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ABSTRACT With the development of wireless technology, users not only have wireless access to the 

Internet, but this has also sparked the emergence of Wireless Ad-hoc Networks (WANETs); this promising 

networking paradigm has the potential to adopt the shape of new emergent networks such as the Internet of 

Things (IoT), Vehicular Ad-hoc Networks (VANET) and Wireless Sensor Networks (WSN). However, 

channel contention (CC) is one of the key reasons why the TCP performs poorly in WANETs. This paper 

presents a mechanism called Cross-layer Solution for Contention Control (CSCC) to enhance TCP 

performance in WANETs. Each node starts marking packets in the proposed mechanism when its CC level 

reaches a certain threshold. As a result, the source node adjusts the congestion window (cwnd) size to a good 

state to control the insertion ratio of packets into the network. To provide a fair share to each flow, the flow 

having a large cwnd is penalized more. Numerous simulations have been conducted across several topologies 

to clarify the performance of the suggested mechanism. The simulation findings show that, in the presence 

of the Ad-hoc On-demand Distance Vector (AODV) routing and Dynamic Source Routing (DSR) protocols, 

the proposed CSCC mechanism outperformed TCP NewReno in terms of throughput and fairness. In 

comparison to TCP NewReno, the suggested mechanism has fewer retransmitted packets. 

INDEX TERMS TCP, Wireless Ad-hoc Networks (WANETs), Channel Contention (CC), Congestion 

Window (cwnd), CSCC, IEE802.11 

I. INTRODUCTION 

Transmission Control Protocol(TCP)[1] is a reliable 

acknowledgment-based transport layer protocol initially 

designed for wired networks. When TCP was in its early 

days, it faced congestion problems, which led to the 

integration of congestion algorithms [2], [3] for further 

advancement. Due to its reliability, TCP is widely utilized 

in numerous Internet applications such as email, remote 

access, and file transfer. Moreover, according to reports, 

TCP is used to carry up to 90% of all internet traffic [4], 

[5], making it a vital protocol that still needs work to be 

improved. 

However, with the development of wireless technology, 

users not only have wireless access to the Internet, but this has 

also led to the emergence of Wireless Ad-hoc Networks 

(WANETs). These networks are beneficial when the 

infrastructure may not exist or may be too expensive. 

WANETs are built up of wireless nodes (as depicted in Fig. 

1), where nodes are connected wirelessly to each other without 

using any access point, and every node performs the roles of 

both a host and a router. These networks can be quickly 

deployed anywhere at any time. This alluring networking 

paradigm has the potential to adopt the shape of new emerging 

networks such as the Internet of Things (IoT), Wireless Sensor 

Networks (WSN), Vehicular Ad-hoc Networks (VANET) and 
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Tactical Wireless Networks [5], [6]. The IEEE 802.11 

standard [7] is a de-facto standard for accessing medium in 

WANET[8].  

However, wireless networks have unique properties (such 

as dynamic topology, a shared medium, and a medium prone 

to errors) compared to wired networks. Due to this mismatch, 

TCP experiences difficulties on wireless networks and 

performs poorly, notably in WANETs [9]. TCP must 

overcome these difficulties to efficiently use wireless 

technologies by connecting to the Internet or creating a 

WANET. 

 

FIGURE 1.  A scenario of a Wireless ad hoc Network. 

 

The research community works on various aspects to 

improve wireless networks’ overall performance. For 

example, many routing protocols like [10]–[15] have been 

proposed to establish network paths effectively. But TCP’s 

performance on wireless networks is still insufficient in the 

presence of such routing algorithms. Because there have been 

changes to the wireless technology’s lower tiers of the 

communications stack without considering how those changes 

would affect the higher layers; therefore, wireless networks 

have a very different communication environment than cable 

ones. However, TCP fails to account for this shift and 

continues to operate as though a wireless network were wired. 

Furthermore, utilizing congestion algorithms in the event of 

losses not arising from network congestion is the primary 

problem for TCP in WANET. That is to say, TCP cannot tell 

the difference between losses due to congestion and losses due 

to the unique features of WANET. [16]–[18].  

For wired networks using TCP, buffer overflow is the most 

common cause of lost packets. But this assumption is false 

with WANETs because packet loss can be caused by channel 

contention (CC) or route failure [19]. Furthermore, if the 

WANET nodes can store more than ten packets in the buffer, 

then buffer overflow is rare. However, one of the most 

frequent causes of packet loss in WANETs is CC, resulting 

from the shared medium [20], [21]. Therefore, TCP must be 

aware of CC to respond accordingly and operate more 

effectively in WANETs. 

To enhance TCP's functionality in WANETs, this paper 

presents a mechanism known as Cross-layer Solution for 

Contention Control (CSCC). In the proposed mechanism, 

packets are marked at each node once the CC at the MAC layer 

reaches a certain threshold. As a result, the source node adjusts 

the congestion window (cwnd) size to a good state to control 

the insertion ratio of packets into the network.  To provide a 

fair share to each flow, the flow having a large cwnd is 

penalized more.   

Here is how the rest of the paper is structured. Section II 

describes the Distributed Coordination Function of the IEEE 

802.11 MAC protocol. Section III summarises the relevant 

literature. The proposed mechanism is described in detail, 

beginning with section IV. Results from simulation 

experiments of the suggested mechanism's performance are 

reported in Section V, and section VI offers the conclusion. 

II. THE DISTRIBUTED COORDINATION FUNCTION   

In the IEEE 802.11 MAC protocol, the Distributed 

Coordination Function (DCF) provides two mechanisms for 

accessing the medium. One of these mechanisms is the 

CSMA/CA (Carrier Sense Multiple Access with Collision 

Avoidance) used to share the medium among compatible 

devices, also known as the basic access mechanism.  Before 

commencing a transmission in CSMA/CA, A node will 

check by sensing the medium that any other node within the 

range is sending data. The node transmits a frame if the 

medium is free for longer than the distributed inter-frame 

space (DIFS).  Otherwise, the node defers transmission using 

the binary exponential backoff process to reduce the chance 

of packet collisions with packets sent by other nodes. The 

receiver sends an acknowledgement (ACK) to the sender 

when the frame is received. Otherwise, the sender schedules 

a retransmission of the frame. Additionally, the CSMA/CA 

algorithm requires that adjacent frame sequences have a 

minimum specified space between them. 

On the other hand, the virtual carrier sensing method is an 

alternative to the basic access mechanism that calls for 

exchanging special RTS and CTS (Request to Send and Clear 

to Send) frames before transmitting actual data frames. With 

virtual carrier sensing, a sender will first send an RTS frame, 

and then, after a brief delay called short inter-frame space 

(SIFS), the receiving node will send a CTS frame in response. 

If the CTS frame is received after the RTS frame, the sender 

is free to send the data frame; otherwise, the transmission of 

the RTS frame is rescheduled. 

When the medium is busy, both medium access 

mechanisms initiate the Binary Exponential Backoff (BEB) 

algorithm, where CWmin (minimum contention window) is the 

initial size of the contention window (CW) in the BEB 

algorithm. After that, the size of the CW is incremented 

exponentially for each unsuccessful transmission. However, 

the size of the CW cannot exceed the size of the CWmax 

(maximum contention window). 

The IEEE 802.11 MAC protocol specifies that if the 

number of tries for transmitting a frame hits its maximum 

limit, then drop the frame and set CW to its minimum value. 

Also, reduce the value of CW to a minimum in the case of 

successful transmission. Since the RTS and CTS frames in the 

virtual carrier sensing mechanism provide information about 

the time needed to transmit a frame. Any listening node can 
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read this information and utilize it to update its NAV (Network 

Allocation Vector). Each node uses its NAV to estimate how 

long the medium will be busy and defers transmission 

accordingly.  

III. RELATED WORK  

The researchers have proposed various mechanisms for 

addressing the CC problem to improve TCP performance. We 

want to present a brief overview of these techniques here. One 

of these mechanisms is the Prioritized Packet Scheduling with 

Adaptive Backoff window (PPSAB) [22]. This mechanism 

calculates the retransmission probability (RP) based on the 

packet expiry time and the number of tries made for frame 

transmission. The frame with the shortest lifespan and the 

most transmission attempts is given the highest priority. Then 

each node modifies the CW using the RP and number of 

neighbor nodes. The weight components 𝛼1 and 𝛼2 are used 

to calculate CWpar, and CW is then dynamically adjusted by 

equation (1). 

CWpar = (α1 × Average_Active_Neighbors) + (α2 × RP) 

CW = CWmax × CWpar   (1) 

A mechanism named Priority Contention Window 

Approach (PCWM) [23] is proposed by Chou et al. to tackle 

the CC problem. The MAC layer receives data from the 

network layer about the total and remaining hops in the 

PCWM mechanism. Then, using equation (2) provided, the 

value of CW is determined at each node along the path. 

𝐶𝑊𝑀𝑎𝑥 = 1024/2
𝑦 , 𝑦 = 𝑀𝑎𝑥(0, (𝐿 − 𝐷 − 5)) 

𝐶𝑊𝑀𝑖𝑛 = 1024/(2𝑥 ∗ 2(𝐿−𝐷)), 𝑥 = 𝑀𝑎𝑥(0, (5 − 𝐿)) 

L is the routing path's overall hop count, and D is the 

remaining hop counts in the Ad-hoc On-demand Distance 

Vector (AODV) routing table. 

𝐶𝑊 = 𝐶𝑊𝑀𝑖𝑛 ∗  2
𝑛−1  (2) 

In equation (2) n is the number of attempts for data 

transmission, and CWMin ≤ CW ≤ CWMax 

A mechanism named Cooperative MAC protocol with 

Multi-Node Collision Avoidance (MNCA-CMAC) [24] is 

proposed by Shan Wu et al. to avoid collision among frames. 

This mechanism consists of three phases, i.e., (i) channel 

reservation phase, (ii) cooperative node selection phase and 

(iii) data transmission phase. The Cooperative RTS and 

Cooperative CTS (CCTS) packets are used for channel 

reservation. After receiving the CCTS packets, the sender 

awaits to receive the HTS (help-to-send) packets from the 

cooperating nodes, which identify the residual energy of a 

cooperative node. The sender waits for a predetermined 

interval to elapse or to receive a specified number of HTS 

packets. When either of these two conditions occurs, the 

sender sends an SEI (Selection End Indicator) packet to 

terminate the selection phase of the cooperative node. After 

that, the data packet is transmitted to the most cooperative 

node. 

Some techniques are focused on generating a delayed ACK 

to minimize CC. Proxy Acknowledgement (PACK) [25]  is 

one such mechanism; in this mechanism, a proxy node is 

nominated if the number of hops on the path surpasses a 

predefined threshold. The proxy node identifies missing 

packets and informs the source node by sending an ACK 

packet. As a result, the source node will retransmit the lost 

packets without waiting for a retransmission timeout. One of 

the delay ACK mechanisms is the TCP ACK Delay Window 

(TCP-ADW) [26]; this mechanism looks at the channel 

situation to determine the number of ACKs for 

increasing/decreasing the delay window. The receiver must 

provide an ACK and set the count variable to zero when the 

sum of all received packets reaches the delay window. If an 

out-of-order packet arrives, then immediately provide an ACK 

or if a packet fills a gap in the receiver's buffer. 

Altman et al. proposed a mechanism called the Dynamic 

Delayed ACK (DDA)[27] based on RFC1122 [28] also 

belongs to the category of delay ACK. After receiving d 

packets (where d=2), RFC 1122 specifies a standard for 

sending an ACK.  However, send an ACK if d packets are not 

received within a specific time. The value of d in DDA can be 

between 1 and 4.  Initially, DDA creates an ACK on the arrival 

of each packet and then increases this number to four (d=4) 

based on the sequence number of a segment. Under this 

strategy, once d achieves the value of four, there is no way to 

bring it back down. To improve this idea, even more, a 

mechanism called TCP-DAA (TCP Dynamic Adaptive ACK) 

[29] is suggested. This mechanism considers the channel 

situation for sending an ACK; if the channel is good, send an 

ACK after four packets or two packets. However, immediately 

send an ACK if an out-of-order packet arrives or a packet fills 

the gap in the receiver’s buffer. In standard TCP, three 

duplicate ACKs are required for fast retransmission, whereas 

in TCP-DAA, two are needed. 

TCP-DCA (TCP with Delayed Cumulative ACK) [17] is a 

technique that aims to determine the delay windows based on 

the hop count and is motivated by the same theory as TCP-

DAA. The ACK might be suspended for an entire cwnd using 

TCP-DCA if the number of hops on the path is less or equal to 

three. On paths with a hop count of more than three but less or 

equal to nine, the receiver delivers an ACK after five packets. 

However, send an ACK after three packets in the case of more 

than nine hops. In contrast, TCP-ADA (TCP with Adaptive 

Delayed Acknowledgement) [30] is a technique; according to 

this approach, to avoid contention and collision, the best 

solution is to generate an ACK for a single cwnd. In the 

Contention-based Path Selection (COPAS) [31] mechanism, a 

different approach has been adopted than delay ACK 

techniques. The COPAS uses different routes for forwarding 

the data and ACK packets. After that, continuously monitors 

the paths for contention. A less-contended route is selected as 

soon as the traffic on a path exceeds a certain level. 

The NRED (Neighbourhood Random Early Detection) [32] 

technique, which is based on [33], is proposed by Xu et al. to 
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alleviate the effect of unfairness in WANETs. In the NRED 

algorithm, a distributed neighborhood queue strategy is 

adopted, in which all neighbor nodes' queues are aggregated 

so that every node holds a piece of the distributed queue. To 

determine the size of the distributed queue, each node 

monitors channel utilization; the packet dropping/marking 

probability is determined based on channel utilisation.  

Fu et al. have proposed a mechanism called Link layer 

RED+AP (LRED+AP)[20]; this mechanism selects two 

thresholds (i.e., maximum and minimum) to manage CC. The 

packets are dropped at the maximum threshold and added 

extra time to back-off time at the minimum threshold level. 

The additional time is equal to the transmission time of the 

preceding packet. Thus, the spare time depends on the size of 

the last transmitted packet. 

Cross-layer congestion control (C3TCP) [34] has been 

proposed to deal with network congestion to improve TCP 

performance. This mechanism minimizes the data injected 

into the network for congestion avoidance. Therefore, the 

bandwidth and the delay experienced by each link are 

evaluated at each node. The collected data are inserted into the 

MAC header's option field. After collecting the bandwidth and 

link delay information at the first node, the next node 

compares its bandwidth with the bandwidth of the previous 

node and chooses the smallest one. However, the delay on the 

current link will be added to the previous delay. The process 

mentioned above is repeated on each intermediate node. As a 

result, when the destination node receives a data packet, it 

contains the minimum available bandwidth on the path. It will 

also include the link delay information for the entire route. 

After that, the bandwidth and link delay information is 

communicated to the source nod in the ACK packet for 

transmission rate adjustment. 

The Wireless Contention Control Protocol (WCCP) [19] 

uses channel busyness to identify the network utilization and 

congestion status. Moreover, it allocates resources to a flow 

based on available bandwidth. WCCP replaces the TCP's 

window technique with a rate-based algorithm. As a result, 

WCCP introduces two modules: one at the transport layer and 

the second between the network and MAC layer, to check and, 

if required, alter the value of the feedback field in the TCP’s 

packet. The source node adjusts its transmission rate based on 

the value of the feedback field. 

Hamadani [35] proposed a solution to address the problem 

of intra-flow instability. The leading cause of intra-flow 

instability, according to [35], is transmitting more data to the 

network. In the proposed solution, the destination node 

monitors the amount of throughput achieved for a fixed 

interval of time and the level of contention in this interval. The 

receiver node decides the appropriate amount of data to be 

emitted by the sender node based on the information collected 

within the fixed interval to achieve high throughput and reduce 

the delay on each connection. After presenting a summary of 

the proposals suggested by the research community, the 

following section offers the proposed CSCC mechanism. 

IV. PROPOSED SOLUTION  

In the proposed mechanism, each node counts the number of 

attempts to access the medium for transmission at the MAC 

layer. After that, each node calculates the Weighted Moving 

Average (WMA) of the number of tries (as explained in 

subsection A of Section IV) to estimate the CC and react 

accordingly. When the WMA reaches a specific threshold 

CCThresh (Channel Contention Threshold), the MAC layer will 

set the CC status ON. As a result, the node will start marking 

packets to inform the TCP’s source node about contention 

(Subsection B of Section IV describes how to notify the source 

node). On receipt of CC notification, the source node adjusts 

its transmission rate to control contention.  

Marking packets is more effective than dropping packets. 

Because when the MAC layer fails to transmit a frame, it is 

dropped and wrongly notifies the network layer that the path 

is unavailable. The network layer then initiates an unnecessary 

route recovery process[36]. The proposed mechanism 

attempts to control packet drop due to CC to save the time the 

network layer searches for a new path due to a wrong 

notification of route failure. 

The problem of contention and congestion occurs because 

of the greedy behaviour of TCP. However, in WANETs, 

congestion control is often turned on due to MAC layer losses 

and not buffer overflow. The proposed mechanism enables the 

TCP to distinguish congestion and contention losses and react 

accordingly. The CC leads to the problem of unfairness as 

well. So, in the case of CC, it makes sense to impose a higher 

penalty on flows with a larger cwnd. Therefore, the proposed 

mechanism adjusts the cwnd size to a good state to make fair 

and efficient use of channel resources. Fig. 2 shows the 

flowchart of the suggested mechanism. 

A. COMPUTING THE WEIGHTED MOVING AVERAGE 
(WMA) 

Whereas accessing the medium for transmission, the 

increase/decrease in the number of attempts means the node 

has potentially identified an increase/decrease in the CC. 

Therefore, to estimate the CC, each node obtains the WMA of 

the number of tries made to transmit a frame. Suppose the 

WMA is denoted by Å. Suppose again that 𝑅𝐴𝑡𝑡 is the number 

of attempts made by a node N transmitting a frame. Then at 

the end of every successful/unsuccessful transmission, a 

WMA is computed according to equation (3) [37] to reflect 

increases/decreases in the contention. 

{

Å𝑛+1 = 𝛼𝑅𝑎𝑡𝑡  +  (1 − 𝛼)Å𝑛 ,   0 < 𝛼 < 1 
𝑖𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 

Å = 𝐶𝐶𝑇ℎ𝑟𝑒𝑠ℎ    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

}  (3) 
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FIGURE 2.  Flowchart of A Cross-layer Solution for Contention Control (CSCC) to Enhance TCP performance in WANET 

 

 

Algorithm 1: Observing Channel Contention 

Initialization 
{ 

Å = 0 
𝑅𝐴𝑡𝑡 = 0 

} 
Counts Number of 𝑅𝐴𝑡𝑡 
IF (Transmission successful = = True) 
  Å = (1 − 𝛼)Å𝑅𝑒𝑡𝑟𝑦 +  𝛼𝑅𝐴𝑡𝑡    
Else 
 Å = 𝐶𝐶𝑇ℎ𝑟𝑒𝑠ℎ 
Endif 
IF(Å ≥ 𝐶𝐶𝑇ℎ𝑟𝑒𝑠ℎ) 
 Contention Status ON 
Else 
 Contention Status OFF 
Endif 

 

The value of α is constant and must be chosen very 

carefully; the value for α must be selected such that it does 

not reveal contention early. Otherwise, TCP will reduce the 

cwnd size unnecessarily. On the other hand, conflict 

reflection would not even need to be long enough to allow 

cwnd to grow to a larger size. Both cases lead to the poor 

performance of the network. 

When Å ≥ CCThresh, the MAC layer sets the contention 

status ON. After that, the concerned node starts to mark 

packets to inform the source node about the medium 

contention. On receiving the contention notification, the 

source node adjusts its cwnd size to a good state, as explained 

in Subsection C of Section IV. Whereas algorithm 1 shows 

how to observe and set the CC status. 

B. CHANNEL CONTENTION NOTIFICATION  

Changes have been suggested in the IP (Internet Protocol) 

header for informing the source node about contention on the 

path. The IP header has a reserved field; the proposed 

mechanism uses this field to mark packets. Suppose the name 

of this field is CCE (Channel Contention Experienced), as 

shown in Fig. 3. When the MAC layer notifies that the 

contention has occurred, the network layer starts marking 

packets using the CCE field, as given in algorithm 2. 

As clear from the literature, the ECN [38] mechanism has 

been proposed to inform the source node about the 

congestion or queue status. The ECN mechanism uses the 

ECN field in the IP header to mark packets in the case of 

congestion, as shown in Fig. 3. So, the proposed mechanism 

and ECN mechanisms can be implemented together. As a 

result, the TCP’s source will be able to differentiate between 

congestion and CC losses and react accordingly.  

In the TCP header, there are eight control bits. The 

suggested mechanism introduces two new control bits called 

CCF (Channel Contention Flag) and CCR (Channel 

Contention Responded), as shown in Fig. 4. When a packet 

arrives at the destination node with the CCE field ON. The 

destination node sets the value of the CCF field to one in the 

ACK packet to inform the source node about contention. On 

receiving the ACK packet with the CCF field ON, the 

response of the source node is explained in subsection C of 

section IV. 
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FIGURE 3.  IP Header with suggested modification. 

 

 
FIGURE 4.  A portion of the TCP header with suggested modification. 

 

Algorithm 2: Marking Packets to Inform Source Node 

//At Intermediate Node 

IF (Contention Status ON) 

 Set CCE = 1 

Endif 

//At Destination Node 

Sending ACK 

IF (CCE = = 1) 

 IN ACK Header Set CCF=1 

Endif 

 

Algorithm 3: Adjusting the size of cwnd to a good state 

// on Receipt of ACK packet 

ACK packet received 

IF (CCF is ON) 

 IF (𝑐𝑤𝑛𝑑 ≤ 𝑠𝑠𝑇ℎ𝑟𝑒𝑠ℎ) 

  IF (𝑐𝑤𝑛𝑑 ≤
1

2
𝑠𝑠𝑇ℎ𝑟𝑒𝑠ℎ) 

   𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑  

  Else 

   𝑐𝑤𝑛𝑑 =
3

4
𝑠𝑠𝑇ℎ𝑟𝑒𝑠ℎ 

  Endif  

 Else IF ( 𝑐𝑤𝑛𝑑 > 𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ )  

  IF ( 
𝑐𝑤𝑛𝑑 

2
≤  𝑠𝑠𝑇ℎ𝑟𝑒𝑠ℎ ) 

  𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑/2 

Else   

  𝑐𝑤𝑛𝑑 = 𝑠𝑠𝑇ℎ𝑟𝑒𝑠ℎ 

 Endif 

Endif  

Set CCR = 1 

Endif 

C. RESPONSE OF SOURCE NODE TO MARKED 
PACKETS 

To control contention and provide fairness among data flows, 

the source node adjusts the size of the cwnd to a good state 

when receiving an ACK packet where the CCF field has one 

value. A good state means the cwnd size for which the flow 

did not observe contention and continued to increment its size 

to the next state. A flow whose cwnd size is less than the slow 

start threshold (ssthresh) is considered a flow with a small 

cwnd; otherwise, it is a flow with a large cwnd. Algorithm 3 

shows how to adopt a good state and sets the value of the CCR 

field to one to inform the destination node that the cwnd has 

been reduced.  Moreover, if the TCP source receives a CCF 

notification in a good state before the expiry of one round trip 

time, the TCP source should ignore the succeeding CCF. 

D. SELECTION OF VALUE FOR ALPHA (α) 

The WMA given by equation (3) is a recursive function, and 

one can write it in terms of older weights, as provided by 

equation (4). Expanding equation (4) to its older value will 

continue until it reaches the base term Å0. So, the recursive 

property of WMA implies that it calculates the value of the 

current state using the prior observation. The only choice a 

WMA user must make is the parameter alpha (α) selection, 

which determines how significant the recent observation is in 

the WMA’s computation. 

Some simulation experiments have been conducted to 

determine the value of alpha (α) for efficient utilization of the 

network resources. Therefore, the performance of the 

proposed mechanism was analyzed in the string topology of 9 

nodes depicted in Fig. 5. The values assigned to alpha(α) are 
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0.40, 0.45, 0.50, 0.55 and 0.60. The number of TCP flows was 

3, each with a payload of 1460 bytes.

 

 

FIGURE 5.  String topology of 9 nodes and three flows of TCP 

 

TABLE 1.  RESULTS ACHIEVED ON A STRING TOPOLOGY OF 9 NODES. 

Values assigned 

to alpha (α). 

Throughput 

(Flow 1) 

Throughput 

(Flow 2) 

Throughput 

(Flow 3) 

Total Throughput 

(Kbps) 
Fairness Index 

0.40 130.51 159.43 25.17 315.11 0.768 

0.45 121.11 168.73 43.15 332.99 0.821 

0.50 140.67 176.56 37.31 354.54 0.800 

0.55 123.63 169.66 63.70 356.99 0.883 

0.60 119.41 160.65 34.27 314.33 0.799 

 

 
FIGURE 6.  The throughput achieved on the nine nodes string. 

 

 

{
 
 
 
 
 

 
 
 
 
 
Å𝑛+1 = 𝛼𝑅𝑎𝑡𝑡 + (1 − 𝛼)Å𝑛,   

0 < 𝛼 < 1
 𝑖𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

Å𝑛+1 = 𝛼𝑅𝑎𝑡𝑡 + (1 − 𝛼)

∗ (
𝛼𝑅𝑎𝑡𝑡−1 +

(1 − 𝛼)Å𝑛−1
)

Å𝑛+1 = 𝛼𝑅𝑎𝑡𝑡  +  (1 − 𝛼)

∗ (𝛼𝑅𝑎𝑡𝑡−1 + (1 − 𝛼)

∗ (𝛼𝑅𝑎𝑡𝑡−2 + (1 − 𝛼)Å𝑛−2) }
 
 
 
 
 

 
 
 
 
 

 (4) 

 

Conducting the simulation experiments, the throughput 

achieved by the proposed mechanism is shown in Fig. 6, and 

Fig. 7 illustrates the fairness indexes achieved in each case. 

For further detail, look at TABLE 1.  

Looking at the results illustrated in Fig.  6 and Fig. 7 and 

listed in TABLE 1, high throughput and more fairness have 

been obtained by assigning a value of 0.55 to alpha(α). The 

closest results were achieved when a value of 0.50 was 

assigned to alpha(α); however, the best results were achieved 

when a weight of 0.55 was used for alpha. Therefore, during 

further simulation experiments, the value of 0.55 was used. 
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FIGURE 7.  The fairness indexes achieved with different values of alpha. 

V. PERFORMANCE EVALUATION 

Using the network simulator NS2.35 [39], multi-hop 

wireless simulation experiments were conducted to verify 

the proposed mechanism's performance against TCP 

NewReno. In each scenario, each node's transmission range 

and sensing ranges were 250 and 550 meters, respectively, 

and the data transfer rate was assumed to be 2Mbps. TCP 

packet in each case had a size of 1460 bytes. For each 

scenario, the simulation lasted 300 seconds. Each scenario’s 

results are based on an average of 15 runs.  

String topology was considered during the simulation to 

determine the effect of the increasing number of hops. Then 

a grid topology and a more realistic random topology were 

evaluated with a growing number of flows. Throughput and 

flow fairness criteria were chosen for the performance study, 

and simulation tests were conducted with 95% confidence. 

The quantity of retransmitted packets is also used as a 

performance indicator. TCP retransmits packets for two 

reasons: (i) when any packet loss is detected or (ii) when a 

retransmission timeout occurs. As a result, if an algorithm 

has a low number of retransmissions, it also has a low 

number of retransmission timeouts and dropped packets. 

The AODV [11]  and Dynamic Source Routing (DSR)[10]  

routing protocols were employed to establish the routes. DSR 

and AODV are on-demand routing protocols, i.e., a path is 

kept around for as long as it is essential. The DSR uses source 

routing in which the sender of a packet determines the 

complete sequence of the nodes through which the packet 

must pass. But in AODV, each node has a routing table that it 

uses to decide where to forward packets. TABLE 2 provides a 

detailed description of the simulation parameters used for the 

experiments. 

A. STRING TOPOLOGY 

To analyze how an increasing number of hops affects the 

performance of the proposed mechanism, the multi-hop 

simulations were performed in a string topology of 16 nodes. 

The path length of a minimum of three and a maximum of 15 

hops was considered. The distance between the adjacent nodes 

was set at 200 meters. The graphical representation of this 

topology is shown in Fig. 8. In the first case considered, a 

connection has been established between node 0 and node 3 to 

transfer the data, where node 0 and node 3 act as the source 

and destination nodes, respectively, which are not in the direct 

transmission range of each other.  

In the second case, node 0 and node 4 are considered to act 

as the source and destination nodes, respectively, whereas 

nodes 1, 2 and 3 are intermediate nodes that forward packets 

between node 0 and node 4. This way, the transmission 

between node 0 and node 5, then node 6 and 7 up to node 15, 

was considered.  

In each case considered for the string topology, the 

throughput achieved with TCP NewReno and the CSCC 

mechanism is depicted in Fig. 9 and Fig. 10; it is clear from 

these figures that the performance of the CSCC mechanism is 

more satisfactory than that of TCP NewReno in terms of 

throughput. The suggested mechanism achieved 

high throughput over TCP NewReno as the number of hops 

increased, ranging from 10.99% to 56.43% and a 12.58% to 

54.71% in the presence of AODV and DSR, respectively. The 

95% confidence intervals computed for the achieved 

throughput for the string topology cases considered with 

AODV and DSR are given in Tables  3 and  4, respectively.  

 
TABLE 2.  VALUES OF PARAMETERS USED IN THE SIMULATION.  

Parameters Value 

Simulation Time 300 Second 

Topologies and number of nodes 

A string of 16 nodes 

13x13 Grid  

Random topology in a 1000 x 
1000 meters area with 100 nodes 

Routing protocols AODV and DSR 

Transmission Range 250m 

Data rate 2Mbps 

Queue size 20 packets 

Packet size 1460 Bytes 

Slot time 20 μs 

SIFS 10 μs 

 

 

 

 

FIGURE 8.  String topology of 16 nodes. 
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FIGURE 9.  Throughput achieved in the string topology with AODV. 

 
TABLE 3.  CONFIDENCE INTERVALS COMPUTED FOR THROUGHPUT ON 

A STRING TOPOLOGY WITH AODV. 

 TCP NewReno CSCC 

N
u

m
b

er
 o

f 
H

o
p

s 

T
h

ro
u

g
h

p
u

t 95% Confidence 

Interval 

T
h

ro
u

g
h

p
u

t 95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

3 327.59 325.92 329.26 363.58 361.81 365.35 

4 247.01 245.71 248.31 283.60 282.73 284.46 

5 205.45 203.93 206.98 241.66 240.87 242.46 

6 180.01 178.51 181.51 220.25 219.02 221.47 

7 155.45 146.29 164.60 201.60 196.87 206.34 

8 139.88 132.22 147.54 188.20 178.29 198.11 

9 131.53 126.22 136.84 177.77 164.67 190.87 

10 122.33 117.08 127.58 168.01 162.17 173.85 

11 116.07 109.23 122.91 160.52 150.65 170.39 

12 106.99 99.87 114.11 153.79 148.03 159.56 

13 99.53 91.96 107.10 147.80 138.51 157.09 

14 93.80 88.20 99.40 142.46 134.55 150.36 

15 89.11 82.13 96.09 139.40 133.84 144.96 

 

 
 

TABLE 4.  CONFIDENCE INTERVALS COMPUTED FOR THROUGHPUT ON 

A STRING TOPOLOGY WITH DSR. 
 TCP NewReno CSCC 

N
u

m
b

er
 o

f 
 

H
o

p
s 

T
h

ro
u

g
h

p
u

t 95% Confidence 

Interval 

T
h

ro
u

g
h

p
u

t 95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

3 230.79 227.00 234.58 259.83 256.41 263.25 

4 195.33 191.95 198.71 227.97 221.70 234.23 

5 166.82 164.54 169.10 201.54 196.51 206.58 

6 142.13 138.93 145.32 176.72 172.75 180.68 

7 128.48 123.17 133.78 164.84 159.67 170.01 

8 119.47 115.85 123.10 161.61 158.07 165.16 

9 114.47 111.35 117.59 159.51 153.72 165.31 

10 112.26 108.67 115.86 158.86 155.91 161.81 

11 107.98 104.91 111.05 155.74 152.29 159.19 

12 105.08 100.75 109.40 150.70 147.59 153.80 

13 102.61 99.30 105.92 151.84 147.66 156.03 

14 98.46 96.35 100.58 145.90 143.19 148.61 

15 92.38 89.61 95.15 142.92 138.82 147.03 

 

It is clear from Fig. 11 and Fig. 12, illustrating the number 

of retransmitted packets, that the CSCC mechanism is 

transmitting fewer packets than TCP NewReno and achieving 

high throughput because there is lower contention on the 

channel. A reduced number of retransmissions means an 

improved utilization of network resources. Thus, the proposed 

mechanism handles contention more efficiently. 
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FIGURE 10.  Throughput achieved in the string topology with DSR. 

 

  
FIGURE 11.  The number of retransmitted packets in the string topology with AODV. 

 

   

FIGURE 12.  The number of retransmitted packets in the string topology with DSR. 
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B. GRID TOPOLOGY 

This subsection reports the results of the simulation analysis 

of the CSCC mechanism on a grid topology against TCP 

NewReno. A total of 169 nodes were simulated and placed 

in a 13x13 grid, depicted in Fig. 13. The distance between 

the adjacent nodes, as was the case in the previously 

considered scenarios, was 200 meters. Compared to the 

string topology considered in previous subsections, the grid 

topology has more nodes, and more data flows are 

considered to create a highly contended environment. At the 

start, two flows (F1 and F2) were considered so that the flows 

cross each other and move from one end to the other end of 

the grid, as shown in Fig. 13. Then two further flows (F3 and 

F4) were added, one starting on each side and flowing 

opposite to the first one. The number of flows was increased 

to 14 by adding two successive flows at a time. The 

throughput recorded using the AODV and DSR routing 

protocols, respectively, is depicted in Fig. 14 and Fig. 15 for 

each scenario. The improvement achieved by the CSCC 

mechanism against TCP NewReno ranges from 24.33 to 

30.17% with AODV and from 18.33 to 32.42% with DSR. 

At the same time, the 95% confidence intervals and fairness 

indexes computed for the achieved throughput for each 

scenario are listed in Tables 5 and 6. Jain’s fairness index 

was calculated according to equation (5). 

𝒇(𝒙) =  
[∑ 𝒙𝒊

𝒏
𝒊=𝒏 ]

𝒏 × ∑ 𝒙𝒊
𝟐𝒏

𝒊=𝒏

𝟐

 (5) 

In equation (5), n counts for the total number of flows, and 

xi for the ith flow's throughput. Equation (5) will provide a 

result between 0 and 1. The fairness increases as the 

calculated result approach one and decreases as it 

approaches zero (0). 
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FIGURE 13.  13x13 Grid with two flows. 

  
FIGURE 14. Throughput achieved on the 13x13 grid topology with AODV 

100

130

160

190

220

250

280

310

2 4 6 8 10 12 14

T
h

ro
u

g
h

p
u

t 
(k

b
p

s
)

Number of Flows

TCP NewReno

CSCC

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244888

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

VOLUME XX, 2017 1 

 

  
FIGURE 15.  Throughput achieved on the 13x13 grid topology with DSR. 

 
TABLE 5.  CONFIDENCE INTERVALS AND FAIRNESS INDEXES FOR THE 13X13 GRID TOPOLOGY, WHERE THE ROUTING 

PROTOCOL IS AODV. 

 TCP NewReno CSCC 

Number 

of flows 
Throughput 

95% Confidence 

Interval 
Fairness 

Index 
Throughput 

95% Confidence 

Interval 
Fairness 

Index Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

2 120.75 116.49 125.01 0.990 157.18 152.52 161.84 0.994 

4 134.14 129.64 138.63 0.697 174.28 170.81 177.74 0.995 

6 158.07 153.38 162.75 0.748 200.83 197.19 204.47 0.990 

8 177.76 173.94 181.58 0.670 222.84 218.60 227.08 0.990 

10 194.62 190.54 198.70 0.658 241.97 238.46 245.48 0.970 

12 209.16 205.92 212.40 0.693 266.55 260.99 272.10 0.897 

14 224.47 220.41 228.53 0.661 283.96 277.76 290.15 0.890 

 
TABLE 6.  CONFIDENCE INTERVALS AND FAIRNESS INDEXES FOR THE 13X13 GRID TOPOLOGY, WHERE THE 

ROUTING PROTOCOL IS DSR. 

 TCP NewReno CSCC 

Number 

of flows 
Throughput 

95% Confidence 

Interval  Fairness 

Index  
Throughput 

95% Confidence 

Interval  Fairness 

Index Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

2 122.19 119.51 124.87 0.830 148.34 145.38 151.31 0.996 

4 131.43 129.27 133.59 0.797 155.53 152.65 158.40 0.998 

6 144.50 141.73 147.28 0.819 173.29 170.52 176.07 0.991 

8 155.52 150.15 160.89 0.835 187.93 182.46 193.40 0.916 

10 164.67 159.13 170.20 0.910 197.99 190.99 204.99 0.970 

12 173.29 168.36 178.22 0.884 219.50 214.86 224.14 0.929 

14 177.27 167.59 186.94 0.935 234.74 226.93 242.55 0.971 
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Looking at Fig. 16 and Fig. 17, it is clear that the number 

of retransmitted packets in the case of the CSCC mechanism 

is less than in the case of TCP NewReno, in the presence of 

both the AODV and DSR routing protocols. Thus, the CSCC 

mechanism handles CC more efficiently in a dense network.  

 

  

FIGURE 16.  The number of retransmitted packets on the 13x13 grid topology with AODV. 

 

 

  

FIGURE 17. The number of retransmitted packets on the 13x13 grid topology with DSR. 

 

C. RANDOM TOPOLOGY 

The suggested CSSS mechanism's ability to handle growing 

traffic flows—from five to thirty connections—is evaluated 

using simulation experiments. A random network topology is 

employed in this simulation, with 100 nodes distributed at 

random throughout an area measuring 1000 by 1000 meters. 

Like all previous scenarios, the outcomes are averaged over 15 

runs. For conducting traffic flow experiments, the throughput 

achieved by TCP NewReno and the proposed CSCC 

mechanism with AODV and DSR is illustrated in Fig. 18  and 

Fig. 19, respectively.  Moreover, Fig. 20 and Fig. 21  show 

each case’s retransmitted packets. Analyzing these graphs, the 

CSCC mechanism has achieved high throughput than TCP 

NewReno, and less retransmission is observed in the case of 

the proposed CSCC mechanism. Furthermore, the 95% 

confidence interval and Jain’s fairness index computed in 

random topology, in the presence of AODV and DSR, are 

listed in Tables 7  and 8, respectively. The improvement in 

throughput achieved by the proposed CSCC mechanism 

against TCP NewReno ranges from 9.27 to 17.53% and from 

13.07 to 15.22% in the presence of AODV and DSR, 

respectively. 
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FIGURE 18.  Throughput achieved on the random topology with AODV 

 

 
FIGURE 19.  Throughput achieved on the random topology with DSR 

 
TABLE 7.  CONFIDENCE INTERVALS AND FAIRNESS INDEXES FOR THE RANDOM TOPOLOGY, WHERE THE ROUTING 

PROTOCOL IS AODV 

 TCP NewReno CSCC 

Number 

of flows 
Throughput 

95% Confidence 

Interval  
Fairness 

Index  
Throughput 

95% Confidence 

Interval  
Fairness 

Index  Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

5 828.08 809.67 846.50 0.370 838.15 810.80 865.50 0.450 

10 1215.84 1169.04 1262.63 0.290 1405.30 1379.00 1431.60 0.391 

15 1299.04 1252.20 1345.89 0.273 1498.57 1453.49 1543.65 0.389 

20 1273.79 1219.14 1328.44 0.223 1497.07 1458.40 1535.73 0.360 

25 1417.22 1358.29 1476.14 0.192 1596.25 1548.48 1644.02 0.344 

30 1411.76 1344.62 1478.91 0.184 1612.11 1569.67 1654.55 0.341 
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TABLE 8.  CONFIDENCE INTERVALS AND FAIRNESS INDEXES FOR THE RANDOM TOPOLOGY, WHERE THE 

ROUTING PROTOCOL IS DSR 

 TCP NewReno CSCC 

Number 

of flows 
Throughput 

95% Confidence 

Interval  Fairness 

Index 
Throughput 

95% Confidence 

Interval  Fairness 

Index Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

5 702.23 650.58 753.87 0.37 793.98 736.42 851.54 0.45 

10 1152.24 1119.92 1184.56 0.29 1323.29 1288.20 1358.38 0.39 

15 1261.29 1232.84 1289.73 0.27 1435.18 1409.65 1460.71 0.39 

20 1268.77 1250.31 1287.23 0.22 1461.83 1442.30 1481.37 0.36 

25 1356.24 1321.76 1390.72 0.19 1541.81 1515.60 1568.02 0.34 

30 1381.37 1325.19 1437.56 0.18 1582.95 1561.30 1604.60 0.34 

 

 
FIGURE 20.  Number of retransmitted packets on the random topology with AODV 

 

 
FIGURE 21.  Number of retransmitted packets on the random topology with DSR 
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VI. CONCLUSION 

Improving the performance of TCP in WANETs is the main 

objective of the proposed CSCC mechanism. In the proposed 

mechanism, each node calculates the WMA of the number of 

tries attempted for a frame transmission at the MAC layer to 

reflect CC. When the WMA at any node hits a pre-defined 

threshold, the node begins marking packets to alert the sender 

about contention. Consequently, the sending node must adjust 

the injection of packets into the network based on the cwnd 

size of the data flow. 

The performance of the proposed CSCC mechanism has 

been evaluated against TCP NewReno and observed that the 

proposed mechanism outperformed TCP NewReno in terms 

of throughput. The number of retransmitted packets is fewer 

with the proposed mechanism than TCP NewReno, which is a 

sign of contention control. Moreover, fewer retransmission 

means the packet drop rate is low. 

For the string topology, the CSCC mechanism achieved 

10.99% to 56.43% and 12.58% to 54.71% improvement in 

throughput against TCP NewReno with the AODV and DSR 

routing protocols, respectively. When the grid topology was 

considered, the CSCC mechanism achieved 24.33% to 

30.17% and 18.33% to 32.42% improvement in throughput 

against TCP NewReno with the AODV and DSR routing 

protocols, respectively. A random topology was also 

considered to evaluate the ability of the CSCC mechanism to 

handle an increasing number of flows; the CSCC mechanism 

achieved 9.27% to 17.53% and 13.07% to 15.22% 

improvement in throughput against TCP NewReno with the 

AODV and DSR routing protocols, respectively. 
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