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ABSTRACT In this paper, novel computing paradigm by exploiting the strength of feed-forward artificial
neural networks (ANNs) with Levenberg-Marquardt Method (LMM), and Bayesian Regularization Method
(BRM) based backpropagation is presented to find the solutions of initial value problems (IVBs) of
linear/nonlinear pantograph delay differential equations (LP/NP-DDEs). The dataset for training, testing and
validation is created with reference to known standard solutions of LP/NP-DDEs. ANNs are implemented
using the said dataset for approximate modeling of the system on mean squared error based merit functions,
while learning of the adjustable parameters is conducted with efficacy of LMM (ANN-LMM) and BRMs
(ANN-BRM). The performance of the designed algorithms ANN-LMM and ANN-BRM on IVPs of
first, second and third order NP-FDEs are verified by attaining a good agreement with the available solutions
having accuracy in the range from 10−5 to 10−8 and are further endorsed through error histograms and
regression measures.

INDEX TERMS Artificial neural networks, Levenberg-Marquardt method, Bayesian regularization method,
nonlinear pantograph equation, regression analysis, intelligent computing, numerical computing.

I. INTRODUCTION
A particular form of functional differential equations that
involve proportional delays are called pantograph or general-
ized pantograph equations. The word ‘pantograph’ has been
introduced by Ockendon and Tayler (1971) [1] in a project
(collection of current by pantograph head of an electric
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locomotive system). The general form of first, second and
third order functional differential equations of the pantograph
type are:

df
dx
= y( f (x), f (h(x)), x), f (0) = c1 (1)

d2f
dx2
= y(f (x),

df
dx

, f (h(x)), x),

f (0) = c1,
d
dx
f (0) = c2 (2)
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FIGURE 1. Block structure representation of workflow of the system.

d3f
dx3
= y(f (x),

df
dx

,
d2f
dx2

, f (h(x)), x),

f (0) = c1,
d
dx
f (0) = c2,

d2

dx2
f (0) = c3 (3)

The said equations have applicability in diverse range
of subject areas, for instance, coherent states in quantum

theory [2], control system [3] and cell-growth modeling
in biology [4]. According to recent literature available,
a number of numerical solvers have shown a great potential
to solve Pantograph functional differential equations using
different methods such as collection method [5], spectral
tau method [6], Chebyshev spectral methods [7], multi-
stage optimal homotopy asymptotic method [8], orthonormal
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FIGURE 2. Neural network model for selected architecture.

FIGURE 3. Execution of ANN-LMM for solving LP-DDE in problem 4.1 (a) performance plots (b) Training state parameters (c) Error
Histogram (d) Regression plots.

Bernstein polynomials method [9], Adomian decomposition
method [10], Genocchi operational matrix approach [11],
least squares-Epsilon-Ritz method [12], collocation approach
through first Boubeker polynomials [13], Taylor operation
method [14], Taylor wavelets method [15], multi-wavelets
Galerkin method [16], modified Chebyshev collocation
method [17], Sinc numerical method [18], Müntz-Legendre
wavelet operational matrix approach [19], Legendre–Gauss

quadrature rule based scheme [20], Laplace transform
method [21], multistep block method [22], computational
Legendre Tau method [23], fully-geometric mesh one-leg
methods [24], Euler–Maruyama method [25] and so on.
In all of these methods, the deterministic solution is gener-
ally given in different forms with stability and convergence
analysis, while the outcomes show that all of these methods
have their own limitations and advantages in comparison
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FIGURE 4. Execution of ANN-BRM for solving LP-DDE in problem 4.1 (a) performance plots (b) Training state parameters
(c) Error Histogram (d) Regression plots.

FIGURE 5. Approximate solution with error analysis for ANN-LMM for
problem 4.1.

to others in certain applications. However, artificial intel-
ligence (AI) based numerical solvers using soft comput-
ing or machine learning approaches look promising to

FIGURE 6. Approximate solution with error analysis for ANN-BRM for
problem 4.1.

be further researched for nonlinear Pantograph differential
systems.

The AI based numerical approaches have been used
broadly for solution of differential equations arising in
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TABLE 1. Results of ANN-LMM for solving linear and nonlinear Pantograph delay differential equations.

FIGURE 7. Execution of ANN-LMM for solving NP-DDE in problem 4.2 (a) performance plots (b) Training state parameters (c) Error
Histogram (d) Regression plots.

diffrenet applications [26]–[31]. A few recent studies of
paramount significance reported include Van-der-Pol oscil-
latory nonlinear systems [32], [33], solution of mathemat-
ical model in nonlinear optics [34], models of electrically
conducting solids [35], [36], analysis of nonlinear reactive
transport model [37], fuel ignition model in combustion

theory [38], Jeffery Hamel flow models [39], [40], thin film
flow models [41], [42], mathematical models involving Car-
bon nanotubes [43], [44], astrophysics [45], [46], nonlinear
circuit theory models [47], [48], dusty plasma [49], [50],
atomic physics [51], [52], heartbeat dynamic models [53],
HIV infection spread models [54], [55], piezoelectric
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FIGURE 8. Execution of ANN-BRM for solving NP-DDE in problem 4.2 (a) performance plots (b) Training state parameters (c) Error
Histogram (d) Regression plots.

FIGURE 9. Approximate solution with error analysis for ANN-LMM for
problem 4.2.

transducer modeling [56], energy [57], [58], wind power [59],
[60], and financial models [61], [62]. Beside these stiff non-
linear fractional dynamic modeling with Riccati fractional

FIGURE 10. Approximate solution with error analysis for ANN-BRM for
problem 4.2.

differential equations (FrDEs) [63], [64] and Bagley-Torvik
FrDEs [65] are other potential applications of AI based algo-
rithms. As per our literature survey no researcher yet has
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TABLE 2. Results of ANN-BRM for solving linear and nonlinear Pantograph delay differential equations.

FIGURE 11. Execution of ANN-LMM for solving LP-DDE in problem 4.3 (a) performance plots (b) Training state parameters (c) Error
Histogram (d) Regression plots.

applied AI techniques through Levenberg-Marquardt Method
(LMM) and Bayesian Regularization Method (BRM) based
backpropagation of neural networks to solve initial value
problems (IVBs) of linear/nonlinear pantograph delay differ-
ential equations (LP/NP-DDEs). This encourages the authors
to investigate an AI technique to solve IVPs of LP/NP-
DDEs represented in equations (1-3). The innovative aspects
of the proposed computing platform are highlighted as
follows:

• A novel design of two-layer feed-forward artifi-
cial neural networks (ANNs) backpropagated with
Levenberg-Marquardt method (LMM), i.e., ANN-LMM
andBayesian RegularizationMethod (BRM), i.e., ANN-
BRM is presented for finding the solution of IVBs of
LP/NP DDEs.

• The mean squared error based merit function is
constructed for implementation of both ANN-LMM
and ANN-BRM for approximate modeling of the
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FIGURE 12. Execution of ANN-BRM for solving LP-DDE in problem 4.3 (a) performance plots (b) Training state parameters (c) Error
Histogram (d) Regression plots.

FIGURE 13. Approximate solution with error analysis for ANN-LMM for
problem 4.3.

LP/NP-DDEs through reference dataset for training,
testing and validation

• Learning of the decision variables of neural net-
work to optimize the merit function at each epoch

FIGURE 14. Approximate solution with error analysis for ANN-BRM for
problem 4.3.

is conducted with efficacy of backpropagation with
Levenberg-Marquardt and Bayesian regularization.

• Accurate, reliable and convergent performance of the
designed schemes ANN-LMM and ANN-BRM is
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FIGURE 15. Execution of ANN-LMM for solving LP-DDE in problem 4.4 (a) performance plots (b) Training state parameters (c) Error
Histogram (d) Regression plots.

substantiated for first, second and third order variant
LP/NP-DDEs while error analysis, histogram studies
and regression metrics further endorse worth of the
solvers.

The organizational plan of this study comprises of the
following: In the second section, necessary information of
LP/NPDDEs is presented. In the third section, a brief descrip-
tion of proposed algorithms and their implementation on five
different IVPs having first, second and third order representa-
tion on LP/NP-DDEs. In the fourth section, the outcomes of
the proposed scheme are summarized in the form of conclud-
ing remarks along with provision of future related studies.

II. LINEAR AND NON-LINEAR PANTOGRAPH DELAY
DIFFERENTION EQUATIONS
The six different problems based on linear/nonlinear
pantograph delay differential equations (LP/NP-DDE) are
presented in this section.
Problem 4.1: IVP of LP-DDE of first order for h(x) = 0.5x

and c1 = 0.1 in equation (1) as follows [26], [66]–[68]
df
dx
= 0.5e0.5x f (0.5x)+ 0.5f (x), f (0) = 1 (4)

The exact solution of equation (4) is given as follows

f (x) = ex (5)

Problem 4.2: IVP of NP-DDE of first order for h(x) = 0.5x
and c1 = 0 in equation (1) as follows [26]

df
dx
= 1− 2f 2(0.5x), f (0) = 0, (6)

The exact solution of equation (6) is given as follows

f (x) = sin x (7)

Problem 4.3: IVP of LP-DDE of first order for h(x) = 0.5 x
and c1 = 0 in equation (1) as follows [8], [26], [67]

df
dx
= −f (x)+ 0.25f (0.5x)− 0.25e−0.5x ,

f (0) = 1, (8)

The exact solution of equation (8) is given as follows

f (x) = e−x (9)
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FIGURE 16. Execution of ANN-BRM for solving LP-DDE in problem 4.4 (a) performance plots (b) Training state parameters (c) Error
Histogram (d) Regression plots.

FIGURE 17. Approximate solution with error analysis for ANN-LMM for
problem 4.4.

Problem 4.4: IVP of LP-DDE of second order with h(x) =
0.5x and c1 = c2 = 0 in equation (2) as follows [26], [68]

d2f
dx2
= 0.75f (x)+ f (0.5x)− x2 + 2,

FIGURE 18. Approximate solution with error analysis for ANN-BRM for
problem 4.4.

f (0) = 0,
d
dx
f (0) = 0, (10)

The exact solution of equation (10) is given as follows

f (x) = x2 (11)
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FIGURE 19. Execution of ANN-LMM for solving LP-DDE in problem 4.5 (a) performance plots (b) Training state parameters (c) Error
Histogram (d) Regression plots.

Problem 4.5: IVP of LP-DDE of third order with h(x) = 0.5x
and c1 = c2 = 0 in equation (2) as follows [26]

d3f
dx3
= −1+ 2 (f (0.5x))2 ,

f (0) = 0,
d
dx
f (0) = 1,

d2

dx2
f (0) = 0, (12)

The exact solution of equation (12) is given as follows

f (x) = sin x (13)

III. NUMERICAL EXPERIMENTATION WITH DISCUSSION
The brief description of the methodology adopted and
results of the numerical experimentation of the proposed
ANN-LMM and ANN-BRM for five different problems. i.e.,
4.1-4.5, based on LP/NP-DDEs are presented in this section.

The step wise process flow structure of the proposed
methodology is presented in Fig. 1 in five stages, i.e., Prob-
lem definition, Mathematical representation, Neural Network

Models, Approximate Solutions and Assessment Analysis.
ANN-LMM and ANN-BRM are implemented by using
‘nftool’ routine of neural network toolbox in Matlab for two
layers structure (single input, hidden and output) of feedfor-
ward networks with backpropagation of LMMandRBM. The
architecture of ANNs based on ten number of neurons with
log-sigmoid activation function is shown in Fig. 2.

The reference dataset for ANN-LMM and ANN-BRMs for
problem 4.1, 4.2, 4.3, 4.4 and 4.5 is generated using equations
(8), (10), (12), (14) and (16) for 201 input grids between
interval [0, 2]. Now, 70% of data is used arbitrarily for
training while 15% is used for both the testing and validation
process in case of fitting tool of 2 layered structure of feed
forward ANN with backpropagation with LMM and BRM
to solve all five problems of LP/NP-DDEs. Training data is
utilized for the formulation of the approximate solution on the
basis of MSE based merit function, validation data is used for
modeling of the neural networks, while testing data is used for
assessment of the performance of unbiased inputs.
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FIGURE 20. Execution of ANN-BRM for solving NP-DDE in problem 4.5 (a) performance plots (b) Training state parameters (c) Error
Histogram (d) Regression plots.

The performance of ANN-LMM and ANN-BRM in terms
of fitness values (i.e., MSE), epochs, performance, back-
propagation measures and time for execution are tabulated
in Tables 1 and 2, respectively, for all five LP/NP-DDEs in
problems 4.1 to 4.5. The values of performance for ANN-
LMM are around 10−10 to 10−04 and 10−13 to 10−10 for
ANN-RBM. MSE values for training, testing and validation
are around 10−10 to 10−04 for ANN-LMM. While the values
for training and testing for ANN-RBM lie around 10−13

to 10−10. Time complexity in the form of executing time
taken by ANN-LMM and ANN-RBM to adjust the weights
are given in Table 1 and 2. There is no noticeable differ-
ence manifested in computational time of both backpropaga-
tion methodologies. Generally, these results show that both
approaches give consistently accurate processing, however,
ANN-LMM based method is relatively more efficient as
compared to ANN-RBM for solving LP/NP-DDEs.

The results of ANN-LMM and ANN-BRM for LP-DDE
in problem 4.1 by means of MSE based performance, state
transitions parameters, error histograms studies and regres-
sion plots are illustration in, Figs 3-4, respectively, while

the approximate solutions with error, differences between
proposed results and exact solutions, is presented in Fig. 4-5,
respectively. Accordingly, the results of both ANN-LMMand
ANN-BRM for LP/NP-DDE in problem 4.2, 4.3, 4.4 and
4.5 are given in Figs 7-10, Figs 11-14, Figs 15-18 and
Figs 19-22, respectively.

In the subfigures 3(a)-4(a), 7(a)-8(a), 11(a)-12(a),
15(a)-16(a), 19(a)-20(a), the performance of MSE for train-
ing, validation and test data against epoch index are shown
for LP/NP-DDEs in problems 4.1 to 4.5, respectively. One
may see that the best curves of the network are achieved
at 1000, 16, 1000, 1000 and 185 epochs with MSE around
10−11 to 10−10, 10−04, 10−11 to 10−10, 10−10 to 10−09

and 10−04 to 10−03 for ANN-LMM, while 608, 169, 1000,
612 and 164 epochs with MSE around 10−11 to 10−10, 10−11

to 10−10, 10−10 to 10−09, 10−12 to 10−11 and 10−10 to 10−09

for ANN-RBM in case of problems 4.1 to 4.5, respectively.
The gradient and step size Mu of both backpropaga-

tion algorithms are presented in the subfigures 3(a)-4(b),
7(b)-8(b), 11(b)-12(b), 15(b)-16(b), 19(b)-20(b), for LP/NP-
DDEs in problems 4.1, 4.2, 4.3, 4.4 and 4.5, respectively.
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FIGURE 21. Approximate solution with error analysis for ANN-LMM for
problem 4.5.

FIGURE 22. Approximate solution with error analysis for ANN-BRM for
problem 4.5.

The gradient andMu values for LMM based backpropagation
are around 10−08 to 10−04 and 10−10 to 10−07, respectively,
while, these respective values for RBM are around 10−08 to
10−04 and 10−10 to 10−07. The small variation in the param-
eters of gradient and Mu established the relatively stable
performance of RBM over LMM, particularly for NP-DDE
in problems 4.2 and 4.5.

The comparison of approximate solutions of ANN-LMM
and ANN-RBM with reference exact solutions presented
in Figures 5-6, 9-10, 13-14, 17-18 and 21-22, for respective
problems 4.1 to 4.5, show the consistent overlapping of both
results with 5 to 6 decimal places of accuracy. Moreover,
the performance of ANN-LMM for NP-DDE is problem
4.2 and 4.5 is relative inferior from ANN-RBM. The consis-
tent precise performance of ANN-RBM is achieved for both
LP/NP-DDE.

The error analysis through histograms are conducted for
both ANN-LMM and ANN-RBMs and results are pre-
sented in the subfigures 3(c)-4(c), 7(c)-8(c), 11(c)-12(c),
15(c)-16(c), 19(c)-20(c), for LP/NP-DDEs in problems 4.1,

4.2, 4.3, 4.4 and 4.5, respectively. The error bin with reference
zero error line of ANN-LMM is found in close vicinity of
10−05, while for ANN-BRM is around 10−06 to 10−05. The
results evidently show that there is no noticeable difference in
the performance for LP-DDE while NP-DDE the small error
values are attained by ANN-RBM.

The regression analysis for training, testing, validation
and for the whole data is performed for both ANN-LMM
and ANN-RBMs and results are presented in the subfigures
3(d)-4(d), 7(d)-8(d), 11(d)-12(d), 15(d)-16(d), 19(d)-20(d),
for LP/NP-DDEs in problems 4.1, 4.2, 4.3, 4.4 and 4.5,
respectively. It is seen that the value of correlation R = 1
for LP-DDE for both ANN-LMM and ANN-RBMs while
for NP-DDE the value of R = 1 for ANN-RBM while
R = 0.98 for ANN-LMM close to 1.

IV. CONCLUSION
The strength of two-layered structure of feed-forward arti-
ficial neural networks with backpropagation of Levenberg-
Marquardt as well as Bayesian Regularization is exploited
to find accurate, reliable and stable solutions of initial value
problems of linear/nonlinear pantograph delay differential
equations. The dataset for training, testing and validation is
created from available reported studies of linear/nonlinear
pantograph delay differential equations. The both proposed
ANN-LMM and ANN-BRMs are implemented on the said
dataset for approximate modeling of the system on mean
squared error based merit function and learning of weights
is conducted with LMM and BRMs. The performance of the
designed algorithms ANN-LMM and ANN-BRM on IVPs
on first, second and third order LP/NP-DDEs is evaluated
and both methodologies are found reasonable precise with
matching of order around 5 to 7 decimal places of accu-
racy, however, the performance of ANN-BRM in all five
LP/NP-DDEs is consistent while the result of ANN-LMM is
degraded in case of problem 4.2 and 4.5. The absolute error
analysis, histogram studies and regression indices also val-
idate the performance of both ANN-LMM and ANN-RBM
with relative better performance of ANN-RBM for solving
the variants of LP/NP DDEs.

In future, one may look into the strength of ANN-LMM
and ANN-RBM with different sigmoidal, radial base and
wavelet activation functions to solve neutral, singular, multi,
fuzzy, fractional variants of LP/NP DDEs along with their
systems. Metaheuristic techniques including GA, PSO, SGA
and QPSO can be implemented for training of neural net-
works for improved performance [69]–[73].
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