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ABSTRACT Human-Object Interaction (HOI) recognition, due to its significance in many computer vision-

based applications, requires in-depth and meaningful details from image sequences. Incorporating semantics 

in scene understanding has led to a deep understanding of human-centric actions.  Therefore, in this research 

work, we propose a semantic HOI recognition system based on multi-vision sensors. In the proposed system, 

the de-noised RGB and depth images, via Bilateral Filtering (BLF), are segmented into multiple clusters using 

a Simple Linear Iterative Clustering (SLIC) algorithm. The skeleton is then extracted from segmented RGB 

and depth images via Euclidean Distance Transform (EDT). Human joints, extracted from the skeleton, 

provide the annotations for accurate pixel-level labeling.  An elliptical human model is then generated via a 

Gaussian Mixture Model (GMM). A Conditional Random Field (CRF) model is trained to allocate a specific 

label to each pixel of different human body parts and an interaction object. Two semantic feature types that 

are extracted from each labeled body part of the human and labelled objects are: Fiducial points and 3D point 

cloud. Features descriptors are quantized using Fisher’s Linear Discriminant Analysis (FLDA) and classified 

using K-ary Tree Hashing (KATH). In experimentation phase the recognition accuracy achieved with the 

Sports dataset is 92.88%, with the Sun Yat-Sen University (SYSU) 3D HOI dataset is 93.5% and with the 

Nanyang Technological University (NTU) RGB+D dataset it is 94.16%. The proposed system is validated 

via extensive experimentation and should be applicable to many computer-vision based applications such as 

healthcare monitoring, security systems and assisted living etc.  

INDEX TERMS 3D point cloud, fiducial points, human-object interaction, pixel labeling, semantic 

segmentation, super-pixels, K-ary tree hashing. 

I. INTRODUCTION 

Understanding Human-Object Interaction (HOI) is 

formulated on Human Action Recognition (HAR) [1]. 

However, HOI is not limited to identify human actions, it can 

also detect relationships between humans and objects [2]. 

This relationship is called the verb or the interaction between 

a human and an object. Hence HOI is called the identification 

of triplets (human, verb, object) [3,4]. It is a challenging field 

and is of particular interest in research. Due to the complex 

nature of HOI there is a need for a very thorough 

understanding of each movement involved in an interaction. 

Semantic segmentation has proved to be very effective in 

multiple domains of image processing and computer vision, 

such as intelligent transportation, medical imagery, object 

detection and human-computer interaction [5, 6]. Semantic 

segmentation is the clustering of pixels that belong to the 

same class and labeling them individually [7]. Therefore, we 

semantically segment different human body parts and their 

interaction object. Traditional HOI recognition systems 

based on semantic segmentation only consists of human and 
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object labeling [8,9]. However, in the proposed system, 

different human body parts along with their respective object 

are semantically segmented and labelled. In this way, 

movements performed by each body part are recorded 

individually resulting in the development of an accurate HOI 

recognition system.  

    Human-object interaction is a very popular research area 

due to its wide applicability to, e.g., healthcare monitoring 

[9], assisted living [10], surveillance [11], motion sensing 

games [12], content-based video indexing and retrieval, etc., 

in the field of computer vision [13,14]. Thus, there is a need 

for a more reliable and accurate system. A lot of research 

work has been performed in recent years in this field. 

Nevertheless, there remain some challenges that need to be 

tackled, such as variation in lighting and occlusion of 

different objects [15,16].  In order to overcome these 

challenges, we propose a fusion of RGB and depth sensors. 

Depth sensors overcome the problem of occlusion and prove 

to be very effective in action recognition by providing the 

extra depth information of each object involved in an 

interaction [17]. Moreover, we incorporate semantics in each 

action class which results in deeper understanding of each 

movement performed by each body part during interaction. 

    The proposed HOI recognition system consists of four 

major modules: image normalization, human and object 

segmentation, human body parts and object detection via 

elliptical modeling and pixel-level labeling, HOI interaction 

recognition via semantic feature extraction, dimensionality 

reduction and classification. First, RGB and depth images 

are normalized by removing noise via Bilateral Filtering 

(BLF). The de-noised images are subjected to a segmentation 

phase performed via a Simple Linear Iterative Clustering 

(SLIC) algorithm. After the segmentation of both humans 

and objects from the backgrounds, skeletons are extracted 

via Euclidean Distance Transform (EDT) to trace the human 

skeleton human. The branch points of skeletons are given as 

centroids to form clusters of different body regions by 

Gaussian Mixture Model (GMM). The orientation and 

region under each cluster is represented by an ellipse. Hence 

an elliptical model representing different body parts and their 

respective objects is produced.  

    After modeling each human and object, pixel-level 

labeling of each region under an ellipse is performed. 

Conditional Random Field (CRF) is trained to label each 

RGB and depth image. Two unique features from each 

labelled human body part and object are extracted. After 

feature extraction, Fisher’s Linear Discriminant Analysis 

(FLDA) is used for the dimensionality reduction of feature 

descriptors. In the end, each action class is classified and 

recognized via a K-ary Tree Hashing (KATH) classifier.  The 

efficiency of the proposed work is validated via 

experimentation over three datasets: the Sports dataset, the 

Sun Yat-sen University (SYSU) 3D HOI dataset and the 

Nanyang Technological University (NTU) RGB+D dataset.  

    The major contributions of this work can be summarized 

as follows. 

 Improved silhouette segmentation for both RGB 

and depth images via a SLIC algorithm. 

 A precise human body parts detection and 

ellipsoidal model that is generated from detected 

human body parts.  

 Pixel-level labeling of each detected human body 

parts and object from both RGB and depth image 

sequences via CRF.  

 The main contribution is accurate HOI detection via 

unique semantic feature extraction, from each 

labeled body part and object.  

The rest of the paper is structured as follows: Section II 

provides the related work. Section III presents the detail of 

each module of the proposed HOI system. Section IV 

describes the experiments performed for validating the 

performance of the system and comparison of the 

recognition rate of our work with other systems. Finally, 

Section V provides the conclusion with some future 

directions.  

II. RELATED WORK 

Many HOI recognition systems have been proposed in recent 

years comprising of both deep learning [18,19,20] and 

machine learning based approaches [21]. However, in our 

proposed work, we have developed a machine learning based 

multi-vision sensors system that incorporates a semantic 

segmentation technique. Therefore, we divide the related work 

into two sections. The first section describes related work that 

reports multi-vision sensors based HOI. The second section 

consists of action recognition systems based on different 

semantic segmentation techniques. 

A. MULTI-VISION SENSORS BASED HOI SYSTEMS 

Data acquisition in vision-sensors based action recognition 

systems comprise of RGB [22,23], depth and skeletal data 

[24,25]. In this section related work in the field of HOI 

systems based on all three aforementioned vision sensors 

techniques is presented.  B. Yao et al. [26] proposed an HOI 

system that consists of a mutual context for human and 

object. The two types of contextual data used in this method 

are: co-occurrence context models and the co-occurrence 

statistics between objects and human poses. Furthermore, to 

represent the relationships between humans and objects, a 

spatial context is also represented. The efficacy of the system 

is proved with two publically available RGB datasets but 

still, the system lacked annotation of human body parts and 

objects. W. Yan et al. [27] proposed a multitask neural 

network based HOI recognition system based on a 

combination of human body and hand motion. A digital 

glove called WiseGlove was used to record the motion of the 

hands. A neural network based technique was used to 

identify object and HOI. Experimental results with both 

RGB and skeletal data achieved a better recognition rate but 

testing was performed with a very limited data range of eight 

action classes.  

    M. Meng et al. [28] proposed a system based on the 

distance of skeletal joints. This is a depth sensor-based 
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system in which inter-joint and joint-object distance is 

calculated. The features in this system were pose invariant 

and classified by random forest. A good recognition rate was 

achieved but the system was tested on only one dataset.  In 

[29] B. wan et al.  proposed a pose aware system for HOI 

detection. A global spatial configuration of HOI is captured 

to focus only on action related parts of humans. In order to 

incorporate pose, a multi-branch network is used to represent 

the relationships between semantic parts, objects and 

interaction contexts. Two publically available RGB datasets 

were used for experimentation.  Robust predictions were 

made via fine grained HOI recognition rates.  S. Qi et al. [30] 

proposed Graph Parsing Neural Network (GPNN) based 

HOI detection. The graph structure includes the adjacency 

matrix and node labels. Results on two RGB and one depth 

dataset proved the validity of the system. In [31] G. Gkioxari 

et al proposed the detection of triplets, i.e., human, verb and 

object detection. They exploit the concept of the appearance 

of a person to determine the object and the interaction. An 

action-specific density is calculated to detect the targeted 

object. They proved the effectiveness of their approach 

through extensive experimentation on two RGB datasets. 

Y.L. Li et al. [32] proposed a 3D pose based system and a 

new benchmark named Ambiguous-HOI. To mine features, 

a 2D and 3D representation network is proposed. To 

represent both humans and objects, a cross-modal 

consistency tasks and joint learning structure was proposed. 

Experimentation on two RGB datasets proved the better 

performance of the system. 

B. SEMENTIC SEGMENTATION AND LABELING  

Semantic segmentation is the significant part of our proposed 

methodology. In recent years, different methodologies have 

been adopted by researchers in the field of semantic 

segmentation [33, 34]. So, in this section we describe some 

semantic segmentation based scene understanding and 

human action identification systems. In [35], T. Zhou et al. 

proposed cascaded parsing network based HOI. An instance 

detection module and interaction reasoning module were 

proposed. HOI representation, in the form of instance and 

relation features, is parsed via GPNN. The detection of 

interaction is not only limited to a bounding box but to pixel-

level segmentation of humans and objects. Experimental 

results demonstrate better performance than prior methods 

on two RGB datasets (V-COCO and HICO-DET). In [36], J. 

Ji et al. provided semantic segmentation for different action 

classes instantaneously. They used the concepts of multitask 

learning and contextual data. Region Based Convolutional 

Neural Networks (R-CNN) was used for pixel-level labeling. 

They proved the performance of the system by 

experimenting both detection and segmentation on one RGB 

dataset. S. A. Khowaja [37] proposed a semantic analysis of 

videos by applying localized sparse segmentation using 

global clustering. Through experimentation they proved that 

semantic images produce better activations by focusing on 

regions that are significant for action recognition. The use of 

approximate rank pooling from Long Short Term Memory 

(LSTM) showed better performance. High recognition rate 

with three public datasets validated the performance of the 

system.   

     In [38], A. Arnab et al. proposed semantic segmentation 

based scene understanding via Conditional Random Field 

(CRF) and neural networks. They used deep neural networks 

to automatically learn features. The mean field algorithm of 

CRF was used as a Recurrent Neural Network (RNN) layer. 

They improved the segmentation performance on an RGB 

public dataset (Pascal VOC). S. Paisitkriangkrai et al. [39] 

proposed a pixel labeling technique consisting of CRF and 

Convolutional Neural Networks (CNN). They proposed 

robust features by combining both hand-crafted and CNN 

extracted features. Then, to label probabilities, CRF was 

applied. As a result, segmentation was improved with the 

ISPRS labelling contest dataset. In [40] A. Jalal proposed a 

depth silhouette based HAR labeled human body parts and 

identified the centroids of each part. Random field was used 

to label and train the images. A motion vector comprising of 

magnitude and direction was computed via identified 

centroids. Experiments performed on six daily life activities 

show a better recognition rate than many state-of the art 

methods. All of these methodologies showed improvement 

in the recognition of human actions so we propose an HOI 

recognition system based on semantic human body parts 

segmentation.  

III. THE PROPOSED APPROACH 

The proposed approach consists of four major modules: 

image normalization, human and object segmentation, 

human and object detection, modeling and labeling and in 

the end HOI recognition. The overall architecture of the 

proposed system is shown in Fig.1. Detail of the techniques 

used for each of the aforementioned modules is explained in 

the following subsections.  

A. IMAGE NORMALIZATION 

During pre-processing, the raw images from both RGB and 

depth datasets are fed into the system. In order to keep 

dimension of images from all three datasets similar, they are 

cropped to a fixed dimension of 560×350.  After identifying 

the initial region of interest, BLF is applied. BLF removes 

noise, smooths the images and preserve the edges of all the 

objects in the images [41]. All the images are de noised by 

Gaussian smoothing kernels. The intensity value of each 

pixel 𝑥  of the image 𝐼 is replaced by a weighted intensity 

obtained by neighboring pixels [42]. The range kernel 

𝑓𝑟 smooths differences in intensities and spatial kernel 

𝑔𝑠 smooths differences in coordinates. The filtered image 

𝐼𝑓𝑖𝑙  , obtained after applying bilateral filter, is defined as;  

𝐼𝑓𝑖𝑙(𝑥) =
1

𝑊𝑝
∑ 𝐼(𝑥𝑖∈Ω 𝑥𝑖)𝑓𝑟(‖𝐼(𝑥𝑖) − 𝐼(𝑥)‖)𝑔𝑠(‖𝑥𝑖 − 𝑥‖)    

(1) 

     where 𝑥𝑖  is one of the neighboring pixels from the 

specified neighborhood window Ω centered at 𝑥  and 𝑊𝑝  is 

defined as;  
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𝑊𝑝 = ∑ 𝐼(𝑥𝑖∈Ω 𝑥𝑖)𝑓𝑟(‖𝐼(𝑥𝑖) − 𝐼(𝑥)‖)𝑔𝑠(‖𝑥𝑖 − 𝑥‖) (2) 

     The weight of 𝑊𝑝 ,  i.e., the normalization factor is 

assigned by spatial closeness and differences in intensity 

values. 

B. HUMAN AND OBJECT SEGMENTATION  

After the normalization phase, both humans and their 

respective interaction objects are segmented from the 

background using an SLIC algorithm [43]. In this section, we 

propose a linear iterative clustering based super-pixels 

approach. In this approach k- 

 

Figure 1. Architecture of the proposed HOI recognition system.  

means the algorithm is used to generate super-pixels [44]. 

First, all RGB images are converted to a lab (l* specifies 

lightness, and a* and b* for the four colors: red, green, blue, 

and yellow) color space. After that, the numbers of super-

pixels 𝑘  is specified.  Then, initial centers 𝐶𝑖 =
[𝑙𝑖  𝑎𝑖  𝑏𝑖  𝑥𝑖  𝑦𝑖]

𝑇, which are 𝑆 pixels apart, are initialized for 

each cluster. The grid interval 𝑆 = √𝑁/𝑘  produces nearly 

equal sized super-pixels. The centers of the super-pixels 

should not be at the edges of objects, for this reason the 

centers are moved to the lowest gradient positions in a 3 × 3 

neighbourhood. After specifying a cluster, searching starts 

where each pixel 𝑖 is assigned to its nearest cluster center. 

Compared to traditional k-means, the search space of the 

SLIC algorithm is very limited [45].  The search space is 

reduced by measuring the distance  𝐷  to define the nearest 

centers for each pixel.  This distance 𝐷 is a 5D Euclidean 

distance in a labxy color space and is given by 3D color 

distance 𝑑𝑐 and 2D spatial distance 𝑑𝑠 as; 

𝑑𝑐 = √(𝑙𝑗 − 𝑙𝑖)
2 + (𝑎𝑗 − 𝑎𝑖)

2 + (𝑏𝑗 − 𝑏𝑖)
2         (3) 

𝑑𝑠 = √(𝑥𝑗 − 𝑥𝑖)
2 + (𝑦𝑗 − 𝑦)2                 (4) 

     As the depth images are given in grayscale, they only 

have 𝑙 component so the distance 𝑑𝑐 for grayscale is given as 

𝑑𝑐 = √(𝑙𝑗 − 𝑙𝑖)
2 .The normalized distance 𝐷′  is given by 

maximum distance within the cluster in color and space 

proximity  𝑁𝑐 and 𝑁𝑠 respectively as; 

D′ = √(
𝑑𝑐

𝑁𝑐
) + (

𝑑𝑠

𝑁𝑠
)                               (5)            

    At the final stage, after each pixel is assigned to the nearest 

neighbor, an update in cluster centers is made. At the end 

there are still some pixels that are not assigned to their 

respective clusters. So, a super-pixel merging algorithm [46] 

is performed to further refine the segmentation process. 

Different visual features are used to define 𝑛 super-pixels 

𝑋 = [𝑥1, … , 𝑥𝑛] ∈ 𝑅𝑚×𝑛 in an image. These image features 

describe 𝑙semantic labels in an image and the similarity of 

any super-pixel 𝑥𝑖 and 𝑥𝑗  is given as; 

𝑆𝑖,𝑗 = ∑ [𝛿1𝑑𝑖𝑗
𝑙𝑎𝑏 + 𝛿2𝑑𝑖𝑗

𝑡𝑒𝑥 + 𝛿3𝑑𝑖𝑗
𝑠𝑖𝑓𝑡

+ 𝛿4𝑑𝑖𝑗
𝑠𝑢𝑟𝑓

] × 𝐷𝑖,𝑗
𝑚
𝑖,j=1
𝑖≠𝑗

  

(6) 

    where 𝛿  is the weight factor for distance adjustment, 

𝑑𝑖𝑗
𝑙𝑎𝑏 , 𝑑𝑖𝑗

𝑡𝑒𝑥 , 𝑑𝑖𝑗
𝑠𝑖𝑓𝑡

, 𝑑𝑖𝑗
𝑠𝑢𝑟𝑓

represent the Euclidean distance 

between color, texture, sift and surf distances of super-pixels 

𝑖 and 𝑗. The relationship between super-pixels is stored in 𝐷. 

If 𝑐𝑖  is adjacent to 𝑐𝑗  then 𝐷𝑖,𝑗=1, 𝐷𝑖,𝑗= 0 otherwise. Fig. 2 

shows the results of SLIC segmentation over an RGB image 

while Fig.3. shows the results of the SLIC algorithm on depth 

images from the SYSU dataset. 
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           (a)                      (b)                         (c)                     (d) 

Figure 2. Results of the SLIC algorithm on RGB images showing 
(a) the original RGB image, (b) converted L*a*b* color space, (c) 
super-pixels overlaid on the grayscale image and (d) segmented 

regions after super-pixel merging. 

    

(a)                      (b)                         (c)                     (d) 

Figure 3. Results of the SLIC algorithm on depth images of phone 
interaction showing (a) original images, (b) super-pixel extraction, 
(c) super-pixel merging and (d) the segmented human and object. 

C. HUMAN BODY PARTS DETECTION, MODELING AND 
LABELING   

In this section human body parts are detected, elliptically 

modeled and labeled. This section is divided into three 

phases. In the first phase, human body parts are detected and 

in the second phase an ellipsoidal model of human body parts 

is generated. In the third phase, detected human body parts 

and the respective interaction object are labelled using CRF.  

Each of these phases is described in the following sub-

sections. 

1) HUMAN BODY PARTS DETECTION 

In order to provide accurate human joints annotations, a 

human skeleton is first extracted via Euclidean Distance 

Transform (EDT) [47]. All segmented RGB and depth 

images are converted to binary images. The binary images 

are then converted to grayscale images in which only those 

foreground pixels 𝑝  are taken whose distance from the 

background pixels 𝑞  is minimum [48]. This grayscale image 

is called the Distance Transform [DT] and its pixel values 

are given by:  

𝐷𝑇𝑝 = min {𝑑(𝑝. 𝑞)|𝐼(𝑞) = 0}                 (7)              

    This distance is calculated by Euclidean distance. Then a 

morphological operation of thinning is the applied to extract 

continuous skeleton pixels [49]. The operation of 

skeletonization further reduces the image to a single line 

without destruction of the structure of a human. The 

skeletonization process is demonstrated in Fig. 4.  

        

                   (a)                             (b)                              (c)                     

Figure 4. Skeletonization results showing, (a) the original binary 
images, (b) EDT and (c) the extracted skeleton via morphological 

thinning. 

    In order to determine skeletal joint points, first, a Critical 

Point (CP) is determined [50]. This is the point with a 

minimal 𝐷𝑇  from the boundary. Keeping the CP as the root 

node, a tree is traversed in four directions, i.e., upward, 

downward, left and right. In each of these directions, a 

constraint is followed, i.e., only the foreground pixels having 

value of 1 are searched in 8-connected neighborhood [51]. 

There are two types of points in this search. 

 Endpoints(EP): those points in which there is only 

one skeletal point among 8 neighborhoods. 

 Bifurcation points(BP): those points in which there 

are three or more than three skeletal points among 

8 neighborhoods.  

    By keeping the root node as a parent node, the first child 

is searched in the upward direction. The direction of search 

is guided by the slop of the line that is connecting the root. 

The EP in the upward direction is the head and the BP is the 

neck. In the search from root node to the left direction, the 

EP is the left hand. The mean of the EP and the CP is the left 

elbow and the mean of the left elbow and the neck is the left 

shoulder. Similarly, these three joints of right arm are located 

by a search towards the right. The root or the CP is the torso 

of the human body. Searching from the CP in the downward 

direction, the first BF is the torso base. The EP in the left side 

is the left foot and, on the right side, it is the right foot. The 

mean point between the torso base and both feet is the left 

knee and the right knee point respectively. Similarly, the 

mean point between the torso base and both knees is the left 

and right upper legs, and the mean point between both the 

knees and both the feet is the right and left ankle joint 

respectively. In this way a total of eighteen human joints are 

located as shown in Fig. 5. During all this searching, the 

constraint of the pixel value as 1 is followed.      

   

                          (a)                                              (b) 

Figure 5. Skeletal joints detection via branch points extraction on 
(a) tennis forehand and (b) volleyball smash interactions. 

2) GAUSSIAN-BASED ELLIPTICAL MODELING 

The binary image 𝐼 with skeleton 𝑆 and 𝑘 numbers (i.e. 18) 

of joint annotations is fed to an elliptical modeling phase. As 

the object is already detected in section (B) so in this section 

a Gaussian Mixture Model-Expectation Maximization 

(GMM-EM) algorithm [52] is implemented to represent each 

body part with an ellipse.  First of all, the human is 

represented by non-overlapping or partially overlapping 
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circles 𝐶𝐶. Through these circles, ellipsoidal fitting within 

the boundary is initiated. Each joint location is the centroid 

𝐶 of the circle and the line joining two consecutive joints in 

the skeleton is the radius 𝑅  of each circle. Each of these 

circles is tangent to the boundary at two points. The ellipse 

fitting process is carried out according to the GMM-EM 

algorithm. The GMM-EM algorithm is initialized by 

specifying the centroid and the number of clusters because 

random initialization will have led to a suboptimal local 

minimum of the problem [53]. The shape skeleton by EDT 

is exploited for a more informed decision at the GMM-EM 

initialization stage. The 2D Gaussian function used for 

clustering of foreground pixels is given by; 

  𝑃𝑖(p) =  𝐴𝑖. 𝑒
−(𝑝−𝑐𝑖)

𝑇𝑀𝐼(𝑝−𝑐𝑖)                     (8) 

    where 𝑃𝑖  gives the probability of a foreground pixel 𝑝 to 

belong to an ellipse 𝐸𝑖 with origin 𝑐𝑖 and 𝑀𝑖 represents a 2 ×
2 matrix with eccentricity ad orientation information of 𝐸𝑖. 

Moreover, the amplitude 𝐴𝑖 = 1 to keep the same values of  

𝑃𝑖(p) at the ellipse boundary for all ellipses. In this way the 

probability of a particular point belonging to an ellipse 

depends only on its position, orientation and eccentricity and 

not on the area of the ellipse. The object is already detected 

in Section B using SLIC. In this section the object is enclosed 

with a bounding box using connected components and blob 

analysis on the segmented image. The elliptical models for 

some sample images from SYSU and NTU datasets are 

shown in Fig. 6.      

           

                    (a)                             (b)                             (c) 

       Figure 6. Elliptical models showing (a) the original segmented 
image, (b) the ellipse fitting of human body parts with joint 

annotations and (c) the final human body parts and object model. 

3) PIXEL-LEVEL LABELING OF HUMAN BODY PARTS 
AND THEIR RESPECTIVEOBJECTS VIA CRF  

After detecting different human body parts, the results of the 

elliptical modeling phase are fed to the pixel-level labeling 

phase, as each human body part is already segmented with 

an ellipse in the previous phase. In this phase, fully-

connected CRF [54] is used to assign a label for each pixel 

in each of the detected human body parts and the object. A 

relationship between the output variables (specified labels) 

represented as 𝑦 = 𝑦1, 𝑦2, … . 𝑦𝑁  and observed features (such 

as pixel intensities) as input variable 𝑥  is described by CRF 

in the form of conditional probability 𝑃(𝑦|𝑥)[55]. During 

pixel labeling, 𝑁 is the total number of pixels and 𝑦𝑖  is the 

label assigned to the 𝑖𝑡ℎ  pixel. The modeling of 𝑃(𝑦|𝑥) in 

CRF is approached by representing 𝑦 as a Markov random 

field. CRF is represented in the form of an undirected graph 

as 𝐺 = (𝑉, 𝐸) with 𝑉 as a set of vertices or nodes and 𝐸 as a 

set of edges of the graph. Each label 𝑦𝑖  corresponds to each 

node [56]. In order to assign a label to each pixel, the 

probability distribution of CRF is defined in the form of an 

energy function as;  

 𝑃(𝑦|𝑥) =  
1

𝑍𝑥
𝑒𝑥𝑝{−𝐸(𝑦; 𝑥)}                   (9) 

    where 𝑍𝑥  is the partition function to normalize the 

probability distribution and 𝐸(𝑦; 𝑥) is the energy function 

that is the sum of smaller clique potentials 𝜓𝑐(𝑦𝑐; ) 

represented as; 

𝐸(𝑦; 𝑥) = ∑ 𝜓𝑐(𝑦𝑐; 𝑥)𝑐                           (10) 

    So, to define a label for each pixel, an energy function is 

defined as; 

𝐸(𝑦; 𝑥) = ∑ 𝜓𝑖     
𝑈 (𝑦𝑖 ; 𝑥) + ∑ 𝜓𝑖𝑗

𝑃
�̅� ∈𝜀

𝑛
𝑖=1 (𝑦𝑖 , 𝑦𝑗 ; 𝑥)   (11) 

    where  𝜓𝑈 is the unary energy component associated with 

each pixel and 𝜓𝑃  is the pairwise energy component 

associated with a set of pixels 𝜀 . The most probable 

assignment to a label requires minimization of the energy 

function as; 

�̂� = argmin
𝑦

𝐸(𝑦; 𝑥)                        (12) 

    For inference, a mean-field algorithm is used as given in 

Algorithm 1 that approximates energy minimization [57]. 

This algorithm is initialized with Gibbs distribution and it 

performs in a loop for 𝑄 energy minimization. The weighted 

Gaussian is computed in a message passing step. 
Algorithm 1 Mean field inference algorithm 

1.  Initialize Q as 𝑄𝑖(𝑙) ←
1

𝑍𝑖
𝑒𝑥𝑝{−𝑈𝑖(𝑙)}  for all i pixels 

     while not converged do 

2.       Message passing from all Xj to all Xi as; 

    𝑄𝑖
(𝑚)

(𝑙) ← ∑ 𝑘(𝑚)(𝑓𝑖, 𝑓𝑗)𝑄𝐽(𝑙)𝑗≠𝑖                           (13) 

       //where 𝑘(𝑚)(𝑓𝑖, 𝑓𝑗)𝑄𝐽 is Gaussian kernel and  (𝑓𝑖 , 𝑓𝑗) is feature     

vector for pixel i and j // 

3.      Adding weight to filter outputs as 𝑄𝑖
(𝑙)

← ∑ 𝑤(𝑚)𝑄𝑖(𝑙)𝑚  for all m 

             //where 𝑤(𝑚) is the weight of m-th kernel// 
4.      Compatibility transform 

                          𝑄𝑖
(𝑙)

(𝑙) ← ∑ 𝜇(𝑙, 𝑙′)𝑄𝑖(𝑙′)𝑙′∈𝐿                              (14) 

5.       Adding unary potentials to 𝑄𝑖
(𝑙)

(𝑙) as 𝑄𝑖
(𝑙)

← 𝑈𝐼(𝑙) − 𝑄𝑖(𝑙) 

6.       At the end normalizing output as  𝑄𝑖
(𝑚)

← 
1

𝑍𝑖
𝑒𝑥𝑝(𝑄𝑖(𝑙))         

     end while 

 

    In order to train the data, maximum likelihood is used. The 

parameters that produce the training data with the highest 

probability under the model are chosen. On a training sample 

((𝑥1, 𝑦1), (𝑥2, 𝑦2)… (𝑥𝑇 , 𝑦𝑇))  conditional log likelihood is 

maximized with respect to unknown parameter 𝜃  as; 

(arg)max
𝜃

∑ ln 𝑝(𝑦𝑡|𝑥𝑡; 𝜃) =𝑇
𝑡=1

 (arg)max
𝜃

∑ [−𝑙𝑛𝑍(𝑥𝑡 , 𝜃) − 𝐸(𝑥𝑡 , 𝑦𝑡 , 𝜃)]𝑇
𝑡=1     (15) 

    Now a CRF model is trained to predict a correct label for 

each segmented body part and the interaction object. Some 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3101716, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

2 VOLUME XX, 2017 

of the results of the CRF in the form of labelled body parts 

and objects are demonstrated in Fig. 7.  

 

Figure 7. Pixel-level labelling over samples of (a) the sports 
dataset, (b) the SYSU dataset and (c) the NTU RGB+D dataset.  

D. HUMAN-OBJECT INTERACTION RECOGNITION. 

     HOI recognition is the identification of triplets (human, 

verb and object) as the human along with its body parts and 

interaction object are detected and labelled. Now, in this 

section, the verb, i.e., the interaction between the human and 

the object is identified. For HOI interaction recognition, this 

section is sub-divided into three modules. The first is the 

semantic feature extraction, the second is dimensionality 

reduction via FLDA, and the third phase is classification with 

KATH.  

1) SEMANTIC FEATURE EXTRACTION 

The two types of features extracted from each semantic 

region including human body parts and objects are fiducial 

points and 3D point cloud.   

1.1) FIDUCIAL POINTS 

The Fiducial Point (FP) of each human body part and each 

object is detected individually [58]. First of all, the boundary 

of each segmented body part is detected and then divided into 

Left Boundaries (LB) and Right Boundaries (RB). The 

boundary points are scanned from top to bottom in a 

horizontal rows of the xy coordinates. In a ith row the 

transition in x-axis from high pixel values to low pixel values 

indicates right boundaries as  𝑅𝐵 = {𝑟𝑏1, 𝑟𝑏2, … . 𝑟𝑏𝑚} . 

Similarly, the transition along the x-axis from low pixel 

values to high pixel values indicates 𝐿𝐵 = {𝑙𝑏1, 𝑙𝑏2, … . 𝑙𝑏𝑛}. 
Where m and n are the total numbers of pixels in RB and LB 

respectively. After identifying RB and LB, peaks and valley 

points are detected in each side of the boundary. The first-

order derivative is taken as local maxima and minima to 

detect peaks and valleys respectively. A change in the slope 

of a boundary from negative to positive is referred to as 

minima while a change in slope from positive to negative is 

referred as maxima. The first order derivative of RB from 

𝑖 = 1… .𝑚 − 1  is  𝑑𝑟𝑏𝑖 = 𝑟𝑏𝑖+1 − 𝑟𝑏𝑖   and its vector is 

given as; 

                   𝑑𝑅𝐵 = 𝑑𝑟𝑏1, 𝑑𝑟𝑏2, ……𝑑𝑟𝑏𝑚−1                  (16) 

     The first order derivative of LB from 𝑗 = 1… . 𝑛 − 1 is 

𝑑𝑙𝑏𝑗 = 𝑙𝑏𝑗+1 − 𝑙𝑏𝑗  and its vector is given as; 

𝑑𝐿𝐵 = 𝑑𝑙𝑏1, 𝑑𝑙𝑏2, ……𝑑𝑙𝑏𝑛−1             (17) 

    The peaks 𝑃𝑟  of RB are given as; 

𝑃𝑟 = {𝑟𝑏𝑖|𝑑𝑟𝑏𝑖 ≥ 0 ∩ 𝑑𝑟𝑏𝑖+1 < 0}, ∀𝑖= 1,2…𝑚 − 1  (18) 

     Similarly, the peaks 𝑃𝑙   of LB are calculated from 𝑑𝐿𝐵. 

On the other hand the valleys 𝑉𝑟  of RB are calculated as; 

𝑉𝑟 = {𝑟𝑏𝑖|𝑑𝑟𝑏𝑖 ≤ 0 ∩ 𝑑𝑟𝑏𝑖+1 > 0}, ∀𝑖= 1,2…𝑚 − 1  (19)  

    Similarly, the valleys 𝑉𝑙  of LB are calculated from 𝑑𝐿𝐵. 

If the contour of any body part is flat, i.e., if it has 

consecutive zeros, then the median point of the consecutive 

zeroes is taken. The coordinates value of each FP is recorded 

in a feature vector and tracked with each changing frame. 

Peaks and valley point detected on boundaries of some body 

parts are displayed in Fig.8.  

 

(a) 

    

(b)                             (c)                                (d) 

Figure 8. Peaks and valley points detection showing (a) PP and VP 
detection on boundaries of the head, (b) labeled eating meal 

interaction, (c) detected boundaries on each body part and (d) 
detected PP and VP on each body part. 
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The Peak Points (PP) and Valley Points (VP) of all the body 

parts and the object may not be the same in every interaction 

class. So these points are fixed for each body part.  Table 1 

shows the number of peaks and valley points for each body 

part and object.  

TABLE 1. FIXED NUMBERS OF VALLEY POINTS AND 

PEAKS FOR EACH HUMAN BODY PART AND OBJECT 

Human 

Joints  

VP 

No. 

PP 

No 

Human 

Joints 

VP 

No. 

PP 

No. 

Head 15 15 Upper Torso 60 60 

Neck 15 15 Lower Torso 60 60 

Right 

Shoulder 
20 20 Right Thigh 30 30 

Left Shoulder 20 20 Left Thigh 30 30 

Right Upper 

arm 
15 15 Right Knee 15 15 

Left Upper 

arm 
15 15 Left Knee 15 15 

Right Elbow 15 15 Right Foot 15 15 

Left Elbow 15 15 Left Foot 15 15 

Right Hand 20 20 Object 20 20 

Left hand 20 20 Total VP+PP 860 

1.2) 3D POINT CLOUD 

In this feature, humans along with their interaction objects 

are represented in the form of point clouds. The RGB 

labelled images are converted into 3D point clouds with 𝑥𝑦𝑧  
coordinates [59]. Let 𝐾 be a point cloud then its coordinate 

is given as 𝑋𝑝
𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘). The pixels in the RGB image 

are converted into 3D points.  This conversion is made on the 

basis of pixel coordinates and their corresponding intensity 

values. In order to extract features from the point cloud, these 

points are down sampled using a Voxel Grid (VG) filter [60]. 

A voxel is a grid defined over 3D point clouds. A spatial 

average is taken inside each voxel to down sample the points. 

Those points, which lie inside the voxel bounds, are joined 

to form one output point. The points inside the voxel are 

given with the centroid as; 

                                 𝑥 =
1

𝑆
∑ 𝑥(𝑥,𝑦,𝑧)∈𝐴                         (20) 

         𝑦 =
1

𝑆
∑ 𝑦 

(𝑥,𝑦,𝑧)∈𝐴                         (21)  

𝑧 =
1

𝑆
∑ 𝑧(𝑥,𝑦,𝑧)∈𝐴             (22)                                         

    where 𝑆 is the number of points in a voxel 𝐴. In every 

interaction class, each human body along with the interacted 

object is down sampled to 6000 cloud points while 

maintaining the posture or shape of the human and 

interaction object as shown in Fig.9.  

 

(a) 

 

(b) 

Figure 9. A down-sampled 3D point cloud on a human and object 
over (a) wearing hat and (b) tennis forehand interactions. 

   The coordinate value along with the intensity of each point 

in a down-sampled point clouds is stored in a feature 

descriptor. The feature descriptor from the two extracted 

features of both the human and object are concatenated at the 

end (see Algorithm (2)). 

 

2) FISHER’S LINEAR DICRIMINANT ANALYSIS 

After combining feature vectors of all the interaction classes, 

a complex matrix is generated. FLDA is used as a 

dimensionality reduction algorithm before classification. 

Algorithm 2 Semantic Feature Extraction  

Input: Labelled images 

Output: Feature Vectors containing Semantic Features   

1. F1 = ExtractFiducialPoints ←Human 

2. F2 = Calculate3DPointCloud←Human 

3. F3 = ExtractFiducialPoints←Object 

4. F4= Calculate3DPointCloud←Object 

5. 𝑉𝑖  = CreateFeatureVectors𝑓𝑖   
6. For each 𝑓𝑖  in features do 

{ 

    Concatenate = (𝑉𝑖  , 𝑉𝑖+1) 

} 
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The objective is to reduce intra-class variance and to increase 

inter-class variance [61]. The FLDA is applied to the 

interaction classes of each dataset individually. In a 

multiclass discriminant analysis, let  𝜇𝑖 be the mean of each 

HOI class C, Σ be the same covariance and 𝜇 be the mean of 

class means, then the scatter between each class C is defined 

as; 

Σ𝑏 =
1

𝐶
∑ (𝜇𝐼 − 𝜇)(𝜇𝐼 − 𝜇)𝑇𝐶

𝐼=1        (23) 

    while 𝑇 is the transpose and the separation of classes is 

given in direction �⃗⃗�  as; 

𝑆 =
�⃗⃗� 𝑇Σ𝑏�⃗⃗� 

�⃗⃗� 𝑇Σ�⃗⃗� 
                                 (24) 

    The rows represent the number of images in the training 

set of each dataset. The final dimension of the Sports dataset 

after feature reduction is 6120×250, the SYSU dataset is 

6120×360 and that of the NTU dataset is 6120×380. The 

scatter plot for the Sports and NTU datasets are displayed in 

Fig.10.  

 

(a)  

 

(b) 

Figure 10. Scatter plot showing classes for (a) the Sports dataset 
and (b) the SYSU dataset.  

3) K-ARY TREE HASHING 

The optimized vectors of all three classes are fed to a KATH 

classifier. It is a graph-based classifier given as  𝐺 = {𝑔𝑖} 
while 𝑖 = 1… .𝑁 and 𝑁 is the total number of objects in the 

graph [62]. The graph consists of vertices 𝑉 , undirected 

edges 𝐸 and label function 𝑙: 𝑉 → 𝐿 to assign labels to nodes 

in 𝑔𝑖 from a label set 𝐿. Based on the structure of the graph 

and node labels, a class label 𝑦𝑖 is also given to each graph 

𝑔𝑖 .  Furthermore, a size 𝐾  of the traversal table and 

MinHashes {𝐷(𝑟)}𝑟=1
𝑅 for 𝑅 iterations is also specified [63]. 

Random permutation functions {𝜋𝑑
(𝑟)

}  are generated for 

MinHashes. A MinHash technique is used to measure the 

Jaccard similarity   𝐽 of two sets 𝑆𝑖  and 𝑆𝑗  based on 𝐷 

Minhashes as; 

𝐽(𝑆𝐼 , 𝑆𝐽) =
∑ 𝟏(min(𝜋𝑑(𝑆𝑖))=min(𝜋𝑑(𝑆𝑗)))

𝐷
𝑑=1

𝐷
         (25) 

    where, if the state is true, then 1(𝑠𝑡𝑎𝑡𝑒) is 1, otherwise it 

is 0. The KATH algorithm consist of three steps, namely, 

traversal table construction, recursive leaf extension and leaf 

sequence using the MinHash scheme. This MinHash scheme 

classifies the data into various interactions. All three steps 

are given in Algorithm 3. 

IV. EXPERIMENTAL SETUP AND RESULTS 

This section gives the details of each experiment performed 

to validate the proposed system. All the processing and 

experimentation is performed on MATLAB (R2018a). The 

hardware system used is Intel Core i5 with 64-bit Windows-

10. The system has an 8 GB and 5 (GHz) CPU. We divided 

the experiments into two sections. In the first section HOI 

recognition performance in which recognition accuracies of 

each interaction class is given in the form of a confusion 

matrix and the precision, sensitivity, specificity and F1 

Algorithm 3 K-ary Tree Hashing  

Input:  𝑔 = (𝑉, 𝐸, 𝐿), K,  {𝐷(𝑟)}𝑟=1
𝑅   

           //where R is number of iterations// 

Output: {𝑥(𝑟)}𝑟=1
𝑅  

//Traversal Table Construction// 

1. 𝑉 ← |𝑉| 
2. 𝑙(𝑉 + 1) ← ∞ 

3. 𝑇 ← (𝑉 + 1) ∗ 𝑜𝑛𝑒𝑠(𝑉 + 1,1 + 𝐾) 

     for v=1: V  do 

4.             𝑁𝑣 ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟(𝑣) 
                //MinHash Selection// 

5.             𝑡𝑒𝑚𝑝 ← [min(𝜋1(𝑙(𝑁𝑣))) , … ,min (𝜋𝑘(𝑙(𝑁𝑣)))] 

6.              𝑇(𝑣) ← [𝑣, 𝑖𝑛𝑑𝑒𝑥(𝑡𝑒𝑚𝑝)] 
      end for 

// Recursive Leaf Extension// 

7.             𝑧(1) ← [1:𝑉]𝑇 

8.              𝑆(1) ← 𝑙(𝑧(1)) 
       for r=1: R do 

               if r >1 then 

9.                  𝑧(𝑟) ← 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑇(𝑧(𝑟−1), : ), [1,∗]) 

10.                𝑆(𝑟) ← 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑙(𝑧(𝑟)), [𝑉,∗]) 

               end if 

//Leaf Sequence//  

11.         𝑓(𝑟) ← [ℎ (𝑆(𝑟)(1, : )) , … ℎ (𝑆(𝑟)(𝑉, : ))]
𝑇

 

12.         𝑥(𝑟) ← [𝑚𝑖𝑛(𝜋1
(𝑟)(𝑓(𝑟))),…𝑚𝑖𝑛 (𝜋

𝐷(𝑟)
(𝑟)

(𝑓(𝑟)))]
𝑇

 

      end for 
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scores are also measured along with comparisons of the 

proposed method with other state-of-the-art (SOTA) 

methods. In the second section, i.e., pixel-level labeling, the 

label accuracies for each human body part and object are 

measured using CRF. All these experiments are performed 

using a Leave One Subject Out (LOSO) cross-validation 

scheme.  Each dataset is divided into N subsets containing k 

number of images. First all the subsets are used to train the 

system and then one subset is used for testing. The system is 

then validated by taking another subset for testing and the 

remaining subsets for training.  This section is further 

divided into two sections: dataset description and 

experimental results. 

A. DATASETS DESCRIPTION 

The three datasets that are used for experimentation are: The 

Sports dataset, the SYSU 3D HOI dataset and the NTU 

RGB+D dataset.  Details of each dataset are given in 

following subsections: 

1) THE SPORTS DATASET 

This is a static image dataset that consists of six RGB sports 

activities. The activities performed in this dataset are: cricket 

batting, cricket bowling, croquet shot, tennis forehand, tennis 

serve and volleyball smash. The details of the dataset and 

samples are given in [64]. This is a complex dataset as the 

poses and scenes of many interaction classes are similar to 

each other, e.g., volleyball smash and tennis serve.  

2) THE SYSU 3D HOI DATASET 

This is an RGB-D dataset in which a Kinect sensor is used to 

collect RGB and depth images. This dataset consists of 

twelve human object interactions performed by 40 

participants. The HOI classes in this dataset are sweeping, 

mopping, taking from wallet, taking out wallet, moving 

chair, sitting chair, packing backpacks, wearing backpacks, 

playing phone, calling phone, pouring and drinking. There 

are 480 video clips of different durations ranging from 1.9s 

to 21s. The details of the dataset and samples are given in 

[65].  

3) THE NTU RGB+D DATASET 

This is an RGB-D dataset that contains RGB, depth and 3D 

skeletal data. This dataset contains 56,880 video samples of 

60 action classes. The actions in this dataset have three 

categories: 40 daily actions (e.g., reading, drinking, eating), 

nine medical conditions (e.g., falling down, sneezing, 

staggering,), and 11 mutual actions (e.g., hugging, punching, 

kicking). From the 40 daily actions, we only worked on ten 

human object interactions. The ten interactions that we used 

for training and testing in the proposed system are: drink 

water, eat meal, tear up paper, put on jacket, take off jacket, 

put on a hat/cap, take off a hat/cap, phone call, play with 

phone/tablet and taking a selfie. The objects in these 

interactions are: glass of water, meal, paper, jacket, hat and 

phone. The rest of the details and samples are given in [66].  

B. PERFORMANCE METRICES AND RESULTS 

The two types of experiments performed for system’s 

validation were, HOI recognition performance via KATH 

and pixel-level labeling performance via CRF. The results 

for each experiment are given in the following sub-sections.  

1) HOI RECOGNITION PERFORMANCE 

In this section, the performance of the system validated from 

a mean accuracy, precision, sensitivity, specificity and F1 

scores. A comparison of the proposed system with other 

SOTA methods is also given in this section. The results for 

each performance metric is given in the following 

subsection: 

1.1) HOI CLASSIFICATION ACCURACY 

This experiment was repeated three times on the testing sets 

for each dataset individually to evaluate the classification 

accuracy using the KATH classifier. The results of this 

experiment are given in the form of confusion matrix 

showing true positive, true negative, false positive and false 

negative for each class individually. The confusion matrix 

for the Sports, SYSY 3D HOI and NTU RGB+D datasets are 

given in Tables 2, 3 and 4 respectively. It can be observed, 

from Tables 2, 3 and 4, that classes of all three datasets 

achieved high recognition rates with the mean accuracy rates 

of 92.88%, 93.5% and 94.16% with the Sports, SYSU and 

NTU datasets respectively.  However, there is still some 

confusion between interaction classes that involve similar 

actions such as the tennis forehand and the volleyball smash 

interactions in sports dataset. Similarly, weeping and 

mopping interactions of the SYSU dataset are confused with 

each other.  It can also be observed from the results of this 

experiment that confusion happens among the interaction 

classes that involve similar objects. For example, moving 

chair, siting chair interactions of the SYSU dataset and the 

phone call, play with phone and taking selfie interactions of 

the NTU dataset.   

TABLE 2. CONFUSION MATRIX OF INDIVIDUAL HOI CLASS 

OVER THE SPORTS DATASET USING KATH 

HOI Classes Cbat Cbow Cro TF TS VB 

Cbat 0.96 0.00 0.04 0.00 0.00 0.00 

Cbow 0.00 0.93 0.00 0.02 0.00 0.05 

Cro 0.04 0.00 0.95 0.00 0.00 0.01 

TF 0.00 0.00 0.00 0.90 0.03 0.07 

TS  0.00 0.00 0.00 0.04 0.92 0.04 

VB 0.00 0.02 0.00 0.07 0.00 0.91 

Mean recognition accuracy = 92.88% 

*Cbat = Cricket batting; Cbow = Cricket bowling; Cro = Croquet shot; TF 

= Tennis forehand; TS =Tennis serve; VB = Volleyball smash. 

TABLE 3. CONFUSION MATRIX OF IDIVIDUAL HOI CLASS OVER THE SYSU DATASET USING KATH 

HOI Classes sweeping mopping TFW TOW 
Moving 

chair 

Sitting 

chair 
PB WB 

Playing 

phone 

Calling 

phone 
pouring drinking 

sweeping 0.94 0.05 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

mopping 0.05 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TFW 0.00 0.00 0.93 0.02 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 
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TOW 0.00 0.00 0.04 0.91 0.00 0.00 0.00 0.02 0.00 0.00 0.03 0.00 

Moving chair 0.00 0.00 0.00 0.00 0.98 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

Sitting chair 0.00 0.00 0.00 0.00 0.04 0.96 0.00 0.00 0.00 0.00 0.00 0.00 

PB 0.00 0.00 0.01 0.00 0.00 0.00 0.94 0.04 0.01 0.00 0.00 0.00 

WB 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.95 0.00 0.00 0.01 0.00 

Playing phone 0.00 0.00 0.02 0.00 0.00 0.00 0.03 0.00 0.89 0.05 0.01 0.00 

Calling phone 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.94 0.00 0.02 

pouring 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.91 0.05 

drinking 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.93 

Mean recognition accuracy = 93.5% 

*TFW = taking from wallet; TOW = taking out wallet; PB = packing backpacks; WB = wearing backpacks. 

TABLE 4. CONFUSION MATRIX OF INDIVIDUAL HOI CLASS OVER THE NTU RGB+D DATASET USING KATH 

HOI Classes 
drink 

water 

eat 

meal 

brush 

teeth 

brush 

hair 

tear 

up 

paper 

put on 

jacket 

take 

off 

jacket 

put 

on a 

hat 

take 

off a 

hat 

phone 

call 

play 

with 

phone 

taking 

a selfie 

drink water 0.95 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

eat meal 0.02 0.96 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

brush teeth 0.00 0.04 0.89 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

brush hair 0.01 0.00 0.06 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

tear up paper 0.00 0.02 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.01 0.00 

put on jacket 0.00 0.00 0.00 0.00 0.00 0.94 0.04 0.02 0.00 0.00 0.00 0.00 

take off jacket 0.00 0.00 0.00 0.00 0.00 0.05 0.95 0.00 0.00 0.00 0.00 0.00 

put on a hat 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.95 0.04 0.00 0.00 0.00 

take off a hat 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.94 0.00 0.00 0.01 

phone call 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.05 0.02 

play with phone 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.03 0.94 0.01 

taking a selfie 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.95 

Mean recognition accuracy = 94.16% 

 

1.2) PRECISION, SENSITIVITY, SPECIFICTY and F1 
MEASURES 

In this experiment precision, sensitivity, specificity and F1 

scores of all the interaction classes for each dataset are 

calculated as; 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                 (26) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                (27)                          

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                (28) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙)
                            (29) 

    The precision, sensitivity, specificity and F1 scores of the 

Sports, SYSU and NTU RGB+D datasets are given in Table 

5, Table 6 and Table 7 respectively. It is observed from Table 

5 that the positive predicted values, i.e., precision is very 

high for all the classes of the Sports dataset. The lowest 

precision of 84% is achieved with volleyball smash due to its 

high false positive rate. The volleyball smash also has the 

lowest sensitivity and F1 score due to its confusion with 

cricket bowling and tennis forehand. the mean specificity of 

this dataset is 98% which means that it can accurately reject 

a sample if it does not belong to a class for which it is tested 

for.  In case of the SYSU dataset, it is observed that the mean 

precision, sensitivity and F1 scores are as high as 93%, 93% 

and 94% respectively.  Less precise results are obtained with 

the playing phone interaction due to its 12% false positive 

rate. This dataset has a mean specificity rate of 99 %. From 

Table 7 it is inferred that the NTU RGB +D dataset has the 

highest precision, sensitivity, specificity and F1 scores of 

above 90% among all three datasets. In this dataset only the 

brush teeth interaction has lower than 90% sensitivity due to 

the lower visibility of the object and the resemblance of the 

action to interactions like eating meal, brush hair. Overall, it 

is inferred from the results of this section that the proposed 

methodology is an accurate HOI recognition system.  

 
TABLE 5. MEASUREMENTS OF PRECISION, SENSITIVITY, 

SPECIFICITY AND F1 SCORES FOR THE PROPOSED METHOD 

OVER THE SPORTS DATASET 

HOI Classes Precision Sensitivity  Specificity 
F1 

score 

cricket 

batting 
0.96 0.96 0.99 0.96 

cricket 

bowling 
0.98 0.93 0.99 0.95 

croquet shot 0.96 0.95 0.99 0.95 

tennis 

forehand 
0.87 0.90 0.97 0.89 

tennis serve  0.97 0.92 0.99 0.94 

volleyball 

Smash 
0.84 0.91 0.96 0.88 

Mean 0.93 0.92 0.98 0.92 
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TABLE 6. MEASUREMENTS OF PRECISION, SENSITIVITY, SPECIFICITY AND F1 SCORE OF THE PROPOSED METHOD OVER THE SYSU 

3D HOI DATASET 

Class 
Precis

ion 
Sensitivity Specificity 

F1 

score 
Class Precision Sensitivity Specificity 

F1 

score 

sweeping 0.95 0.94 0.99 0.94 packing backpacks 0.93 0.94 0.99 0.94 

mopping 0.93 0.95 0.99 0.94 wearing backpacks 0.94 0.95 0.99 0.95 

Taking from 

wallet 
0.93 0.93 0.99 0.93 Playing phone 0.88 0.89 0.98 0.89 

Taking out wallet 0.98 0.91 0.99 0.94 Calling phone 0.93 0.94 0.99 0.94 

Moving chair 0.95 0.98 0.99 0.97 pouring 0.90 0.91 0.99 0.91 

Sitting chair 0.98 0.96 0.99 0.97 drinking 0.93 0.93 0.99 0.93 

 Mean Precision = 0.93               Mean Sensitivity = 0.93          Mean Specificity = 0.99           Mean F1 score = 0.94 

TABLE 7. MEASUREMENTS OF PRECISION, SENSITIVITY, SPECIFICITY AND F1 SCORE OF THE PROPOSED METHOD OVER THE 

NTU RGB+D DATASET 

Class Precision Sensitivity  Specificity F1 score Class Precision Sensitivity Specificity F1 score 

drink water 0.97 0.95 0.99 0.96 take off jacket 0.96 0.95 0.99 0.95 

eat meal 0.91 0.96 0.99 0.94 put on a hat 0.93 0.95 0.99 0.94 

brush teeth 0.91 0.89 0.99 0.90 take off a hat 0.95 0.94 0.99 0.94 

brush hair 0.92 0.93 0.99 0.93 phone call 0.96 0.93 0.99 0.94 

tear up paper 0.98 0.97 0.99 0.97 play with phone 0.91 0.94 0.99 0.93 

put on jacket 0.94 0.94 0.99 0.94 taking a selfie 0.96 0.95 0.99 0.95 

 Mean Precision = 0.941              Mean Sensitivity = 0.941        Mean Specificity = 0.99            Mean F1 score = 0.940 

1.3) COMPARISON WITH OTHER SOTA METHODS 

In this section the proposed method is compared with 

different methodologies adopted by researchers for HOI 

recognition from recent years.  The action recognition 

accuracies of each evaluated methodology are used for 

comparison with the proposed system. Table 8 gives the 

comparison of the proposed system with other SOTA 

systems in recent years.   In [67], a spatial and probabilistic 

configuration of the object is used in the form of exemplars. 

In [68] a mutual context of both human and object is utilized 

to recognize different body arts and objects. In [69] the 

spatial relationship between human and object is learned 

based on geometrical properties. A contextual relationship 

between postured human body parts and the object is 

measured in [70]. A latent structural SVM is used for 

learning. The recognition rate of the proposed system is 

92.88% which is higher than the systems with which it was 

compared. Table 9 gives the comparison of the proposed 

system over the SYSU and the NTU RGB+D datasets. The 

results of the proposed system over the SYSU and NTU 

datasets are compared with joint heterogeneous features 

learning (JOULE), sparsified graph regression, multi-

modality, Local Accumulative Frame Feature (LAFF), 

skeleton-based methods and pairwise wise features based-

models. The comparison showed a higher recognition rate 

for the proposed system compared to the other systems. 

TABLE 8.  COMPARISON OF HOI RECOGNITION 

ACCURACY OF THE PROPOSED METHOD WITH 

OTHER SOTA METHODS OVER THE SPORTS 

DATASET 

Methods 
Accuracy on Sports dataset 

(%) 

Exemplar based modeling [67] 92.5 

Modeling mutual context [68] 87 

Weakly supervised learning HOI 

[69] 
83 

Discriminative models [70]  82.5 

Proposed Method                                 92.88 

TABLE 9.  COMPARISON OF HOI RECOGNITION 

ACCURACY OF THE PROPOSED METHOD WITH OTHER 

SOTA METHODS OVER THE SYSU AND THE NTU RGB+D 

DATASET 

Methods 
SYSU 

dataset (%) 

NTU RGB+D  

dataset 

Heterogeneous features 

+JOULE SVM  [65] 
84.89 - 

Sparsified graph regression [71] 77.9. 87.5 

Multi-modality hierarchical 

fusion [72] 
86.89 89.70 

LAFF [73] 54.2 - 

Skelton-based methods [74] - 48.9 

Mobile robot platform [75] - 75.0. 

Pairwise features [76] - 88.6 

Proposed Method 93.5 94.16 

 

2) PIXEL-WISE LABELING PERFORMANCE 
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In this experiment the performance of semantic segmentation 

which is implemented to label different human body parts is 

observed. This experiment is repeated three times to check 

the accuracy of pixel-level labeling in interaction classes of 

each dataset via CRF. For this experiment each dataset is 

divided into 50% for training and 50% for testing. The 

interaction classes for each dataset are given separately to the 

trained CRF model. The true positive, true negative, false 

positive and false negative of each labelled body part and 

object is evaluated individually from each class. The mean 

accuracy (Acc) of each labelled body part and object is 

calculated as; 

𝐴𝑐𝑐 =
(𝑇𝑃+𝑇𝑁)

(𝑃+𝑁)
                                         (30) 

    The per class accuracy of each interaction class is 

calculated from the confusion matrix of each class 

individually. The accuracy measure for each body part and 

object of the Sports, SYSU HOI and NTU RGB+D datasets 

is given in Tables 10, 11 and 12 respectively. It is observed 

form the results of this section that the proposed technique 

of labeling using the elliptical model results in better labeling 

accuracy for each body part and object. It is also observed 

during experimentation that the pose of the human has 

effected the recognition accuracy of some body parts. For 

example, in the croquet interaction of the sports dataset, 

accuracy of neck is 79% as the person’s posture is bent and 

the neck is not visible. Similarly, the labelling accuracy of 

the torso in the mopping interaction of the SYSU dataset is 

affected. Furthermore, the labelling accuracy of very small-

sized objects such as tooth-brush and wallet is also less than 

for larger objects. The overall accuracy rates over three 

datasets are higher than 90% due to the prior phase of 

segmenting each body part with elliptical modeling via 

GMM-EM. 

TABLE 10. LABELLING ACCURACY OF EACH BODY PART AND 

OBJECT OVER THE CLASSES OF THE SPORTS DATASET VIA CRF 

 Cbat Cbow Cro TF TS VB 

Mean 

per 

label 

Head 98.2 90 88 90.9 99 92 93.02 

Neck 89 92.8 79 93 85 90.2 88.17 

RS 92 92 92 89 91 83 89.83 

LS 90 93 94 86 93 89 90.83 

RUA 94 92 91 89 87 87 90.00 

LUA 92 90.4 92 91 92 90.4 91.30 

Right 

Elbow 
95 92 90 92 91 87 91.17 

Left Elbow 90 92.9 89.8 94.9 89 88.7 90.88 

Right Hand 93 91 92 96 89 91 92.00 

Left Hand 90 89 91.6 93 87 94 90.77 

Upper 

Torso 
89.9 91 87 98 97 90.5 92.23 

Lower 

Torso 
91.2 90.9 84 99 96 93 92.35 

Right Thigh 92 89 88 94 88 95 91.00 

Left Thigh 90.9 87 85 86 92 98 89.82 

Right Knee 92 91 96 90 93 91 92.17 

Left Knee 89 93 94 94 90.9 88 91.48 

Right Foot 93 92 87 91 94 92.7 91.62 

Left Foot 89 94 89 95 93 95 92.50 

Object 90 85 93 99 97 93 92.83 

Overall label accuracy = 91.26%  

*Cbat = Cricket batting; Cbow = Cricket bowling; Cro = Croquet shot; TF 

= Tennis forehand; TS =Tennis serve; VB = Volleyball smash, RS=Right 
Shoulder, LS=Left Shoulder, RUA=Right Upper Arm, LUA= Left Upper 

Arm. 

TABLE 11. LABELLING ACCURACY OF EACH BODY PART AND OBJECT OVER THE CLASSES OF THE SYSU DATASET VIA CRF 

 sweeping mopping TFW TOW 
Moving 

chair 

Sitting 

chair 
PB WB 

Playing 

phone 

Calling 

phone 
pouring drinking 

Mean 

per 

label 

Head 95 92 89 92 98 97 93 92 87 89 95 87 92.17 

Neck 87 89 83 90 92 91.8 92 90 81 90 95 84 88.73 

RS 90 88.9 92 91 95 94 92 87 90 88 92 90 90.83 

LS 86 90.5 91.9 89 97 97 90 86 91 91.5 91 92 91.08 

RUA 94 93 95 89 96 97 89 92 93 86 87 88 91.58 

LUA 92 93 92 91 95 94 87 91 92 91 88 91 91.42 

Right Elbow 87 88 90.2 87 95 92 95 94 90.2 92 90 92 91.03 

Left Elbow 89 92.5 89.9 89 94.7 93 92 96 91 94 92 94 92.26 

Right Hand 90.9 92.9 94 86 92 94 90 92 87 85 81 87 89.32 

Left Hand 92 94 92 89 94.9 96 92 90.3 89.4 89 83 93 91.22 

Upper Torso 89 90 87 93 94 91 86 92 87 93 89 90.4 90.12 

Lower Torso 86 92 90 96 92 92 84 92 85 95 84 94 90.17 

Right Thigh 92 95 92 94 85 85 89 93 90 97 91.9 92 91.33 

Left Thigh 94 96 90.8 97 89 87 91 90 91 95 91.6 95 92.28 

Right Knee 95 91 96 92 88 91 94 91 92 93 93 96 92.67 

Left Knee 95 93 94 90 90.9 93 93 89 96 92 93 93 92.66 

Right Foot 96 92 90 90.3 90 96 94 92 95 90.3 92 90.9 92.38 

Left Foot 94.5 94 89 91 93 95 92 90 90 92 92 92 92.04 

Object 92 92 89 86 97 89 93 89 90.9 84 90 89 90.08 

Overall label accuracy = 91.23%  
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*RS=Right Shoulder, LS=Left Shoulder, RUA=Right Upper Arm, LUA= Left Upper Arm, TFW = taking from wallet; TOW = taking out wallet; PB = 

packing backpacks; WB = wearing backpacks. 

TABLE 12. LABELLING ACCURACY OF EACH BODY PART AND OBJECT OVER THE CLASSES OF THE NTU DATASET VIA CRF 

 
drink 

water 
eat meal 

brush 

teeth 

brush 

hair 

tear up 

paper 

put on 

jacket 

take 

off 

jacket 

put 

on 

hat 

take off 

hat 

phone 

call 

play 

with 

phone 

taking a 

selfie 

Mean 

per 

label 

Head 89 92 84 90 98 92 93 90 92 89 95 87 90.92 

Neck 86 91 82 88 92 90 92 91 93 90 90 84 89.08 

RS 92 90 89 87 95 82 81.3 83 86 88 92 90 87.94 

LS 93 90.5 91 91 97 85 88 90 92 91.5 91 92 91.00 

RUA 90 88 86 85 96 83 89 88 90 86 92 92 88.75 

LUA 91 91 90 90 95 86 87 91 93 91 90 91 90.50 

Right Elbow 92 91 87 85 92 90 95 94 90.2 92 90 92 90.85 

Left Elbow 94 92.5 90.3 89 93 92 92 96 91 94 92 94 92.48 

Right Hand 89 90 88 86 90 91 90 91 87 85 84 89 88.33 

Left Hand 93 94 92 91 89 93 92 92 90 89 90 93 91.50 

Upper Torso 90.4 92 90 93 92 94 90.5 96 92 93 89 92 91.99 

Lower Torso 94 95 94 96 95 94 92 92 89 95 84 94 92.83 

Right Thigh 92 93 92 94 95 95 93 93 90 97 91.9 92 93.16 

Left Thigh 95 95 90.8 97 96 97 95 96 91 95 91.6 95 94.53 

Right Knee 96 92 96 92 92 94 94 91 90 93 98 96 93.67 

Left Knee 93 93 94 90 94 95 93 89 92 92 96 98 93.25 

Right Foot 90.9 92 93 90.3 94 96 94 92 95 90.3 95 96 93.21 

Left Foot 92 94 92 91 96 95 96 94 93 92 94 95 93.67 

Object 90 91 84 88 95 88 89 91 90.8 86 89 91 89.40 

Overall  label accuracy = 91.42%  

*RS=Right Shoulder, LS=Left Shoulder, RUA=Right Upper Arm, LUA= Left Upper Arm.

V. CONCLUSION 

In this paper, we proposed a novel framework for HOI 

recognition. The proposed system is based on semantic 

human body part segmentation and feature extraction. At 

first an efficient silhouette segmentation of the human and 

object is performed via an SLIC algorithm. Then human 

body parts are modeled via Gaussian-based elliptical 

modeling and labelled at the pixel-level using CRF. Two 

unique semantic features, i.e., fiducial points and cloud 

points, are extracted. These feature descriptors are then 

optimized via FLDA and classified with a KATH classifier. 

The validity of the proposed system is proved via extensive 

experimentation. The experimental section is divided into 

two section. At first the performance of HOI recognition is 

proved via accuracy, precision, sensitivity, specificity and F1 

scores. The mean accuracy achieved with the Sports dataset 

is 92.88%, while for the SYSU dataset it is 93.5% and for the 

NTU RGB+D dataset it is 94.16%. Comparison with other 

SOTA systems showed that the proposed semantic HOI 

recognition system is proved to be more precise. A few 

instances of confusion occur between the interaction classes 

based on similar objects. However, the high rate of precision, 

sensitivity, specificity and F1 scores proved that the 

proposed system has high a capability of assigning accurate 

labels to its class and rejecting a sample if it does not belong 

to a specific label. In the second experiment the performance 

of semantic segmentation is proved via accuracy measure of 

human body parts and object labeling in the interaction 

classes of each dataset. The overall semantic segmentation 

accuracy of the proposed system is 91.26% with Sports 

dataset, 91.23% with the SYSU dataset and 91.42% with the 

NTU dataset. So, the proposed system is not limited to 

human interaction recognition, it is also applicable to other 

domains of computer vision such as human body parts 

segmentation, labelling and human pose estimation. It should 

be applicable to many computer-vision based applications 

such as healthcare monitoring, security systems and assisted 

living etc. 

     In future, we plan to investigate new features to work on 

multi-human and multi-object-based systems. Furthermore, 

we would like to work on more complex scenarios for human 

action recognition. We would like to increase the efficiency 

of labelling by applying some deep learning techniques. 
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