

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

A Cross-Layer Solution for Contention Control
to Enhance TCP Performance in Wireless Ad-
hoc Networks

Noor Mast1, Shafiullah Khan2,1, Muhammad Irfan Uddin1, Yazeed Yasin Ghadi3, Hend Khalid
Alkahtani4, and Samih M. Mostafa5
1Institute of Computing, Kohat University of Science and Technology, Kohat, 26000, Pakistan
2Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huai’an, 233003, China
3 Department of Computer Science, Al Ain University, UAE
4Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
5Computer Science Dept., Faculty of Computers and Information, South Valley University, Qena 83523, Egypt

Corresponding authors: Samih Mostafa (samih_montser@sci.svu.edu.eg) and Noor Mast (noor.mast@kust.edu.pk).

This paragraph of the first footnote will contain support information, including sponsor and financial support acknowledgment. For example,

“This work was supported in part by the U.S. Department of Commerce under Grant BS123456.”

ABSTRACT With the development of wireless technology, users not only have wireless access to the

Internet, but this has also sparked the emergence of Wireless Ad-hoc Networks (WANETs); this promising

networking paradigm has the potential to adopt the shape of new emergent networks such as the Internet of

Things (IoT), Vehicular Ad-hoc Networks (VANET) and Wireless Sensor Networks (WSN). However,

channel contention (CC) is one of the key reasons why the TCP performs poorly in WANETs. This paper

presents a mechanism called Cross-layer Solution for Contention Control (CSCC) to enhance TCP

performance in WANETs. Each node starts marking packets in the proposed mechanism when its CC level

reaches a certain threshold. As a result, the source node adjusts the congestion window (cwnd) size to a good

state to control the insertion ratio of packets into the network. To provide a fair share to each flow, the flow

having a large cwnd is penalized more. Numerous simulations have been conducted across several topologies

to clarify the performance of the suggested mechanism. The simulation findings show that, in the presence

of the Ad-hoc On-demand Distance Vector (AODV) routing and Dynamic Source Routing (DSR) protocols,

the proposed CSCC mechanism outperformed TCP NewReno in terms of throughput and fairness. In

comparison to TCP NewReno, the suggested mechanism has fewer retransmitted packets.

INDEX TERMS TCP, Wireless Ad-hoc Networks (WANETs), Channel Contention (CC), Congestion

Window (cwnd), CSCC, IEE802.11

I. INTRODUCTION

Transmission Control Protocol(TCP)[1] is a reliable

acknowledgment-based transport layer protocol initially

designed for wired networks. When TCP was in its early

days, it faced congestion problems, which led to the

integration of congestion algorithms [2], [3] for further

advancement. Due to its reliability, TCP is widely utilized

in numerous Internet applications such as email, remote

access, and file transfer. Moreover, according to reports,

TCP is used to carry up to 90% of all internet traffic [4],

[5], making it a vital protocol that still needs work to be

improved.

However, with the development of wireless technology,

users not only have wireless access to the Internet, but this has

also led to the emergence of Wireless Ad-hoc Networks

(WANETs). These networks are beneficial when the

infrastructure may not exist or may be too expensive.

WANETs are built up of wireless nodes (as depicted in Fig.

1), where nodes are connected wirelessly to each other without

using any access point, and every node performs the roles of

both a host and a router. These networks can be quickly

deployed anywhere at any time. This alluring networking

paradigm has the potential to adopt the shape of new emerging

networks such as the Internet of Things (IoT), Wireless Sensor

Networks (WSN), Vehicular Ad-hoc Networks (VANET) and

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

Tactical Wireless Networks [5], [6]. The IEEE 802.11

standard [7] is a de-facto standard for accessing medium in

WANET[8].

However, wireless networks have unique properties (such

as dynamic topology, a shared medium, and a medium prone

to errors) compared to wired networks. Due to this mismatch,

TCP experiences difficulties on wireless networks and

performs poorly, notably in WANETs [9]. TCP must

overcome these difficulties to efficiently use wireless

technologies by connecting to the Internet or creating a

WANET.

FIGURE 1. A scenario of a Wireless ad hoc Network.

The research community works on various aspects to

improve wireless networks’ overall performance. For

example, many routing protocols like [10]–[15] have been

proposed to establish network paths effectively. But TCP’s

performance on wireless networks is still insufficient in the

presence of such routing algorithms. Because there have been

changes to the wireless technology’s lower tiers of the

communications stack without considering how those changes

would affect the higher layers; therefore, wireless networks

have a very different communication environment than cable

ones. However, TCP fails to account for this shift and

continues to operate as though a wireless network were wired.

Furthermore, utilizing congestion algorithms in the event of

losses not arising from network congestion is the primary

problem for TCP in WANET. That is to say, TCP cannot tell

the difference between losses due to congestion and losses due

to the unique features of WANET. [16]–[18].

For wired networks using TCP, buffer overflow is the most

common cause of lost packets. But this assumption is false

with WANETs because packet loss can be caused by channel

contention (CC) or route failure [19]. Furthermore, if the

WANET nodes can store more than ten packets in the buffer,

then buffer overflow is rare. However, one of the most

frequent causes of packet loss in WANETs is CC, resulting

from the shared medium [20], [21]. Therefore, TCP must be

aware of CC to respond accordingly and operate more

effectively in WANETs.

To enhance TCP's functionality in WANETs, this paper

presents a mechanism known as Cross-layer Solution for

Contention Control (CSCC). In the proposed mechanism,

packets are marked at each node once the CC at the MAC layer

reaches a certain threshold. As a result, the source node adjusts

the congestion window (cwnd) size to a good state to control

the insertion ratio of packets into the network. To provide a

fair share to each flow, the flow having a large cwnd is

penalized more.

Here is how the rest of the paper is structured. Section II

describes the Distributed Coordination Function of the IEEE

802.11 MAC protocol. Section III summarises the relevant

literature. The proposed mechanism is described in detail,

beginning with section IV. Results from simulation

experiments of the suggested mechanism's performance are

reported in Section V, and section VI offers the conclusion.

II. THE DISTRIBUTED COORDINATION FUNCTION

In the IEEE 802.11 MAC protocol, the Distributed

Coordination Function (DCF) provides two mechanisms for

accessing the medium. One of these mechanisms is the

CSMA/CA (Carrier Sense Multiple Access with Collision

Avoidance) used to share the medium among compatible

devices, also known as the basic access mechanism. Before

commencing a transmission in CSMA/CA, A node will

check by sensing the medium that any other node within the

range is sending data. The node transmits a frame if the

medium is free for longer than the distributed inter-frame

space (DIFS). Otherwise, the node defers transmission using

the binary exponential backoff process to reduce the chance

of packet collisions with packets sent by other nodes. The

receiver sends an acknowledgement (ACK) to the sender

when the frame is received. Otherwise, the sender schedules

a retransmission of the frame. Additionally, the CSMA/CA

algorithm requires that adjacent frame sequences have a

minimum specified space between them.

On the other hand, the virtual carrier sensing method is an

alternative to the basic access mechanism that calls for

exchanging special RTS and CTS (Request to Send and Clear

to Send) frames before transmitting actual data frames. With

virtual carrier sensing, a sender will first send an RTS frame,

and then, after a brief delay called short inter-frame space

(SIFS), the receiving node will send a CTS frame in response.

If the CTS frame is received after the RTS frame, the sender

is free to send the data frame; otherwise, the transmission of

the RTS frame is rescheduled.

When the medium is busy, both medium access

mechanisms initiate the Binary Exponential Backoff (BEB)

algorithm, where CWmin (minimum contention window) is the

initial size of the contention window (CW) in the BEB

algorithm. After that, the size of the CW is incremented

exponentially for each unsuccessful transmission. However,

the size of the CW cannot exceed the size of the CWmax

(maximum contention window).

The IEEE 802.11 MAC protocol specifies that if the

number of tries for transmitting a frame hits its maximum

limit, then drop the frame and set CW to its minimum value.

Also, reduce the value of CW to a minimum in the case of

successful transmission. Since the RTS and CTS frames in the

virtual carrier sensing mechanism provide information about

the time needed to transmit a frame. Any listening node can

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

read this information and utilize it to update its NAV (Network

Allocation Vector). Each node uses its NAV to estimate how

long the medium will be busy and defers transmission

accordingly.

III. RELATED WORK

The researchers have proposed various mechanisms for

addressing the CC problem to improve TCP performance. We

want to present a brief overview of these techniques here. One

of these mechanisms is the Prioritized Packet Scheduling with

Adaptive Backoff window (PPSAB) [22]. This mechanism

calculates the retransmission probability (RP) based on the

packet expiry time and the number of tries made for frame

transmission. The frame with the shortest lifespan and the

most transmission attempts is given the highest priority. Then

each node modifies the CW using the RP and number of

neighbor nodes. The weight components 𝛼1 and 𝛼2 are used

to calculate CWpar, and CW is then dynamically adjusted by

equation (1).

CWpar = (α1 × Average_Active_Neighbors) + (α2 × RP)

CW = CWmax × CWpar (1)

A mechanism named Priority Contention Window

Approach (PCWM) [23] is proposed by Chou et al. to tackle

the CC problem. The MAC layer receives data from the

network layer about the total and remaining hops in the

PCWM mechanism. Then, using equation (2) provided, the

value of CW is determined at each node along the path.

𝐶𝑊𝑀𝑎𝑥 = 1024/2
𝑦 , 𝑦 = 𝑀𝑎𝑥(0, (𝐿 − 𝐷 − 5))

𝐶𝑊𝑀𝑖𝑛 = 1024/(2𝑥 ∗ 2(𝐿−𝐷)), 𝑥 = 𝑀𝑎𝑥(0, (5 − 𝐿))

L is the routing path's overall hop count, and D is the

remaining hop counts in the Ad-hoc On-demand Distance

Vector (AODV) routing table.

𝐶𝑊 = 𝐶𝑊𝑀𝑖𝑛 ∗ 2
𝑛−1 (2)

In equation (2) n is the number of attempts for data

transmission, and CWMin ≤ CW ≤ CWMax

A mechanism named Cooperative MAC protocol with

Multi-Node Collision Avoidance (MNCA-CMAC) [24] is

proposed by Shan Wu et al. to avoid collision among frames.

This mechanism consists of three phases, i.e., (i) channel

reservation phase, (ii) cooperative node selection phase and

(iii) data transmission phase. The Cooperative RTS and

Cooperative CTS (CCTS) packets are used for channel

reservation. After receiving the CCTS packets, the sender

awaits to receive the HTS (help-to-send) packets from the

cooperating nodes, which identify the residual energy of a

cooperative node. The sender waits for a predetermined

interval to elapse or to receive a specified number of HTS

packets. When either of these two conditions occurs, the

sender sends an SEI (Selection End Indicator) packet to

terminate the selection phase of the cooperative node. After

that, the data packet is transmitted to the most cooperative

node.

Some techniques are focused on generating a delayed ACK

to minimize CC. Proxy Acknowledgement (PACK) [25] is

one such mechanism; in this mechanism, a proxy node is

nominated if the number of hops on the path surpasses a

predefined threshold. The proxy node identifies missing

packets and informs the source node by sending an ACK

packet. As a result, the source node will retransmit the lost

packets without waiting for a retransmission timeout. One of

the delay ACK mechanisms is the TCP ACK Delay Window

(TCP-ADW) [26]; this mechanism looks at the channel

situation to determine the number of ACKs for

increasing/decreasing the delay window. The receiver must

provide an ACK and set the count variable to zero when the

sum of all received packets reaches the delay window. If an

out-of-order packet arrives, then immediately provide an ACK

or if a packet fills a gap in the receiver's buffer.

Altman et al. proposed a mechanism called the Dynamic

Delayed ACK (DDA)[27] based on RFC1122 [28] also

belongs to the category of delay ACK. After receiving d

packets (where d=2), RFC 1122 specifies a standard for

sending an ACK. However, send an ACK if d packets are not

received within a specific time. The value of d in DDA can be

between 1 and 4. Initially, DDA creates an ACK on the arrival

of each packet and then increases this number to four (d=4)

based on the sequence number of a segment. Under this

strategy, once d achieves the value of four, there is no way to

bring it back down. To improve this idea, even more, a

mechanism called TCP-DAA (TCP Dynamic Adaptive ACK)

[29] is suggested. This mechanism considers the channel

situation for sending an ACK; if the channel is good, send an

ACK after four packets or two packets. However, immediately

send an ACK if an out-of-order packet arrives or a packet fills

the gap in the receiver’s buffer. In standard TCP, three

duplicate ACKs are required for fast retransmission, whereas

in TCP-DAA, two are needed.

TCP-DCA (TCP with Delayed Cumulative ACK) [17] is a

technique that aims to determine the delay windows based on

the hop count and is motivated by the same theory as TCP-

DAA. The ACK might be suspended for an entire cwnd using

TCP-DCA if the number of hops on the path is less or equal to

three. On paths with a hop count of more than three but less or

equal to nine, the receiver delivers an ACK after five packets.

However, send an ACK after three packets in the case of more

than nine hops. In contrast, TCP-ADA (TCP with Adaptive

Delayed Acknowledgement) [30] is a technique; according to

this approach, to avoid contention and collision, the best

solution is to generate an ACK for a single cwnd. In the

Contention-based Path Selection (COPAS) [31] mechanism, a

different approach has been adopted than delay ACK

techniques. The COPAS uses different routes for forwarding

the data and ACK packets. After that, continuously monitors

the paths for contention. A less-contended route is selected as

soon as the traffic on a path exceeds a certain level.

The NRED (Neighbourhood Random Early Detection) [32]

technique, which is based on [33], is proposed by Xu et al. to

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

alleviate the effect of unfairness in WANETs. In the NRED

algorithm, a distributed neighborhood queue strategy is

adopted, in which all neighbor nodes' queues are aggregated

so that every node holds a piece of the distributed queue. To

determine the size of the distributed queue, each node

monitors channel utilization; the packet dropping/marking

probability is determined based on channel utilisation.

Fu et al. have proposed a mechanism called Link layer

RED+AP (LRED+AP)[20]; this mechanism selects two

thresholds (i.e., maximum and minimum) to manage CC. The

packets are dropped at the maximum threshold and added

extra time to back-off time at the minimum threshold level.

The additional time is equal to the transmission time of the

preceding packet. Thus, the spare time depends on the size of

the last transmitted packet.

Cross-layer congestion control (C3TCP) [34] has been

proposed to deal with network congestion to improve TCP

performance. This mechanism minimizes the data injected

into the network for congestion avoidance. Therefore, the

bandwidth and the delay experienced by each link are

evaluated at each node. The collected data are inserted into the

MAC header's option field. After collecting the bandwidth and

link delay information at the first node, the next node

compares its bandwidth with the bandwidth of the previous

node and chooses the smallest one. However, the delay on the

current link will be added to the previous delay. The process

mentioned above is repeated on each intermediate node. As a

result, when the destination node receives a data packet, it

contains the minimum available bandwidth on the path. It will

also include the link delay information for the entire route.

After that, the bandwidth and link delay information is

communicated to the source nod in the ACK packet for

transmission rate adjustment.

The Wireless Contention Control Protocol (WCCP) [19]

uses channel busyness to identify the network utilization and

congestion status. Moreover, it allocates resources to a flow

based on available bandwidth. WCCP replaces the TCP's

window technique with a rate-based algorithm. As a result,

WCCP introduces two modules: one at the transport layer and

the second between the network and MAC layer, to check and,

if required, alter the value of the feedback field in the TCP’s

packet. The source node adjusts its transmission rate based on

the value of the feedback field.

Hamadani [35] proposed a solution to address the problem

of intra-flow instability. The leading cause of intra-flow

instability, according to [35], is transmitting more data to the

network. In the proposed solution, the destination node

monitors the amount of throughput achieved for a fixed

interval of time and the level of contention in this interval. The

receiver node decides the appropriate amount of data to be

emitted by the sender node based on the information collected

within the fixed interval to achieve high throughput and reduce

the delay on each connection. After presenting a summary of

the proposals suggested by the research community, the

following section offers the proposed CSCC mechanism.

IV. PROPOSED SOLUTION

In the proposed mechanism, each node counts the number of

attempts to access the medium for transmission at the MAC

layer. After that, each node calculates the Weighted Moving

Average (WMA) of the number of tries (as explained in

subsection A of Section IV) to estimate the CC and react

accordingly. When the WMA reaches a specific threshold

CCThresh (Channel Contention Threshold), the MAC layer will

set the CC status ON. As a result, the node will start marking

packets to inform the TCP’s source node about contention

(Subsection B of Section IV describes how to notify the source

node). On receipt of CC notification, the source node adjusts

its transmission rate to control contention.

Marking packets is more effective than dropping packets.

Because when the MAC layer fails to transmit a frame, it is

dropped and wrongly notifies the network layer that the path

is unavailable. The network layer then initiates an unnecessary

route recovery process[36]. The proposed mechanism

attempts to control packet drop due to CC to save the time the

network layer searches for a new path due to a wrong

notification of route failure.

The problem of contention and congestion occurs because

of the greedy behaviour of TCP. However, in WANETs,

congestion control is often turned on due to MAC layer losses

and not buffer overflow. The proposed mechanism enables the

TCP to distinguish congestion and contention losses and react

accordingly. The CC leads to the problem of unfairness as

well. So, in the case of CC, it makes sense to impose a higher

penalty on flows with a larger cwnd. Therefore, the proposed

mechanism adjusts the cwnd size to a good state to make fair

and efficient use of channel resources. Fig. 2 shows the

flowchart of the suggested mechanism.

A. COMPUTING THE WEIGHTED MOVING AVERAGE
(WMA)

Whereas accessing the medium for transmission, the

increase/decrease in the number of attempts means the node

has potentially identified an increase/decrease in the CC.

Therefore, to estimate the CC, each node obtains the WMA of

the number of tries made to transmit a frame. Suppose the

WMA is denoted by Å. Suppose again that 𝑅𝐴𝑡𝑡 is the number

of attempts made by a node N transmitting a frame. Then at

the end of every successful/unsuccessful transmission, a

WMA is computed according to equation (3) [37] to reflect

increases/decreases in the contention.

{

Å𝑛+1 = 𝛼𝑅𝑎𝑡𝑡 + (1 − 𝛼)Å𝑛 , 0 < 𝛼 < 1
𝑖𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

Å = 𝐶𝐶𝑇ℎ𝑟𝑒𝑠ℎ 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} (3)

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

FIGURE 2. Flowchart of A Cross-layer Solution for Contention Control (CSCC) to Enhance TCP performance in WANET

Algorithm 1: Observing Channel Contention

Initialization
{

Å = 0
𝑅𝐴𝑡𝑡 = 0

}
Counts Number of 𝑅𝐴𝑡𝑡
IF (Transmission successful = = True)
 Å = (1 − 𝛼)Å𝑅𝑒𝑡𝑟𝑦 + 𝛼𝑅𝐴𝑡𝑡
Else
 Å = 𝐶𝐶𝑇ℎ𝑟𝑒𝑠ℎ
Endif
IF(Å ≥ 𝐶𝐶𝑇ℎ𝑟𝑒𝑠ℎ)
 Contention Status ON
Else
 Contention Status OFF
Endif

The value of α is constant and must be chosen very

carefully; the value for α must be selected such that it does

not reveal contention early. Otherwise, TCP will reduce the

cwnd size unnecessarily. On the other hand, conflict

reflection would not even need to be long enough to allow

cwnd to grow to a larger size. Both cases lead to the poor

performance of the network.

When Å ≥ CCThresh, the MAC layer sets the contention

status ON. After that, the concerned node starts to mark

packets to inform the source node about the medium

contention. On receiving the contention notification, the

source node adjusts its cwnd size to a good state, as explained

in Subsection C of Section IV. Whereas algorithm 1 shows

how to observe and set the CC status.

B. CHANNEL CONTENTION NOTIFICATION

Changes have been suggested in the IP (Internet Protocol)

header for informing the source node about contention on the

path. The IP header has a reserved field; the proposed

mechanism uses this field to mark packets. Suppose the name

of this field is CCE (Channel Contention Experienced), as

shown in Fig. 3. When the MAC layer notifies that the

contention has occurred, the network layer starts marking

packets using the CCE field, as given in algorithm 2.

As clear from the literature, the ECN [38] mechanism has

been proposed to inform the source node about the

congestion or queue status. The ECN mechanism uses the

ECN field in the IP header to mark packets in the case of

congestion, as shown in Fig. 3. So, the proposed mechanism

and ECN mechanisms can be implemented together. As a

result, the TCP’s source will be able to differentiate between

congestion and CC losses and react accordingly.

In the TCP header, there are eight control bits. The

suggested mechanism introduces two new control bits called

CCF (Channel Contention Flag) and CCR (Channel

Contention Responded), as shown in Fig. 4. When a packet

arrives at the destination node with the CCE field ON. The

destination node sets the value of the CCF field to one in the

ACK packet to inform the source node about contention. On

receiving the ACK packet with the CCF field ON, the

response of the source node is explained in subsection C of

section IV.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

FIGURE 3. IP Header with suggested modification.

FIGURE 4. A portion of the TCP header with suggested modification.

Algorithm 2: Marking Packets to Inform Source Node

//At Intermediate Node

IF (Contention Status ON)

 Set CCE = 1

Endif

//At Destination Node

Sending ACK

IF (CCE = = 1)

 IN ACK Header Set CCF=1

Endif

Algorithm 3: Adjusting the size of cwnd to a good state

// on Receipt of ACK packet

ACK packet received

IF (CCF is ON)

 IF (𝑐𝑤𝑛𝑑 ≤ 𝑠𝑠𝑇ℎ𝑟𝑒𝑠ℎ)

 IF (𝑐𝑤𝑛𝑑 ≤
1

2
𝑠𝑠𝑇ℎ𝑟𝑒𝑠ℎ)

 𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑

 Else

 𝑐𝑤𝑛𝑑 =
3

4
𝑠𝑠𝑇ℎ𝑟𝑒𝑠ℎ

 Endif

 Else IF (𝑐𝑤𝑛𝑑 > 𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ)

 IF (
𝑐𝑤𝑛𝑑

2
≤ 𝑠𝑠𝑇ℎ𝑟𝑒𝑠ℎ)

 𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑/2

Else

 𝑐𝑤𝑛𝑑 = 𝑠𝑠𝑇ℎ𝑟𝑒𝑠ℎ

 Endif

Endif

Set CCR = 1

Endif

C. RESPONSE OF SOURCE NODE TO MARKED
PACKETS

To control contention and provide fairness among data flows,

the source node adjusts the size of the cwnd to a good state

when receiving an ACK packet where the CCF field has one

value. A good state means the cwnd size for which the flow

did not observe contention and continued to increment its size

to the next state. A flow whose cwnd size is less than the slow

start threshold (ssthresh) is considered a flow with a small

cwnd; otherwise, it is a flow with a large cwnd. Algorithm 3

shows how to adopt a good state and sets the value of the CCR

field to one to inform the destination node that the cwnd has

been reduced. Moreover, if the TCP source receives a CCF

notification in a good state before the expiry of one round trip

time, the TCP source should ignore the succeeding CCF.

D. SELECTION OF VALUE FOR ALPHA (α)

The WMA given by equation (3) is a recursive function, and

one can write it in terms of older weights, as provided by

equation (4). Expanding equation (4) to its older value will

continue until it reaches the base term Å0. So, the recursive

property of WMA implies that it calculates the value of the

current state using the prior observation. The only choice a

WMA user must make is the parameter alpha (α) selection,

which determines how significant the recent observation is in

the WMA’s computation.

Some simulation experiments have been conducted to

determine the value of alpha (α) for efficient utilization of the

network resources. Therefore, the performance of the

proposed mechanism was analyzed in the string topology of 9

nodes depicted in Fig. 5. The values assigned to alpha(α) are

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

0.40, 0.45, 0.50, 0.55 and 0.60. The number of TCP flows was

3, each with a payload of 1460 bytes.

FIGURE 5. String topology of 9 nodes and three flows of TCP

TABLE 1. RESULTS ACHIEVED ON A STRING TOPOLOGY OF 9 NODES.

Values assigned

to alpha (α).

Throughput

(Flow 1)

Throughput

(Flow 2)

Throughput

(Flow 3)

Total Throughput

(Kbps)
Fairness Index

0.40 130.51 159.43 25.17 315.11 0.768

0.45 121.11 168.73 43.15 332.99 0.821

0.50 140.67 176.56 37.31 354.54 0.800

0.55 123.63 169.66 63.70 356.99 0.883

0.60 119.41 160.65 34.27 314.33 0.799

FIGURE 6. The throughput achieved on the nine nodes string.

{

Å𝑛+1 = 𝛼𝑅𝑎𝑡𝑡 + (1 − 𝛼)Å𝑛,

0 < 𝛼 < 1
 𝑖𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

Å𝑛+1 = 𝛼𝑅𝑎𝑡𝑡 + (1 − 𝛼)

∗ (
𝛼𝑅𝑎𝑡𝑡−1 +

(1 − 𝛼)Å𝑛−1
)

Å𝑛+1 = 𝛼𝑅𝑎𝑡𝑡 + (1 − 𝛼)

∗ (𝛼𝑅𝑎𝑡𝑡−1 + (1 − 𝛼)

∗ (𝛼𝑅𝑎𝑡𝑡−2 + (1 − 𝛼)Å𝑛−2) }

 (4)

Conducting the simulation experiments, the throughput

achieved by the proposed mechanism is shown in Fig. 6, and

Fig. 7 illustrates the fairness indexes achieved in each case.

For further detail, look at TABLE 1.

Looking at the results illustrated in Fig. 6 and Fig. 7 and

listed in TABLE 1, high throughput and more fairness have

been obtained by assigning a value of 0.55 to alpha(α). The

closest results were achieved when a value of 0.50 was

assigned to alpha(α); however, the best results were achieved

when a weight of 0.55 was used for alpha. Therefore, during

further simulation experiments, the value of 0.55 was used.

0

40

80

120

160

200

0.40 0.45 0.50 0.55 0.60

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Value of Alpha(α)

Flow 1 Flow 2 Flow 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

FIGURE 7. The fairness indexes achieved with different values of alpha.

V. PERFORMANCE EVALUATION

Using the network simulator NS2.35 [39], multi-hop

wireless simulation experiments were conducted to verify

the proposed mechanism's performance against TCP

NewReno. In each scenario, each node's transmission range

and sensing ranges were 250 and 550 meters, respectively,

and the data transfer rate was assumed to be 2Mbps. TCP

packet in each case had a size of 1460 bytes. For each

scenario, the simulation lasted 300 seconds. Each scenario’s

results are based on an average of 15 runs.

String topology was considered during the simulation to

determine the effect of the increasing number of hops. Then

a grid topology and a more realistic random topology were

evaluated with a growing number of flows. Throughput and

flow fairness criteria were chosen for the performance study,

and simulation tests were conducted with 95% confidence.

The quantity of retransmitted packets is also used as a

performance indicator. TCP retransmits packets for two

reasons: (i) when any packet loss is detected or (ii) when a

retransmission timeout occurs. As a result, if an algorithm

has a low number of retransmissions, it also has a low

number of retransmission timeouts and dropped packets.

The AODV [11] and Dynamic Source Routing (DSR)[10]

routing protocols were employed to establish the routes. DSR

and AODV are on-demand routing protocols, i.e., a path is

kept around for as long as it is essential. The DSR uses source

routing in which the sender of a packet determines the

complete sequence of the nodes through which the packet

must pass. But in AODV, each node has a routing table that it

uses to decide where to forward packets. TABLE 2 provides a

detailed description of the simulation parameters used for the

experiments.

A. STRING TOPOLOGY

To analyze how an increasing number of hops affects the

performance of the proposed mechanism, the multi-hop

simulations were performed in a string topology of 16 nodes.

The path length of a minimum of three and a maximum of 15

hops was considered. The distance between the adjacent nodes

was set at 200 meters. The graphical representation of this

topology is shown in Fig. 8. In the first case considered, a

connection has been established between node 0 and node 3 to

transfer the data, where node 0 and node 3 act as the source

and destination nodes, respectively, which are not in the direct

transmission range of each other.

In the second case, node 0 and node 4 are considered to act

as the source and destination nodes, respectively, whereas

nodes 1, 2 and 3 are intermediate nodes that forward packets

between node 0 and node 4. This way, the transmission

between node 0 and node 5, then node 6 and 7 up to node 15,

was considered.

In each case considered for the string topology, the

throughput achieved with TCP NewReno and the CSCC

mechanism is depicted in Fig. 9 and Fig. 10; it is clear from

these figures that the performance of the CSCC mechanism is

more satisfactory than that of TCP NewReno in terms of

throughput. The suggested mechanism achieved

high throughput over TCP NewReno as the number of hops

increased, ranging from 10.99% to 56.43% and a 12.58% to

54.71% in the presence of AODV and DSR, respectively. The

95% confidence intervals computed for the achieved

throughput for the string topology cases considered with

AODV and DSR are given in Tables 3 and 4, respectively.

TABLE 2. VALUES OF PARAMETERS USED IN THE SIMULATION.

Parameters Value

Simulation Time 300 Second

Topologies and number of nodes

A string of 16 nodes

13x13 Grid

Random topology in a 1000 x
1000 meters area with 100 nodes

Routing protocols AODV and DSR

Transmission Range 250m

Data rate 2Mbps

Queue size 20 packets

Packet size 1460 Bytes

Slot time 20 μs

SIFS 10 μs

FIGURE 8. String topology of 16 nodes.

0.70

0.75

0.80

0.85

0.90

0.40 0.45 0.50 0.55 0.60

Value of Alpha(α)

Fairness Index

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

FIGURE 9. Throughput achieved in the string topology with AODV.

TABLE 3. CONFIDENCE INTERVALS COMPUTED FOR THROUGHPUT ON

A STRING TOPOLOGY WITH AODV.

 TCP NewReno CSCC

N
u

m
b

er
 o

f
H

o
p

s

T
h

ro
u

g
h

p
u

t 95% Confidence

Interval

T
h

ro
u

g
h

p
u

t 95% Confidence

Interval

Lower

Bound

Upper

Bound

Lower

Bound

Upper

Bound

3 327.59 325.92 329.26 363.58 361.81 365.35

4 247.01 245.71 248.31 283.60 282.73 284.46

5 205.45 203.93 206.98 241.66 240.87 242.46

6 180.01 178.51 181.51 220.25 219.02 221.47

7 155.45 146.29 164.60 201.60 196.87 206.34

8 139.88 132.22 147.54 188.20 178.29 198.11

9 131.53 126.22 136.84 177.77 164.67 190.87

10 122.33 117.08 127.58 168.01 162.17 173.85

11 116.07 109.23 122.91 160.52 150.65 170.39

12 106.99 99.87 114.11 153.79 148.03 159.56

13 99.53 91.96 107.10 147.80 138.51 157.09

14 93.80 88.20 99.40 142.46 134.55 150.36

15 89.11 82.13 96.09 139.40 133.84 144.96

TABLE 4. CONFIDENCE INTERVALS COMPUTED FOR THROUGHPUT ON

A STRING TOPOLOGY WITH DSR.
 TCP NewReno CSCC

N
u

m
b

er
 o

f

H
o

p
s

T
h

ro
u

g
h

p
u

t 95% Confidence

Interval

T
h

ro
u

g
h

p
u

t 95% Confidence

Interval

Lower

Bound

Upper

Bound

Lower

Bound

Upper

Bound

3 230.79 227.00 234.58 259.83 256.41 263.25

4 195.33 191.95 198.71 227.97 221.70 234.23

5 166.82 164.54 169.10 201.54 196.51 206.58

6 142.13 138.93 145.32 176.72 172.75 180.68

7 128.48 123.17 133.78 164.84 159.67 170.01

8 119.47 115.85 123.10 161.61 158.07 165.16

9 114.47 111.35 117.59 159.51 153.72 165.31

10 112.26 108.67 115.86 158.86 155.91 161.81

11 107.98 104.91 111.05 155.74 152.29 159.19

12 105.08 100.75 109.40 150.70 147.59 153.80

13 102.61 99.30 105.92 151.84 147.66 156.03

14 98.46 96.35 100.58 145.90 143.19 148.61

15 92.38 89.61 95.15 142.92 138.82 147.03

It is clear from Fig. 11 and Fig. 12, illustrating the number

of retransmitted packets, that the CSCC mechanism is

transmitting fewer packets than TCP NewReno and achieving

high throughput because there is lower contention on the

channel. A reduced number of retransmissions means an

improved utilization of network resources. Thus, the proposed

mechanism handles contention more efficiently.

50

100

150

200

250

300

350

400

3 4 5 6 7 8 9 10 11 12 13 14 15

T
h

ro
u

g
h

p
u

t
(k

b
p

s)

Number of Hops

TCP NewReno

CSCC

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

FIGURE 10. Throughput achieved in the string topology with DSR.

FIGURE 11. The number of retransmitted packets in the string topology with AODV.

FIGURE 12. The number of retransmitted packets in the string topology with DSR.

50

100

150

200

250

300

3 4 5 6 7 8 9 10 11 12 13 14 15

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Number of Hops

TCP NewReno

CSCC

0

200

400

600

800

3 4 5 6 7 8 9 10 11 12 13 14 15

N
u

m
b

e
r

o
f

re
tr

a
n

s
m

it
te

d

p
a
c
k
e
ts

Number of Hops

TCP NewReno

CSCC

0

100

200

300

400

500

600

3 4 5 6 7 8 9 10 11 12 13 14 15

N
u

m
b

e
r

o
f

re
tr

a
n

s
m

it
te

d

p
a
c
k
e
ts

Number of Hops

TCP NewReno

CSCC

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

B. GRID TOPOLOGY

This subsection reports the results of the simulation analysis

of the CSCC mechanism on a grid topology against TCP

NewReno. A total of 169 nodes were simulated and placed

in a 13x13 grid, depicted in Fig. 13. The distance between

the adjacent nodes, as was the case in the previously

considered scenarios, was 200 meters. Compared to the

string topology considered in previous subsections, the grid

topology has more nodes, and more data flows are

considered to create a highly contended environment. At the

start, two flows (F1 and F2) were considered so that the flows

cross each other and move from one end to the other end of

the grid, as shown in Fig. 13. Then two further flows (F3 and

F4) were added, one starting on each side and flowing

opposite to the first one. The number of flows was increased

to 14 by adding two successive flows at a time. The

throughput recorded using the AODV and DSR routing

protocols, respectively, is depicted in Fig. 14 and Fig. 15 for

each scenario. The improvement achieved by the CSCC

mechanism against TCP NewReno ranges from 24.33 to

30.17% with AODV and from 18.33 to 32.42% with DSR.

At the same time, the 95% confidence intervals and fairness

indexes computed for the achieved throughput for each

scenario are listed in Tables 5 and 6. Jain’s fairness index

was calculated according to equation (5).

𝒇(𝒙) =
[∑ 𝒙𝒊

𝒏
𝒊=𝒏]

𝒏 × ∑ 𝒙𝒊
𝟐𝒏

𝒊=𝒏

𝟐

 (5)

In equation (5), n counts for the total number of flows, and

xi for the ith flow's throughput. Equation (5) will provide a

result between 0 and 1. The fairness increases as the

calculated result approach one and decreases as it

approaches zero (0).

156 168157

117

130

166165164163162161160159158

26

39

52

65

78

91

104

143

0

13

121 1098765432

167

11

129

142

38

51

64

77

90

103

116

155

25

F1

F2

FIGURE 13. 13x13 Grid with two flows.

FIGURE 14. Throughput achieved on the 13x13 grid topology with AODV

100

130

160

190

220

250

280

310

2 4 6 8 10 12 14

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Number of Flows

TCP NewReno

CSCC

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

FIGURE 15. Throughput achieved on the 13x13 grid topology with DSR.

TABLE 5. CONFIDENCE INTERVALS AND FAIRNESS INDEXES FOR THE 13X13 GRID TOPOLOGY, WHERE THE ROUTING

PROTOCOL IS AODV.

 TCP NewReno CSCC

Number

of flows
Throughput

95% Confidence

Interval
Fairness

Index
Throughput

95% Confidence

Interval
Fairness

Index Lower

Bound

Upper

Bound

Lower

Bound

Upper

Bound

2 120.75 116.49 125.01 0.990 157.18 152.52 161.84 0.994

4 134.14 129.64 138.63 0.697 174.28 170.81 177.74 0.995

6 158.07 153.38 162.75 0.748 200.83 197.19 204.47 0.990

8 177.76 173.94 181.58 0.670 222.84 218.60 227.08 0.990

10 194.62 190.54 198.70 0.658 241.97 238.46 245.48 0.970

12 209.16 205.92 212.40 0.693 266.55 260.99 272.10 0.897

14 224.47 220.41 228.53 0.661 283.96 277.76 290.15 0.890

TABLE 6. CONFIDENCE INTERVALS AND FAIRNESS INDEXES FOR THE 13X13 GRID TOPOLOGY, WHERE THE

ROUTING PROTOCOL IS DSR.

 TCP NewReno CSCC

Number

of flows
Throughput

95% Confidence

Interval Fairness

Index
Throughput

95% Confidence

Interval Fairness

Index Lower

Bound

Upper

Bound

Lower

Bound

Upper

Bound

2 122.19 119.51 124.87 0.830 148.34 145.38 151.31 0.996

4 131.43 129.27 133.59 0.797 155.53 152.65 158.40 0.998

6 144.50 141.73 147.28 0.819 173.29 170.52 176.07 0.991

8 155.52 150.15 160.89 0.835 187.93 182.46 193.40 0.916

10 164.67 159.13 170.20 0.910 197.99 190.99 204.99 0.970

12 173.29 168.36 178.22 0.884 219.50 214.86 224.14 0.929

14 177.27 167.59 186.94 0.935 234.74 226.93 242.55 0.971

100

130

160

190

220

250

2 4 6 8 10 12 14

T
h

ro
u

g
h

p
u

t
(k

b
p

s
)

Number of Flows

TCP NewReno
CSCC

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

Looking at Fig. 16 and Fig. 17, it is clear that the number

of retransmitted packets in the case of the CSCC mechanism

is less than in the case of TCP NewReno, in the presence of

both the AODV and DSR routing protocols. Thus, the CSCC

mechanism handles CC more efficiently in a dense network.

FIGURE 16. The number of retransmitted packets on the 13x13 grid topology with AODV.

FIGURE 17. The number of retransmitted packets on the 13x13 grid topology with DSR.

C. RANDOM TOPOLOGY

The suggested CSSS mechanism's ability to handle growing

traffic flows—from five to thirty connections—is evaluated

using simulation experiments. A random network topology is

employed in this simulation, with 100 nodes distributed at

random throughout an area measuring 1000 by 1000 meters.

Like all previous scenarios, the outcomes are averaged over 15

runs. For conducting traffic flow experiments, the throughput

achieved by TCP NewReno and the proposed CSCC

mechanism with AODV and DSR is illustrated in Fig. 18 and

Fig. 19, respectively. Moreover, Fig. 20 and Fig. 21 show

each case’s retransmitted packets. Analyzing these graphs, the

CSCC mechanism has achieved high throughput than TCP

NewReno, and less retransmission is observed in the case of

the proposed CSCC mechanism. Furthermore, the 95%

confidence interval and Jain’s fairness index computed in

random topology, in the presence of AODV and DSR, are

listed in Tables 7 and 8, respectively. The improvement in

throughput achieved by the proposed CSCC mechanism

against TCP NewReno ranges from 9.27 to 17.53% and from

13.07 to 15.22% in the presence of AODV and DSR,

respectively.

100

300

500

700

900

1100

1300

2 4 6 8 10 12 14

N
u

m
b

e
r

o
f

re
tr

a
n

s
m

it
te

d

p
a
c
k
e
ts

Number of Flows

TCP NewReno

CSCC

0

150

300

450

600

750

900

2 4 6 8 10 12 14

N
u

m
b

e
r

o
f

re
tr

a
n

s
m

it
te

d

p
a
c
k
e
ts

Number of Flows

TCP NewReno

CSCC

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

FIGURE 18. Throughput achieved on the random topology with AODV

FIGURE 19. Throughput achieved on the random topology with DSR

TABLE 7. CONFIDENCE INTERVALS AND FAIRNESS INDEXES FOR THE RANDOM TOPOLOGY, WHERE THE ROUTING

PROTOCOL IS AODV

 TCP NewReno CSCC

Number

of flows
Throughput

95% Confidence

Interval
Fairness

Index
Throughput

95% Confidence

Interval
Fairness

Index Lower

Bound

Upper

Bound

Lower

Bound

Upper

Bound

5 828.08 809.67 846.50 0.370 838.15 810.80 865.50 0.450

10 1215.84 1169.04 1262.63 0.290 1405.30 1379.00 1431.60 0.391

15 1299.04 1252.20 1345.89 0.273 1498.57 1453.49 1543.65 0.389

20 1273.79 1219.14 1328.44 0.223 1497.07 1458.40 1535.73 0.360

25 1417.22 1358.29 1476.14 0.192 1596.25 1548.48 1644.02 0.344

30 1411.76 1344.62 1478.91 0.184 1612.11 1569.67 1654.55 0.341

600

750

900

1050

1200

1350

1500

1650

5 10 15 20 25 30

T
h

ro
u

g
h

p
u

t
(k

b
p

s)

Number of Flows

TCP NewReno

CSCC

600

800

1000

1200

1400

1600

5 10 15 20 25 30

T
h

ro
u

g
h

p
u

t
(k

b
p

s)

Number of Flows

TCP NewReno

CSCC

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

TABLE 8. CONFIDENCE INTERVALS AND FAIRNESS INDEXES FOR THE RANDOM TOPOLOGY, WHERE THE

ROUTING PROTOCOL IS DSR

 TCP NewReno CSCC

Number

of flows
Throughput

95% Confidence

Interval Fairness

Index
Throughput

95% Confidence

Interval Fairness

Index Lower

Bound

Upper

Bound

Lower

Bound

Upper

Bound

5 702.23 650.58 753.87 0.37 793.98 736.42 851.54 0.45

10 1152.24 1119.92 1184.56 0.29 1323.29 1288.20 1358.38 0.39

15 1261.29 1232.84 1289.73 0.27 1435.18 1409.65 1460.71 0.39

20 1268.77 1250.31 1287.23 0.22 1461.83 1442.30 1481.37 0.36

25 1356.24 1321.76 1390.72 0.19 1541.81 1515.60 1568.02 0.34

30 1381.37 1325.19 1437.56 0.18 1582.95 1561.30 1604.60 0.34

FIGURE 20. Number of retransmitted packets on the random topology with AODV

FIGURE 21. Number of retransmitted packets on the random topology with DSR

400

800

1200

1600

5 10 15 20 25 30

N
u

m
b

e
r

o
f

re
tr

a
n

s
m

it
te

d

p
a
c
k
e
ts

Number of Flows

TCP NewReno

CSCC

0

400

800

1200

1600

5 10 15 20 25 30

N
u

m
b

e
r

o
f

re
tr

a
n

s
m

it
te

d

p
a
c

k
e

ts

Number of Flows

TCP NewReno

CSCC

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, 2017 1

VI. CONCLUSION

Improving the performance of TCP in WANETs is the main

objective of the proposed CSCC mechanism. In the proposed

mechanism, each node calculates the WMA of the number of

tries attempted for a frame transmission at the MAC layer to

reflect CC. When the WMA at any node hits a pre-defined

threshold, the node begins marking packets to alert the sender

about contention. Consequently, the sending node must adjust

the injection of packets into the network based on the cwnd

size of the data flow.

The performance of the proposed CSCC mechanism has

been evaluated against TCP NewReno and observed that the

proposed mechanism outperformed TCP NewReno in terms

of throughput. The number of retransmitted packets is fewer

with the proposed mechanism than TCP NewReno, which is a

sign of contention control. Moreover, fewer retransmission

means the packet drop rate is low.

For the string topology, the CSCC mechanism achieved

10.99% to 56.43% and 12.58% to 54.71% improvement in

throughput against TCP NewReno with the AODV and DSR

routing protocols, respectively. When the grid topology was

considered, the CSCC mechanism achieved 24.33% to

30.17% and 18.33% to 32.42% improvement in throughput

against TCP NewReno with the AODV and DSR routing

protocols, respectively. A random topology was also

considered to evaluate the ability of the CSCC mechanism to

handle an increasing number of flows; the CSCC mechanism

achieved 9.27% to 17.53% and 13.07% to 15.22%

improvement in throughput against TCP NewReno with the

AODV and DSR routing protocols, respectively.

ACKNOWLEDGMENT

The preferred spelling of the word “acknowledgment” in

American English is without an “e” after the “g.” Use the

REFERENCES

[1] J. Postel, “RFC 793: Transmission Control Protocol.” RFC

Editor, 1981.

[2] V. Jacobson, “Congestion avoidance and control,” ACM

SIGCOMM computer communication, vol. 18, no. 4, pp.

314–329, 1988.

[3] M. Allman, V. Paxson, and W. Stevens, “RFC 2581: TCP

congestion control.” RFC Editor, 1999.

[4] M. Al Shinwan, L. Abualigah, N. D. Le, C. Kim, and A. M.

Khasawneh, “An intelligent long-lived TCP based on real-

time traffic regulation,” Multimed Tools Appl, vol. 80, no.

11, pp. 16763–16780, May 2021, doi: 10.1007/s11042-020-

08856-z.

[5] M. J. A. Jude, V. C. Diniesh, M. Shivaranjani, S.

Madhumitha, V. K. Balaji, and M. Myvizhi, “Improving

Fairness and Convergence Efficiency of TCP Traffic in

Multi-hop Wireless Networks,” Wireless Pers Commun, vol.

121, no. 1, pp. 459–485, Nov. 2021, doi: 10.1007/s11277-

021-08645-3.

[6] R. Rukaiya, M. U. Farooq, S. A. Khan, F. Hussain, and A.

Akhunzada, “CFFD-MAC: A Hybrid MAC for Collision

Free Full-Duplex Communication in Wireless Ad-Hoc

Networks,” IEEE access, vol. 9, pp. 35584–35598, 2021,

doi: 10.1109/ACCESS.2021.3061943.

[7] “IEEE Standard for Information Technology–

Telecommunications and Information Exchange between

Systems - Local and Metropolitan Area Networks–Specific

Requirements - Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications -

Redline,” IEEE Std 802.11-2020 (Revision of IEEE Std

802.11-2016) - Redline, pp. 1–7524, Feb. 2021.

[8] L. D. Hieu, B. T. Tung, P. T. Giang, T. Q. Vinh, and L. Nam,

“Improving Fairness in IEEE 802.11 EDCA Ad Hoc

Networks Based on Fuzzy Logic,” Journal of Advanced

Computational Intelligence and Intelligent Informatics, vol.

24, no. 5, pp. 615–620, 2020, doi:

10.20965/jaciii.2020.p0615.

[9] A. Deshpande and D. A. K. Shrivastava, “A Review of

Various Approaches to Improve Usage of TCP in Mobile

Ad-Hoc Networks,” Journal of Information and

Computational Science, vol. 9, no. 9, p. 9, 2019.

[10] D. B. Johnson and D. A. Maltz, “Dynamic source routing in

ad hoc wireless networks,” in Mobile computing, Springer,

1996, pp. 153–181.

[11] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance

vector routing,” presented at the Proceedings WMCSA’99.

Second IEEE Workshop on Mobile Computing Systems and

Applications, 1999, pp. 90–100.

[12] F. Zhang and G. Yang, “A Stable Backup Routing Protocol

for Wireless Ad Hoc Networks,” Sensors, vol. 20, no. 23,

2020, doi: 10.3390/s20236743.

[13] V. K. Sharma, L. P. Verma, M. Kumar, R. K. Naha, and A.

Mahanti, “A-CAFDSP: An Adaptive-Congestion Aware

Fibonacci Sequence based Data Scheduling Policy,”

Computer Communications, vol. 158, pp. 141–165, May

2020, doi: https://doi.org/10.1016/j.comcom.2020.04.047.

[14] A. S. Sharma and D. S. Kim, “Energy efficient multipath ant

colony based routing algorithm for mobile ad hoc networks,”

Ad Hoc Networks, vol. 113, p. 102396, Mar. 2021, doi:

https://doi.org/10.1016/j.adhoc.2020.102396.

[15] N. Mast et al., “Channel Contention-Based Routing Protocol

for Wireless Ad Hoc Networks,” Complexity, vol. 2021, p.

2051796, Jan. 2021, doi: 10.1155/2021/2051796.

[16] A. Al Hanbali, E. Altman, and P. Nain, “A survey of TCP

over ad hoc networks,” IEEE Communications Surveys &

Tutorials, vol. 7, no. 3, pp. 22–36, 2005, doi: 10.1109

/COMST.2005.1610548.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8 VOLUME XX, 2017

[17] A. M. Al-Jubari, M. Othman, B. Mohd Ali, and N. A. W.

Abdul Hamid, “TCP performance in multi-hop wireless ad

hoc networks: challenges and solution,” J Wireless Com

Network, vol. 2011, no. 1, p. 198, Dec. 2011, doi:

10.1186/1687-1499-2011-198.

[18] H. K. Molia and A. D. Kothari, “TCP Variants for Mobile

Adhoc Networks: Challenges and Solutions,” Wireless

Personal Communications, vol. 100, no. 4, pp. 1791–1836,

Jun. 2018, doi: 10.1007/s11277-018-5675-8.

[19] H. Zhai, X. Chen, and Y. Fang, “Improving Transport Layer

Performance in Multihop Ad Hoc Networks by Exploiting

MAC Layer Information,” IEEE Transactions on Wireless

Communications, vol. 6, no. 5, pp. 1692–1701, May 2007,

doi: 10.1109/TWC.2007.360371.

[20] Z. Fu, H. Luo, P. Zerfos, S. Lu, L. Zhang, and M. Gerla,

“The impact of multihop wireless channel on TCP

performance,” IEEE Transactions on Mobile Computing,

vol. 4, no. 2, pp. 209–221, Mar. 2005, doi:

10.1109/TMC.2005.30.

[21] H. Haile, K.-J. Grinnemo, S. Ferlin, P. Hurtig, and A.

Brunstrom, “End-to-end congestion control approaches for

high throughput and low delay in 4G/5G cellular networks,”

Computer Networks, vol. 186, p. 107692, Feb. 2021, doi:

10.1016/j.comnet.2020.107692.

[22] R. M. Bhavadharini, S. Karthik, and R. Sabitha, “An energy-

efficient priority-based packet scheduling mechanism for

enhancing quality of service in mobile ad hoc network,”

Concurrency and Computation: Practice and Experience,

vol. 34, no. 6, p. e6784, 2022, doi: 10.1002/cpe.6784.

[23] S.-T. Chou, Z.-B. Chen, J. Yao, and S.-S. Chou, “A Priority

Contention Window Mechanism for Ad Hoc Network,” in

2021 IEEE 3rd Eurasia Conference on Biomedical

Engineering, Healthcare and Sustainability (ECBIOS), May

2021, pp. 84–87. doi: 10.1109/ECBIOS51820.2021.9511

029.

[24] S. Wu, K. Liu, W. Zhang, Z. Xu, F. Liu, and X. Luo, “A

distributed cooperative MAC protocol with relay collision

avoidance for wireless ad hoc networks,” presented at the

2018 International Conference on Information Networking

(ICOIN), 2018, pp. 325–330.

[25] M. Z. Oo, M. Othman, and T. O’ Farrell, “A proxy

acknowledgement mechanism for TCP variants in mobile ad

hoc networks,” Journal of Communications and Networks,

vol. 18, no. 2, pp. 238–245, 2016, doi: 10.1109/JCN

.2016.000033.

[26] A. M. Al-Jubari, M. Othman, B. Mohd Ali, and N. A. W.

Abdul Hamid, “An Adaptive Delayed Acknowledgment

Strategy to Improve TCP Performance in Multi-hop

Wireless Networks,” Wireless Pers Commun, vol. 69, no. 1,

pp. 307–333, Mar. 2013, doi: 10.1007/s11277-012-0575-9.

[27] E. Altman and T. Jiménez, “Novel delayed ACK techniques

for improving TCP performance in multihop wireless

networks,” presented at the IFIP international conference on

personal wireless communications, 2003, pp. 237–250.

[28] R. Braden, “RFC1122: Requirements for Internet hosts-

communication layers.” RFC Editor, 1989.

[29] R. de Oliveira and T. Braun, “A dynamic adaptive

acknowledgment strategy for TCP over multihop wireless

networks,” in Proceedings IEEE 24th Annual Joint

Conference of the IEEE Computer and Communications

Societies., Mar. 2005, vol. 3, pp. 1863–1874 vol. 3. doi:

10.1109/INFCOM.2005.1498465.

[30] A. K. Singh and K. Kankipati, “TCP-ADA: TCP with

adaptive delayed acknowledgement for mobile ad hoc

networks,” presented at the 2004 IEEE Wireless

Communications and Networking Conference (IEEE Cat.

No. 04TH8733), 2004, vol. 3, pp. 1685–1690.

[31] C. D. A. Cordeiro, S. R. Das, and D. P. Agrawal, “COPAS:

dynamic contention-balancing to enhance the performance

of TCP over multi-hop wireless networks,” presented at the

Proceedings. Eleventh International Conference on

Computer Communications and Networks, 2002, pp. 382–

387.

[32] K. Xu, M. Gerla, L. Qi, and Y. %J W. N. Shu, “TCP

unfairness in ad hoc wireless networks and a neighborhood

RED solution,” vol. 11, no. 4, pp. 383–399, 2005.

[33] S. Floyd and V. Jacobson, “Random early detection

gateways for congestion avoidance,” IEEE/ACM

Transactions on Networking, vol. 1, no. 4, pp. 397–413,

Aug. 1993, doi: 10.1109/90.251892.

[34] D. Kliazovich and F. Granelli, “Cross-layer congestion

control in ad hoc wireless networks,” Ad Hoc Networks, vol.

4, no. 6, pp. 687–708, Nov. 2006, doi: https://doi.org

/10.1016/j.adhoc.2005.08.001.

[35] V. Rakocevic and E. Hamadani, “A cross layer solution to

address TCP intra-flow performance degradation in

multihop ad hoc networks,” Journal of Internet Engineering,

vol. 2, no. 1, pp. 146–156, 2008.

[36] R.-S. Cheng and H.-T. Lin, “A cross-layer design for TCP

end-to-end performance improvement in multi-hop wireless

networks,” Computer Communications, vol. 31, no. 14, pp.

3145–3152, Sep. 2008, doi: https://doi.org/10.1016

/j.comcom.2008.04.017.

[37] M. Wisniewski, Quantitative methods for decision makers.

Pearson Education, 2009.

[38] K. Ramakrishnan, S. Floyd, and D. Black, “RFC 3168: The

addition of explicit congestion notification (ECN) to IP.”

RFC Editor, 2001.

[39] “The Network Simulator - ns-2.” https://www.isi.edu

/nsnam/ns/ (accessed Aug. 25, 2022).

Noor Mast has been actively involved with
academia and research. He is a faculty member at

the Institute of Computing, Kohat University of

Science and Technology, Kohat, Pakistan. His
research interests include the design of routing

protocols, congestion control and channel

contention control in wireless networks,

M. Irfan Uddin has been actively involved with

academia and research. He has received B.Sc. in
Computer Science, M.Sc. in Computer Science,

MS in Grid Computing and PhD in Computer

Science. He worked as a faculty member at
different institutes. He works at the Institute of

Computing, Kohat University of Science and

Technology, Kohat, Pakistan. His research
interests include machine learning, data science,

deep learning, convolutional neural networks,

reinforcement learning, computer vision, and parallel programming. He has

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8 VOLUME XX, 2017

published several articles in reputed journals and conference proceedings.

He serves as a reviewer for different journals.

Yazeed Yasin Ghadi received his Ph.D. in
Electrical and Computer Engineering from

Queensland University. His dissertation on

developing novel hybrid plasmonic photonic on-
chip biochemical sensors received the Sigma Xi

best Ph.D. thesis award. He is currently an

assistant professor of Software engineering at Al
Ain University. He was a postdoc researcher at

Queensland University before joining Al Ain. His

current research is developing novel electro-acoustic-optic neural interfaces
for large-scale high-resolution electrophysiology and distributed

optogenetic stimulation. Yazeed has published over 80 peer-reviewed

journal and conference papers and holds three pending patents. He is the
recipient of several awards.

Hend Khalid Alkahtani is a PhD candidate and an assistant professor at
Princess Nourah bint Abdulrahman University, College of Computer and

Information Sciences Information Systems Department. She has a PhD in

information security from the Department of computer science,
Loughborough University (2012-2018), Master of Science with

Concentration in Information Management from the Department of

Engineering Management, George Washington University (1992-1993) and
Bachelor of Science, Computer Science, School of Engineering and Applied

Science, The George Washington University (1988-1992) She has 23 years

of Work experience as a lecturer, worked as a computer center president and
as a statistic center president in faculty collages. She is a member of IEEE.

She received an award from SIDF Academy: Leading Creative

Transformation in Critical Time Program, Stanford University, and Center
for Professional Development. She has two Conference publications in

which she received a certificate as the best publication presented.

SAMIH M. MOSTAFA received the bachelor's
and M.Sc. degrees in computer science from the

Computer Science-Mathematics Department,

Faculty of Science, South Valley University, in
2004 and 2010, respectively, and the Ph.D.

degree in computer science from the Advanced

Information Technology Department, Graduate
School of Information Technology, Kyushu

University, Japan, in 2017. He is currently a

Fellow with the Academy of Scientific Research
and Technology (ASRT), Egypt. His research interests include machine

learning and CPU scheduling

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

