
ScienceDirect

Available online at www.sciencedirect.com

Procedia Manufacturing 44 (2020) 505–512

2351-9789 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 1st International Conference on Optimization-Driven Architectural Design
10.1016/j.promfg.2020.02.263

10.1016/j.promfg.2020.02.263 2351-9789

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 1st International Conference on Optimization-Driven 
Architectural Design

Available online at www.sciencedirect.com

ScienceDirect
Procedia Manufacturing 00 (2019) 000–000 

www.elsevier.com/locate/procedia 

2351-9789© 2019 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of the 1st International Conference on Optimization-Driven Architectural Design 

1st International Conference on Optimization-Driven Architectural Design (OPTARCH 2019) 

Optimum Prediction of the Transfer Length of Strands Based on 
Artificial Neural Networks 

Mohammad A. Alhassana,b*, Ayman N. Ababnehb, and Nour A. Betoushc

aCivil Engineering Program, Al Ain University, Al Ain, UAE
bDepartment of Civil Engineering, Jordan University of Science and Technology, Irbid, Jordan 

cGraduate Student, Department of Civil Engineering, Jordan University of Science and Technology, Irbid, Jordan 

Abstract 

As the effectiveness of prestressing is crucially linked to the transfer length (TL) of the strands, this study used 
Artificial Neural Network (ANN) technique for optimal prediction of TL based on more than 458 data points 
collected from various literature works. The ANN technique allowed for investigating the effect of various key 
parameters classified into major categories including: strand characteristics, concrete properties, geometric details, 
and manufacturing method. The MATLAB software was utilized to build, train, and test the ANN using 19 input 
variables and one targeted output. The proposed ANN showed high prediction capability with a low mean square 
error. The sensitivity analysis of the TL gave a good indication regarding the significance of the parameters 
influencing the TL determination. Mathematical expression was developed considering the most significant 
parameters according to the ANN results and sensitivity analysis. 
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1. Introduction 

Transfer length (TL) is the essential length needed to transfer the bond stress from prestressing strands to the 
adjacent concrete. Within the transfer zone, the prestress linearly increases from zero to the effective stress (fse). 
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Determining the transfer length is necessary to ensure that the beam has adequate shear and flexural capacities to 
control and limit the cracks at the ends of the members [1-2]. The general research agreed that there are many 
factors affect the TL, however, it is not clear, how the transfer length is affected by these parameters. Agreement has 
not yet been reached to determine the most significant parameters affecting the transfer length [3-4]. Many 
experimental studies were conducted to investigate the transfer length of prestressing strands using various methods 
[5-17]. Also, many formulas exist in the design codes [18, 19] and many authors proposed models derived from 
theoretical studies based on experimental results. However, most of these equations and expressions cannot be 
generalized for results and data from other studies. In addition, many parameters were considered as the traditional 
methods are not able to digest the large data size and its complex nature. Therefore, a new technique is needed to 
provide accurate prediction; which can be accomplished using statistical machine learning and Artificial Intelligence 
[20].  

Table 1. Factors considered in the ANN. 
Number input Descriptions Parameter Ranges 

1 fpu Ultimate tensile strength of the prestressing 
strand (1751-2400) MPa 

2 fpi/fpu 
Relation between initial tensile strength and 
Ultimate tensile strength of the prestressing 
strand 

(0.48-0.81) 

3 ds Nominal diameter of prestressing strand Selected ds = (6.35,9.5,12.7, 15.2 
and 17.8) mm 

4 N Number of prestressing strands in the cross-
section of the member (1-9) 

5 c to c Vertical strand spacing (center to center ) (0-90) mm 
c to c=0 if N=1(vertical direction) 

6 Cond Strand surface codition Bright=1 or Rusty=0 
Slightly rust=0.5 

7 Coat Coat of strand surface 
epoxy coated with grit 

No coat=0,light coat=1/3 ,medium 
coat=2/3, heavy coat=1 

8 fci Concrete compressive strength at transfer  (12-180) MPa 
9 Agg. Normal weight or light weight concrete Normal weight =1, or light weight=0 
10 Beam type Beam section type (I =0 , T =0.5 , Rectangular =1) 

11 bw Width cross-section of the member 
width web  for I or T section (60- 265) mm 

12 h Depth cross-section of the member (60 - 710) mm 
13 Lc Length of beam (0.6-12) m 
14 Cover Vertical concrete cover (13-100) mm 
15 Fibers % of fibers in the concrete (0-2) % 
16 Release Release method Gradual (G) =1 , sudden (S)=0 
17 Trans Transverse reinforcement Yes =1 , No=0 
18 curing Curing condition Moisture=0 , Steam=1 
19 end-cond Type of member end region Cut end=1 , Dead end =0 

output TL Transfer length (160-1880) mm 

One of the recent and trendy approaches for predicting the transfer length is through the use of Artificial Neural 
Networks (ANNs). The widely used ANN model is considered as a representative of machine learning 
methodologies and as the foundation of the artificial intelligence. The ANN can handle large amount of data sets 
and has the ability to implicitly detect complex nonlinear relationships between dependent and independent 
variables [21]. The ANN method is ideal for the TL problem as it can digest the data size and its complexity as well 
it allows involving new parameters which are not considered by other researchers. A neuron in ANN is an 
information-processing unit, which forms the basis for designing a large family of neural networks. The neurons are 
connected to each other by links by which they interact. The nodes take input data to perform simple operations; 
each link is associated with weight, which can be modified depending upon the results that are passed to other 
neurons.Many types of research used the ANN in solving the engineering problems which may be unsolvable using 
the traditional methods [22-24]. 
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2. ANN Architecture 

The human brain is composed of billions of nerve cells called neurons; specialized cells transmitting nerve impulses. 
The same procedure is adopted in the ANN, which is composed of multiple nodes. The neurons are connected to 
each other by links through which they interact. The nodes take input data to perform simple operations. Each link is 
associated with a weight modified depending on the results. The results are passed to other neurons. A neuron in 
ANN is an information-processing unit forms the basis for designing a large family of neural networks. The ANN 
architecture can be divided into three main parts: input layer, middle or hidden layers, and output layer. The hidden 
layer consists of many neurons. At each neuron, mathematical calculations occur to the input to provide the output. 
Those neurons are connected with links to receive and send the values. Each link has a weight as the received values 
differ from the sent depending on these weights. The weight value is changeable based on the intended task. The 
ANN is an unconstrained optimization problem and the neuron weights are design variables to be modified. Another 
parameter that enhances the neural network performance is a bias term included in every neuron in hidden and 
output layers. Constructing a suitable architecture is the key in ANNs modelling. 

In this study, a feed-forward back-propagation neural network was used. A simple architecture of a back-
propagation network consists of an input layer, number of hidden layers and an output layer. Bayesian regularization 
(BR) algorithm was used for training, which updates the weight and bias values according to Levenberg Marquardt 
optimization. A hyperbolic tangent function was considered as an activation function in the hidden and output 
layers. The NN toolbox of MATLAB was used to develop the program. The flow chart in Fig. 1 represents the 
network architecture determined based on a trial and error procedure to minimize the mean square error MSE and 
max R2. The optimum network architecture consists of one input layer with 19 input parameters, one hidden layer 
with 10 neurons and one output layer with one targeted output (Fig. 2). A hyperbolic tangent function was 
considered as an activation function in the hidden layer and for the output layer. The fitting and predictive capability 
of the network was examined using the training and testing data as shown in Fig. 3. Fig. 4 shows a validation with 
high accuracy using 15 experimental points randomly selected from literature included min and max TL values. 

Fig. 1. Flow chart representing th ANN architecture 
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Fig. 2: ANN structure with 19 input and 10 hidden layer nodes for the prediction of TL using a hyperbolic tangent function 

Fig. 3: Correlation between predicted and experimental values 

Fig. 4: Accuracy of predicting TL by the proposed ANN program 

3. Results and discussion 

     The prediction capability (MAE and R2) of the proposed NN was compared to the other published analytical 
models using the 15 points as shown in Table 3. The NN has the minimum MAE and maximum R2 comparing to the 
others. The factors used to predict TL divided as four categories; the fourth category is the manufacturing method. 
Each category was drawn separately (Fig. 5-8) to compare between the different parameters in each category as well 
to determine their relative significance and their ignorance possibility in the modeling. Fig. 5 (top left) shows the 
relation between TL and the 5 parameters of the first category of the strand material properties. According to the 
significant change in TL, the diameter of the strand is highly important comparing to others, followed by the coat, 
the (fpi/fpu), and the surface condition. Fig. 5 (top right) shows the relation between TL and the 4 parameters in the 
second category of the concrete material properties, the most significant is the compression strength of the concrete, 
the remaining parameters are less important. Fig. 7 (bottom left) shows the relation between TL and the 5 
parameters in the third category of the geometric properties of the concrete beam, the depth of concrete beam (h) 
and the bottom cover of the concrete beam are the most important while the remaining parameters are less 
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important. Fig.8 (bottom right) shows the relation between TL and the 3 parameters in the fourth category of the 
manufacturing method of the concrete beam (Release method, curing method, and End condition) relatively only the 
release method is a significant parameter in this category. The most relatively significant parameters from all 
categories are: h, cover, fpi, fci, ds, N, C to C, and release method.

Table 2. Comparison of the results with other models (TL values are in mm) 
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483 811 762 789 1642 653 2266 684 550 509 
506 502 570 625 862 518 1609 616 439 507 
522 770 762 592 1307 490 1966 574 440 531 
602 770 762 580 1288 480 1951 565 436 625 
612 922 912 701 1910 580 2461 681 524 613 
660 922 912 691 1889 571 2445 674 521 664 
662 922 912 701 1910 580 2461 681 524 679 
665 770 762 610 1336 504 1995 586 447 667 
722 922 912 643 1790 532 2359 638 509 705 
725 770 762 577 1282 478 1945 563 435 748 
782 922 912 842 2190 697 2696 781 592 783 
904 922 912 673 1852 557 2416 661 515 970 

1880 811 762 827 1700 685 2322 709 575 1653 
MAE 229 210 140 963 173.9 1565 128 215 48.6 

R2 0.13 0.11 0.60 0.41 0.60 0.45 0.52 0.52 0.96 

Fig. 5: TL versus the most significant Parameters 
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4. A New ANN Model 

The new ANN model was only created based on independent variables, in addition to the variables that remain after 
the sensitivity analysis test (9 variables). The data size used in this model was also reduced from 458 to 137 
experimental points according to the references which are used in training and testing. These data points remained 
after deleting the repeated data points and the points that were not matching the condition. With the total number of 
instances is 137, the number of training instances is 83 (60%), the number of selection instances is 27 (20%), and 
the number of testing instances is 27 (20%).The number of layers in the neural network is 3. Fig. 6 depicts the size 
of each layer and its corresponding activation function. The architecture of this neural network can be written as 
9:7:3:1. The network architecture contains a scaling layer, a neural network and unscaling layer. The yellow circles 
represent scaling neurons, blue circles represent perceptron neurons, purple circle represents unscaling neurons. The 
number of inputs is 9and the number of outputs is 1. The complexity represented by the numbers of hidden neurons 
is 7:3.The quasi-Newton method is used as training algorithm. It does not require calculation of second derivatives. 
Instead, it computes an approximation of the inverse Hessian at each iteration of the algorithm by only using 
gradient information. Fig. 7 shows the linear regression parameters for the scaled output TL. The intercept, slope 
and correlation are very similar to 0, 1 and 1, respectively, so the neural network is predicting well the testing data. 

Fig. 6. Feedforward backpropagation neural network used for predicting the TL

Fig. 7. Linear regression parameters for the predicted TL
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5. Conclusions 

The complexity in predicting the TL is attributed to the multiple factors that have significant effects on it. The ANN 
model was proven to be a powerful numerical technique capable of handling large database, various key parameters, 
and materials' nonlinearity.The ANN converges very fast within the first few Epochs then remains flat with 
relatively small change in the MSE. The fitting and prediction capability of the network was examined using 
training and testing data at 80% and 20% of the total database, respectively. The corresponding correlation factors 
(R) was 0.98 for training data and 0.93 for testing data. The overall correlation maintained similar level when both 
training and testing data were fit against real values. The most significant factors that influences the TL identified as 
the diameter of strands, fpi, fci, the bottom cover, number of strands, spacing between them, and coat of strand.The 
end condition, concrete type, beam length and curing condition showed miner influence on the TL.Increasing the fci, 
dimension of section, fibers content, bottom cover, coat of strand, and use of gradual release method instead of 
sudden release have inverse relations with the TL. Increasing the diameter of strands, fpi, and number of strands 
resulting in a proportional increase in the TL. The developed ANN model was created based on the most important 
parameters leading to satisfying Mathematical Expression results comparing to its simplicity and quick use. 
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4. A New ANN Model 

The new ANN model was only created based on independent variables, in addition to the variables that remain after 
the sensitivity analysis test (9 variables). The data size used in this model was also reduced from 458 to 137 
experimental points according to the references which are used in training and testing. These data points remained 
after deleting the repeated data points and the points that were not matching the condition. With the total number of 
instances is 137, the number of training instances is 83 (60%), the number of selection instances is 27 (20%), and 
the number of testing instances is 27 (20%).The number of layers in the neural network is 3. Fig. 6 depicts the size 
of each layer and its corresponding activation function. The architecture of this neural network can be written as 
9:7:3:1. The network architecture contains a scaling layer, a neural network and unscaling layer. The yellow circles 
represent scaling neurons, blue circles represent perceptron neurons, purple circle represents unscaling neurons. The 
number of inputs is 9and the number of outputs is 1. The complexity represented by the numbers of hidden neurons 
is 7:3.The quasi-Newton method is used as training algorithm. It does not require calculation of second derivatives. 
Instead, it computes an approximation of the inverse Hessian at each iteration of the algorithm by only using 
gradient information. Fig. 7 shows the linear regression parameters for the scaled output TL. The intercept, slope 
and correlation are very similar to 0, 1 and 1, respectively, so the neural network is predicting well the testing data. 

Fig. 6. Feedforward backpropagation neural network used for predicting the TL

Fig. 7. Linear regression parameters for the predicted TL
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5. Conclusions 

The complexity in predicting the TL is attributed to the multiple factors that have significant effects on it. The ANN 
model was proven to be a powerful numerical technique capable of handling large database, various key parameters, 
and materials' nonlinearity.The ANN converges very fast within the first few Epochs then remains flat with 
relatively small change in the MSE. The fitting and prediction capability of the network was examined using 
training and testing data at 80% and 20% of the total database, respectively. The corresponding correlation factors 
(R) was 0.98 for training data and 0.93 for testing data. The overall correlation maintained similar level when both 
training and testing data were fit against real values. The most significant factors that influences the TL identified as 
the diameter of strands, fpi, fci, the bottom cover, number of strands, spacing between them, and coat of strand.The 
end condition, concrete type, beam length and curing condition showed miner influence on the TL.Increasing the fci, 
dimension of section, fibers content, bottom cover, coat of strand, and use of gradual release method instead of 
sudden release have inverse relations with the TL. Increasing the diameter of strands, fpi, and number of strands 
resulting in a proportional increase in the TL. The developed ANN model was created based on the most important 
parameters leading to satisfying Mathematical Expression results comparing to its simplicity and quick use. 
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