Se3Cl2O7 0 8.0 11.0 32.5

SnSe3O4Cl 0 14 18 26

E. Coli Mn2Se3Cl2O7 0 7.0 10.0 26.4

SnSe3O4Cl 0 Nil Nil 22

Antifungal activity

Fungal strains Samples Blank (0.25 mg/mL) (0.5 mg/mL) (1 mg/mL)

Aspergillus flavus Mn2Se3Cl2O7 0 9.0 12.0 33.9

SnSe3O4Cl 0 13 20 29

Candida albicans Mn2Se3Cl2O7 0 9.0 12.0 27.8

SnSe3O4Cl 0 Nil Nil 24
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sample Mn2Se3Cl2O7 and SnSe3O4Cl at low and high concentrations,
statistically significant inhibition zones (mm) measuring 8–32.5 mm
and 0–26.4 mm, respectively, were obtained. The maximum zone
inhibition was observed for the Mn compound against
Staphylococcus aureus and Escherichia coli (32.5 mm and 26.4 mm).
On the other hand, the Mn compound significantly reduced the
mycelial growth of Aspergillus flavus and Candida albicans
(Table 3). The increase in the concentration of compounds shows
a decrease in the concentration of bacterial colonies due to the
formation of reactive oxygen species.

Particle size, shape, and surface-to-mass ratio of nanocomposites,
which are crucial for antibacterial activity, are some of the variables
that affect oxidative stress (Panáček et al., 2006; Ruparelia et al., 2008;
Ruparelia et al., 2008; Hans et al., 2014). Reactive oxygen species
(ROS) that damage bacterial membranes and promote the ejection of
cytoplasmic contents and bacterial growth are produced effectively by
nano-sized composites (Haider et al., 2019). This oxidative stress kills
the bacterial DNA and inhibits the enzyme activity which is necessary
for the growth of cells (Elkhoshkhany et al., 2017). The charge on the
bacterial cell wall is negative while the overall charge on the metallic
compound is positive (Tang and Lv, 2014). The cationic interaction of
metal ions (Mn2+ and Sn4+) with negatively charged bacterial cell walls
is another possible mechanism for the death of bacteria (Aqeel et al.,
2020). The bacterial and fungal cell wall layer consists of a network of
covalently cross-linked peptide and glycan chains and is a proven
target for antimicrobial agents that can provide great mechanical
strength through osmotic lysis. There are two families of enzymes that
play an important role in forming this layer, including
transglycosylases and transpeptidases. At pH above 7, this peptide
chain is negatively charged. These metal complexes can bind to
peptide substrates in the peptidoglycan layer, preventing them
from reacting with enzymes. However, the net effect is very similar,
with reduced peptidoglycan cross-linking and consequent weakening
of the cell wall (Schneider and Sahl, 2010; Ahmad et al., 2019; Wu
et al., 2019).

Conclusion

In the present research, Mn2Se3Cl2O7 a dark brown crystalline
material, and SnSe3O4Cl have been synthesized by a solid-state
reaction. The synthesized nanocomposite has been characterized by
various spectroscopic techniques. After the successful formation of
desired product, the composite has been tested to estimate the
efficiency of the synthesized sample for dye degradation and
antimicrobial activity. The presence of all the elements (Mn, Se, O,
and Cl) was confirmed by the EDX spectrum. The result obtained by
XRD proved that there must be a new phase present in it. The dye
degradation efficiency was found to be 75% in the presence of
Mn2Se3Cl2O7 having the rate constant value of 0.00447 min-1.

Similarly, 71% of the dye is degraded in the presence of SnSe3O4Cl
having the rate constant value of 0.00378 min-1. The Mn2Se3Cl2O7

showed the maximum antimicrobial activity against Gram-positive
bacteria i.e., 32.5 mm while 26.4 mm against Gram-negative bacteria.
In the same way, the SnSe3O4Cl showed the maximum antimicrobial
activity against Gram-positive bacteria at 22 mm while 26 mm was
against Gram-negative bacteria. These two newly synthesized
compounds can be used as photo-catalysts and antimicrobial
agents for the removal of organic pollutants from industrial
effluents especially from the textile and food industry due to their
proven efficiency against methylene blue dye and pathogens.
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