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ABSTRACT The software component allocation problem is concerned with mapping a set of software
components to the computational units available in a heterogeneous computing system while maximiz-
ing a certain objective function. This problem is important in the domain of component-based software
engineering, and solving it is not a trivial task. In this paper, we demonstrate a software framework for
defining and solving component allocation problem instances. In addition, we implement twometa-heuristics
for solving the problem. The experiments show that these meta-heuristics achieve good performance. The
framework is designed to be extensible and therefore other researchers can conveniently use it to implement
new meta-heuristics for solving the software component allocation problem.

INDEX TERMS Component allocation, model-driven engineering, embedded systems, heterogeneous
systems, genetic algorithms, ant colony optimization.

I. INTRODUCTION
Computer systems today have become more heterogeneous
than ever before, with systems consisting of different types of
processors and computing resources. Furthermore, advances
in component-based software engineering have enabled
designers and architects with the freedom to make differ-
ent allocations of software components on the available
computational units. In the domain of component-based soft-
ware engineering, a software component is a unit of com-
position with contractually defined interfaces which can be
deployed independently without concerns of timing conflicts
and precedence [1]–[3]. However, the heterogeneity of sys-
tems presents a big challenge to designers and architects.
While several allocations can be functionally correct, one or
more of these allocations can have better quality aspect(s)
than the remaining allocations. The component allocation
problem is the problem of finding the allocation that is func-
tionally correct (i.e., does not violate any specified constraint)
and that maximizes a certain quality metric [4]–[6]. Solving
the component allocation problem is not trivial, and several
previous research projects have looked into this problem
[7]–[9]. New tools and frameworks are needed to help in
making such important decisions.

The component allocation problem is an NP-hard problem
[6], [10], and thus the difficulty of solving it increases expo-
nentially as the numbers of components and computational
units increase. Therefore, using traditional greedy search
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methods can be ineffective in solving the component allo-
cation problem. To overcome this challenge, meta-heuristics
have been used to solve the component allocation problem.
These meta-heuristics usually succeed in finding optimal
or good sub-optimal solutions in very short time. This is
especially true in cases where an exhaustive search strategy
becomes infeasible due to the large size of the search space.

This paper presents a new extensible framework for
modeling and solving the component allocation problem.
The framework is implemented as an Eclipse Java project
utilizing the Eclipse Modeling Framework (EMF) [11]. The
core of the framework is a new meta-model for the com-
ponent allocation problem. Test models defining component
allocation problem instances must conform to this meta-
metamodel. We have created several of these test models
which are discussed in Section V. Interested authors can
use these test models when validating the performance of
new meta-heuristics for solving the component allocation
problem. New test models can also be added in the future
to the framework. By creating this framework, approaches
and advances in the domain of Model-Driven Engineer-
ing (MDE) can be utilized in the domain of software com-
ponent allocation. In addition, we have implemented two
meta-heuristics within the framework: the first one is a
Genetic Algorithm (GA) and the second is an Ant Colony
Optimization (ACO) algorithm. Although GAs have been
used to solve the component allocation problem before, this
paper is the first one to apply an ACO algorithm for solving
the component allocation problem with a single objective
function. In this paper, a detailed comparison study between
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the two meta-heuristics is also presented. The framework is
built with extensibility inmind, and interested authors can use
it, with little effort, to implement new meta-heuristics and to
analyze their performance using the same set of test models.

The main contributions of this paper are the following:
1) An extensible framework for solving the component

allocation problem. The framework is based on a
meta-model defining the component allocation prob-
lem. The framework can be extended with new solution
methods for solving the component allocation problem.

2) Implementation of an ACO algorithm for solving the
component allocation problem. This paper is the first
one to propose using an ACO algorithm for solv-
ing the single-objective component allocation prob-
lem. ACO outperforms GA-based implementations on
several evaluation cases as presented in Section V.

The remainder of this paper is organized as follows:
Section II discusses related work. Section III defines the
component allocation problem, while Section IV presents
several meta-heuristic algorithms for solving the problem.
Section V evaluates the implementations of these algorithms.
Finally, Section VI concludes the paper with outlines for
future research.

II. RELATED WORK
Švogor et al. [12] define a software component allocation
model for heterogeneous systems. In addition, the authors
implement a method for finding optimal allocations using
GA. Analytic Hierarchy Process (AHP) [13] is used to
assign weights to the different resource consumption costs.
Švogor and Carlson [5] present SCALL (Software Compo-
nent Allocator) which is a prototype Eclipse plug-in, based
on Eclipse Modeling Framework (EMF) [14] and Graph-
ical Modeling Project (GMF) [15], used to create models
of allocation problems on heterogeneous systems and solve
those allocation problems. A GA implemented in Python is
used to find sub-optimal allocations. In Švogor et al. [6],
the authors present a comprehensive framework, called SCAF
(Software Component Allocation Framework). The frame-
work encompasses a theoretical model for component allo-
cation on heterogeneous systems. The authors validate SCAF
on a real-world system demonstration. In addition, the authors
implement SCAF as part of the SCALL plug-in and add a
simulated annealing-based solver. Our component allocation
model is based on themodel defined by Švogor et al. [6], [12].
With respect to the SCALL plug-in, it does not provide direct
methods for extending solution methods to the component
allocation problem. On the other hand, our tool has been
designed to be extensible in such a way that it supports adding
new solution methods.

A generic and extensible framework, called Deployment
Improvement Framework (DIF), for optimizing deploy-
ment architectures specified in AADL [16] is presented by
Malek et al. [7]. The framework gives a formal definition
of the component allocation problem and implements several
algorithms for solving the problem. The authors present a tool
to help users in applying the framework.

Feljan et al. [17] present a method for allocating software
tasks to the cores of a multicore system. The method is
designed for soft real-time embedded multicore systems in
which timing is critical to the correctness of the system
but few deadline misses are tolerated. The method is based
on an iterative model-driven optimization cycle employing
simulation guided local search. Two main performance met-
rics are considered to compare task allocations: timeliness
(the average number of missed deadlines) and the
computational load distribution.

Wang et al. [9] present a method for component
allocation with multiple resource constraints for large embed-
ded real-time systems. The method uses an informed branch-
and-bound and forward checking mechanism. The method
was implemented in the Automatic Integration of Reusable
Embedded Software (AIRES) toolkit. Given a model of soft-
ware components with resource consumptions and a model
of a target platform’s set of devices with resource constraints,
the method aims to group components into partitions such
that the resource constraints are respected and the amount of
communication among the partitions is within the available
link capacity. The method does not have an objective function
for optimization, but only aims to find a feasible partition in
a scalable way.

A component allocation method for series-parallel
systems with interchangeable elements is proposed by
Yamachi et al. [18]. The method applies a Multi-Objective
Genetic Algorithm (MOGA) to obtain the Pareto solutions
with twomain objective functions: system cost and reliability.
In the allocation model considered in the method, compo-
nents can fail. Components can have varying reliability and
cost attributes. In the context of series-parallel systems, par-
allel systems are serially arranged. This enables redundancy
allocation in which several components can be allocated on
the same subsystem in order to increase system reliability.
The method aims to allocate the components in order to
achieve maximum system reliability and minimum cost.

Pohlmann and Hüwe [8] propose a model-driven approach
for specifying allocation problems and automatically
computing feasible allocations. The authors propose a
domain-specific language named ASL and an Eclipse-based
tool that an allocation engineer can use to specify the allo-
cation constraints. The allocation problem is formulated as
a 0-1 Integer Linear Program (ILP). Model transformation
is used to transform a model of the component allocation
problem specified in ASL into a form that can be processed
by an ILP-solver. The approach was validated in the context
of an automotive case study. The approach only finds feasible
allocations (no optimal solutions) and may not scale to large
problems since it is based on exact-ILP solvers. The approach
can cover several types of allocation constraints such as
timing, priority, deadlines, and schedulability.

Koziolek et al. [19] present an approach called PerOpteryx
that uses a metaheuristic search guided by architectural tac-
tics to improve software architectural models. The archi-
tectural models are specified with the Palladio Component

153068 VOLUME 8, 2020



I. Al-Azzoni, S. Iqbal: Meta-Heuristics for Solving the Software Component Allocation Problem

Model (PCM) [20]. For performance analysis, the approach
transforms a PCM model into a layered queueing network
(LQN) [21]. The approach is designed to find Pareto-optimal
solutions with respect to two objectives: response time and
server costs. The approach uses the multi-objective evolu-
tionary algorithm NSGA-II [22] integrated with design-level
architectural tactics.

Li et al. [23] introduce a toolkit, called AQOSA
(Automated Quality-driven Optimization of Software Archi-
tecture) for component-based software design. AQOSA
applies several evolutionary multi-objective optimization
algorithms to find approximations to the Pareto optimal sets.
The optimization process in AQOSA starts with an initial
input software architecture modeled in a supported software
architecture modeling language such as AADL. AQOSA then
iteratively generates alternative architecture models through
genetic operations on a genotype representation which allows
several degrees of freedom for exploration, including com-
ponent allocation. Three objectives are considered: processor
utilization, cost, and data flow latency. Simulation, using
ADeS [24], is used to evaluate and compare the solutions.

Aleti et al. [25] present an extendable tool, called
ArcheOpterix, which provides a framework for architecture
optimization for AADL specifications. The tool provides
a platform for users to implement architecture optimiza-
tion algorithms. Since ArcheOpterix only accepts AADL
models, it depends on AADL’s development environment
OSATE [26]. In Aleti et al. [27], ArcheOpterix is used
to compare the performance of Pareto-Ant Colony Opti-
mization (P-ACO) with the Multi-Objective Genetic Algo-
rithm (MOGA) on component deployment optimization
problems. Two objectives are optimized: the data transmis-
sion reliability and the communication overhead. In this con-
text, the deployment problem is modeled as a bi-objective
optimization problem. Based on the validation experiments,
the authors observe that P-ACO performs similar to MOGA,
however P-ACO’s optimization progress stagnates after a
certain number of iterations.

Ashraf et al. [28] present a multi-objective Ant Colony
System (ACS) algorithm for cloud-based software compo-
nent deployment problems. Three objective functions are
considered: cost, performance, and reliability. The algorithm
aims to find a set of Pareto-optimal deployment configu-
rations. The algorithm exploits three generic architectural
Degrees of Freedom (DoFs) to create architecture alterna-
tives: component allocation, virtual machine (VM) selection,
and the number of VMs. The algorithm is implemented in
Java, and compared with the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [22].

The work of Campeanu et al. [29], [30] provides an
optimization model for allocating components in hetero-
geneous CPU-GPU Embedded Systems. The optimization
model is defined as a mixed integer nonlinear program-
ming problem and solved using CPLEX [31]. The work
assumes the use of Rubus [32] as a component model for the
embedded system being optimized. In addition, the platform

considered contains a single CPU-GPU chip. Campeanu and
Saadatmand [33] propose a run-time component allocation
method in CPU-GPU Embedded Systems. The proposed
method dynamically assigns components over hardware. The
allocation model is also defined as a mixed-integer nonlinear
programming (MINLP) model.

III. PROBLEM STATEMENT
Consider an embedded system consisting ofm computational
units. Each computational unit offers a number of resources l,
e.g. computation, memory, and energy resources. There are n
software components that need to deployed on the computa-
tional units. Each software component can only be allocated
on a single computational unit.

The component allocation problem is to find an optimal
allocation (mapping) of the components to the computational
units. An allocation can be represented as a permutation with
repetition (p1, . . . , pn) which assigns every component i to a
computational unit pi. A feasible allocation is an allocation
such that the resources consumed by the components do not
exceed the resource capacities that the computational units
provide. In addition, a feasible allocation must not violated
any architectural constraint. These concepts will be intro-
duced shortly. An optimal allocation is a feasible allocation
such that the objective (cost) function is minimized.

In order for an allocation to be feasible, it has to satisfy the
following condition: ∑

i,pi=j

(tipik ) ≤ rjk (1)

for any computational unit j and for all resources k . Table 1
lists the definitions of several matrices characterizing the
component allocation problem. The elements tijk and rjk
which appear in Equation 1 are defined in the table. In addi-
tion, a feasible allocation must not violate any architectural
constraints. For example, a co-allocation constraint requires
that a component must be allocated on a particular compu-
tational unit. On the other hand, an anti-allocation constraint
requires that a component must never allocated on a particular
computational unit.

The cost of an allocation (p1, · · · , pn) can be computed
using the following cost function:

w =
l∑

k=1

fk
n∑
i=1

tipik (2)

Here, fk is a trade-off factor whose purpose is to specify the
weight of the corresponding resource k in the cost function.

The component allocation problem is a kind of a quadratic
assignment problem which is an NP-hard problem [10].
Therefore, the search state space grows exponentially with
the problem size. Hence, for very large problem sizes, it is
necessary to use meta-heuristics which find good approxima-
tions to the optimal allocations. In this paper, we present two
such meta-heuristics (see Section IV).

Themeta-model defining an allocation problem is depicted
in Figure 1. An AllocationProblem is composed of the
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FIGURE 1. The Component Allocation Problem (CAP) meta-model.

TABLE 1. Component Allocation Problem Input Matrices.

following definitions. First, the Component class repre-
sents the components. Each component has a name. Sec-
ond, the CompUnit class represents the computational units.
Each CompUnit has a name in addition to its available
CPU, memory, and power resource capacities. Third, the

TradeOffVector represents the trade-off vector. Fourth,
the ResConsumption class represents the component resource
consumption matrix. Each ResConsumption element shows
the CPU, memory, and power resource consumptions of the
associated Component on the associated CompUnit. Finally,
the architectural constraints are represented using the Allo-
cationConstraint and AntiAllocationConstraint classes. For
example, an AllocationConstraint element linking a Com-
ponent to a CompUnit represents the architectural constraint
that this component must be allocated on that particular
computational unit.

We developed a complete Java project which can read
models conforming to the CAP meta-model in Figure 1.
Then, it calls implemented solvers that attempt to find the
exact optimal cost (in the case of exact solution methods)
or the best approximation to the optimal cost (in the case of
meta-heuristics). The project files are available on GitHub at
https://github.com/ialazzon/ComponentAllocationProblem.
Several test models are also included.

The project includes solvers based on the Genetic
Algorithm andAnt ColonyOptimization. These are presented
and evaluated in the subsequent sections of the paper. Further-
more, the project was designed with extensibility in mind.
Interested authors can add new solvers, and compare their
performance with already implemented solvers on the same
component allocation problem models. To add a new solver,
the following method must be implemented:
public static double solveAllocation

Problem (AllocationProblemCon allocation)
This requires importing the classallocationProblem.

AllocationProblemCon. This class encapsulates the
component allocation problem; it provides access to the
values of the component allocation problem parame-
ters which are read from the input models: m, n, R,
Tcpu, Tmemory, Tpower, and F. In addition, it imple-
ments the methods: isValid(int allocation[])
which returns true if the allocation represented by the
argument is true and false otherwise, and cost(int
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TABLE 2. GA Settings.

allocation[]) which returns the cost of the allocation.
Note that a reference to an array of integers is used to
represent an allocation. Each element in the array repre-
sents the assignment of the component corresponding to
the element’s index to one of the computational units. For
example, allocation[i] = j denotes the assignment
of component i to computational unit j.

IV. APPROACH
In this section, we present the implementations of two
meta-heuristics for solving the component allocation prob-
lem. The first one is based on GA, while the second one is
based on ACO.

A. GENETIC ALGORITHM IMPLEMENTATION
For the implementation of the GA, we used the Java-based
framework presented in [34]. The GA’s setup and parameters
are shown in Table 2. GA is an evolutionary algorithm that
maintains a population of solutions that keep evolving by
applying genetic operators such as mutations and crossovers.

In the GA implementation, the population is initially pop-
ulated by the specified number of feasible allocations. If this
is not possible within a time limit of one minute, the program
returns with an empty set of allocations indicating that the
allocation problem is infeasible. An allocation is represented
as an array of length n, where n is the number of components.
The elements in the array have values in the range 0 to m−1,
where m is the number of computational units. An element
in the array at index i with value j means allocating the
component i+ 1 to the computational unit j+ 1.
For mutation, we used the swap algorithm. If an individ-

ual (allocation) in the population becomes infeasible after
mutation, we only add the original individual. For crossover,
we used the 2-point crossover algorithm. Similar to what is
done in mutation, if an offspring in the crossover is infeasible,
we keep the original parent. For termination, we used the
condition that the specified number of generations is reached.
We used the cost function w in comparing the allocations.

B. ANY COLONY ALGORITHM IMPLEMENTATION
ACO algorithms emulate the behaviour of ants in nature to
solve hard combinatorial optimization problems [35]. ACO
algorithms were originally proposed by Dorigi et al. [36].
ACO algorithms have been applied successfully in many aca-
demic and real-world applications to solve computationally
challenging problems [37].

For the implementation of the ACO algorithm, we used
Isula which is a Java framework for ACO algorithms [38].

TABLE 3. AS Settings.

The ACO algorithm implemented is the Ant System
(AS). The AS’s setup and parameters are shown in Table 3.
To store the pheromone values, we used an n × m
two-dimensional array. In our implementation, ants are
allowed to generate infeasible solutions, however when an
ant generates an infeasible solution, the constructed solution
is penalized by assigning the value Integer.MAX_VALUE as
its cost (in the getSolutionCost method). In addition, if the
partial solution constructed by an ant becomes invalid, then
the corresponding heuristic value is penalized by assigning
the value Integer.MAX_VALUE to it in the getHeuristicValue
method.

V. VALIDATION
For the validation, we apply our framework to find opti-
mal allocations on several component allocation problem
instances. We compare the GA and ACO implementations in
terms of the optimal cost found and the execution time.

First, consider the following instance of the component
allocation problem. The parameters of the problem instance
are borrowed from [12]. These are based on the deployment
problem of a vision-based software system on an actual
autonomous underwater vehicle. The system consists of
n = 11 components and m = 4 computational units. The
components are: 1-UI User Interface, 2-CH Communication
Handler, 3-MPMessage Parser, 4-MDManual Drive, 5-MM
Mission Manager, 6-MC Movement Control, 7-V Vision,
8-AC Actuator Control, 9-SI Sensors Layer 1, 10-S2 Sen-
sors Layer 2, and 11-SF Stream Filtering components. The
computational units are: 1-mCPU Multicore CPU, 2-FPGA
FPGA I, 3-FPGA FPGA II, and 4-GPUGPU. There are l = 3
resources: CPU, memory, and energy resources. Figure 2
shows the component resource consumption represented as
three matrices, one for each resource dimension: (a) for the
CPU resource, (b) for the memory resource, and (c) for the
energy resource. The computational unit resource capacity
matrix is given by:

R =


100 256 50
150 640 25
150 640 25
100 256 15


and the trade-off vector is given by:

F =
[
0.1557 0.0856 0.7095

]
The following architectural constraints are considered:
• Constraint I: Component 7-V should be allocated on
4-GPU.

• Constraint II: Component 4-MD should not be
allocated on 1-mCPU.
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FIGURE 2. The component resource consumption matrix T .

FIGURE 3. Optimal cost results for System 0 through System 4.

FIGURE 4. Optimal cost results for System 5 and System 6.

Wewill refer to the system consisting of the aforementioned
components and computation units as System 0. In addition,
we created several systems by swapping many elements with
other randomly chosen elements in the same dimension in T .
The same R and F matrices and the same constraints are
used in these systems. In addition to System 0, we present the
results for four systems denoted as System 1 through System 4.
Note that these systems have been used in the experiments
conducted in earlier work on component allocation by one of
the authors [4], [39], [40].

In the first set of experiments, we run the GA and ACO
programs on each system for five times each. Each run returns
the optimal cost as found by the corresponding program.

In addition, we developed a program that implements an
exhaustive search algorithm to find the optimal cost. The
program can find optimal costs for component allocation
problemswith small search state spaces such as the aforemen-
tioned systems. However, for problemswith large search state
spaces such as the systems to be presented later, exhaustive
search becomes infeasible.

Figure 3 shows the approximations to the optimal costs as
found by the GA and ACO programs on the different runs.
The same settings are used as those in Tables 2 and 3. The
figure shows for each system the optimal cost obtained by
exhaustive search as a black solid line. As stochastic solvers,
since every run of the GA and ACO programs can result in
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FIGURE 5. Optimal cost results for System 5 and System 6.

FIGURE 6. Optimal cost results for System 7 and System 8.

a different value, the ranges of the obtained optimal costs
are represented as gray rectangles delimited by the minimum
and maximum values in the five runs for each system. The
figure demonstrates that good approximations to the optimal
costs are found by the GA and ACO programs. In addition,
the figure demonstrates the need to run each solver several
times in order to choose the minimum value as an approxima-
tion to the optimal cost. Also, considering the range widths,
the performance of the GA program is worse than that of
the ACO program on System 0 and System 2. Conversely, its
performance is better on System 3 and System 4.
To study the performance of the GA and ACO programs

on larger search state spaces, we created several new systems
with larger values for n and m. These new systems were
formed based on System 0 through System 4 by creating
several copies of the computational units and creating a new
component resource consumption matrix T based on the
smaller base systems. For example, System 5 is based on
combining System 0 and System 1. Four computational units
are used in each of these systems, and the resource capacity
matrix R is identical in both systems. For System 5, we used
two copies of each computational unit with a total of m = 8.
The number of components n is set to 11 similar to System 0
and System 1. To create the component resource consumption
matrix T for System 5, we assumed that the components’
resource consumptions on the first four computational units

FIGURE 7. Time series depicting the ACO optimal cost found during the
program’ run.

are the same as those in System 0 while for the last four com-
putational units they are the same as those in System 1. With
these new values for n and m, the search state space becomes
too large with a total number of mn = 811 allocations.
Using exhaustive search was still feasible in this case, how-
ever its execution time was more than 19 minutes on the
machine used in the experiment. More on the experiments to
analyze the executions times of the ACO and GA programs
is to be presented later in this section.

Figures 4 and 5 show the performance results of the GA
and ACO programs on System5 and System 6. System6
was created in an identical manner as System 5, but rather
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FIGURE 8. Optimal cost results for System 9.

by combining System 3 and System 4. Figure 4 shows the
results using the following updated settings: number of
generations = 300 for the GA program and number of itera-
tions= 100 for the ACO program. For Figure 5, the following
updated settings are used: number of generations= 10000 for
the GA program and number of iterations= 200 for the ACO
program. The objective here is to re-examine the performance
of the programs under different values for the settings. The
figures demonstrate that the ACO program outperformed the
GA program on these two systems with regards to how close
the found approximations are to the optimal costs and how
wide the ranges are.

Figure 6 compares the optimal costs found by the GA
and ACO programs on two larger systems than the previous
systems: System 7 and System 8. In each system, there are
m = 16 computational units and n = 22 components. System
7 was formed by combining System 0 through System 3,
while System 8 was formed by combining System 1 through
System 4. With these values form and n, it becomes infeasible
to use the exhaustive search algorithm to find the optimal cost.
In such cases, it becomes necessary to use meta-heuristics
such as GA and ACO algorithms.

Figure 6a contrasts the box plots for the optimal cost
approximations found by the GA and ACO programs on
System 7. In addition, Figure 6b contains the box plots for
the optimal cost approximations found by the GA and ACO
programs on System 8. Each box plot is based on a sample
of 10 outputs returned by each program. Figure 6a demon-
strates that the ACO program outperformed the GA program
on System 7, however this was reversed in the case of System
8 as demonstrated by Figure 6b. In both systems, we used the
following updated settings: number of generations = 10000
for the GA program and number of iterations = 200 for the
ACO program.

The execution times of the ACO program were observed
to be several times larger than that of the GA program on
System 7 and System 8. For System 7, the 95% confidence
interval for the execution times was 15.56± 0.95 (the unit is

in seconds) in the case of the GA program and 342.15± 9.88
in the case of the ACO program. For System 8, the 95%
confidence interval for the execution times was 15.00± 0.25
in the case of the GA program and 362.73 ± 30.39 in the
case of the ACO program. However, we observe that the
ACO program quickly converges to the best approximation
for the optimal cost in the early iterations and usually it does
not require a very large number of iterations. For example,
Figure 7 is a time series depicting the ACOoptimal cost found
during the program’ run on System 8. It shows that the ACO
program generated a value (361.05) very close to the best
optimal cost approximation (357.90) by the end of the 24th
iteration. Note that the programs were were run on a desktop
computer equipped with a 3.70GHz dual-core processor and
8GB RAM.

Figure 8 shows the box plots for the optimal cost
approximations found by the GA and ACO programs on
System 9. System 9 is formed by combining System 7 and
System 8, with m = 32 and n = 30. Each box plot is based
on a sample of 10 outputs returned by each program. As the
figure demonstrates, the ACO program was able to obtain a
better approximation for the optimal cost than the GA, how-
ever its range of the returned values is wider than that of the
GA program. The best optimal cost approximation returned
by the ACO program was 432.854, but for the GA program it
was 446.0426. Also, the execution time of the ACO program
(678.28 ± 73.76 seconds) is several times larger than the
execution time of the GA program (76.91 ± 4.84 second).
The same settings were used for System 9 as in System 7 and
System 8.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have presented a framework for defining and
solving software component allocation problem instances.
The framework is based on the use of a meta-model defining
the component allocation problem. The framework is imple-
mented on top of Eclipse EMF, and it is designed with exten-
sibility in mind. New meta-heuristics can be implemented
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and added to the framework. Furthermore, this paper has
presented twometa-heuristics for solving the component allo-
cation problem: GA and ACO. The experiments show that
these meta-heuristics are able to find good approximations
to optimal costs in large problem instances within a short
execution time.

In future work, this research can be extended in two ways.
First, the component allocation meta-model can be expanded
to include communication cost. In addition, other types of
architectural constraints can be specified on the placement
of components. Second, new meta-heuristics can be imple-
mented using the presented framework. These can be made
available online so other researchers can experiment with
them and can propose better meta-heuristics for solving the
component allocation problem.

The framework presented in this paper only considers the
single-objective version of the component allocation prob-
lem. The cost of an allocation is the weighted sum of the
different resources consumed by the allocation. It is of inter-
est to expand the framework to support a multi-objective
problem formulation in which the aim becomes to find
a set of Pareto-optimal allocations. As presented in the
Related Work section, several meta-heuristics for solving
the multi-objective component allocation problem exist.
We believe that it is straightforward to extend our framework
to support the multi-objective problem formulation.
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