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In the present article, we present for the first time optimal auxiliary function method (OAFM) for partial dif-
ferential equation (PDEs). To find efficient and precision the proposed method, we take Lax’s seventh order
korteweg-de Vries (KdV) and seventh order Sawada Kotera (SK) equations as test examples. The beauty of the
planned method lies in auxiliary functions A; and some parameters C; which ensure a very rapid convergence of

the solution. We compare the approximate solutions got by the proposed method with the homotopy pertur-
bation method (HPM), the Optimal Homotopy asymptotic method. It should be emphasized that very good
approximation is obtained at the first iteration. It has been shown, that OAFM is a simple and convergent method
for the solution of nonlinear equations. The numerical results rendering that the applied method is explicit,
efficacious and facile to utilize, for handling more general nonlinear equations.

Introduction

Most of the physical phenomenon are modeled by nonlinear differ-
ential equations.

In such circumstance, it is difficult to get the true solution of these
nonlinear differential equations. Lately, numerous authors focused on
investigation solitonic equation of nonlinear propblems by utilizing an
assortment of incredible techniques, for example, the variational itera-
tion method (VIM) [1,2], homotopy perturbation method (HPM) [3-5],
Exp-function method [6-9], sine-cosine method [10], meshless collo-
cation methods [11-17], homogeneous balance method [18-20] and
He’s frequency formulation and many more [21-32].

In the same manner, we apply a new method, namely called optimal
axillary function method (OAFM) for these type different partial dif-
ferential equations. The beauty of the method is that it gives encour-
aging results after at only one iteration.

The proposed method was introduced by Marinca et al. in (2018) for
finding the approximate analytical solutions for thin film flow of a

fourth grade fluid down vertical cylinder and for a Pendulum Wrapping
on Two Cylinders [33-35]. Our main work is to extend the proposed
method for approximate solutions of Lax’s seventh order (KdV) and
Seventh order (SK) equations. The Lax’s seventh order kdv equation has
the following general form [34]
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and seventh order SK equation [34] is given as follow
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where ¢ = &(y, t). These equations play an important role in mathe-
matical physics, engineering and applied sciences for investigating
travelling solitary wave solutions. Equations (1a) and (1b) are the KdV
and Sk equations of the 7th order of Lax, respectively. The names of
these two equations are altered because of the coefficient difference of to
the region of divergence especially in the case of strongly nonlinear
equations.

The whole paper is divided into four sections, the first section contains
the introduction, second section is devoted to the fundamental theory of
OAFM. In section three the applications of OAFM to different problems are
given. In section four the results and discussion of the problems are given
while the conclusions of the work are placed in the last section.

Basic idea of OAFM for PDEs

To extent the optimal axillary function method to partial differential
equation. We take the general PDE as

LG 0] = g, 1) + N, 1)] =0, 2
wwith L.C condition,

o¢
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Hence L and f show the linear and known functions respectively
while N is nonlinear operator.

To obtain the series solution of Eq. (2), we take two terms given as
follow,

Er,t) =& (D) +&(1,C), i=1,23,....p )

For finding initial and first order approximation, we substitute Egs.
(4) into (2). It gives,

LIE(r, )] +L[E (r, t, C) + 801, 1) + N[y (1 1) + & (1,1, Ci)] = 0. %)

To find the approximation & (y, t) we take the following equation,

0
Ler) + ] =0, @& 5¢) o, ®
Similarly for first order approximate solution & (y,t),
0
LIe (1, G+ Nl + 610, =0, @85 ) =0, )

Hence, we expend the nonlinear term as follow,

NEEa(r.0) + 8000.C)) = Me( 0] + 3 SINO ey r,1)] ®

To avoid the difficulty as we see in solving Eq. (7) and to accelerate
the rapid convergence of the first approximation &, (y, t, C;) and im-

plicit of the solution E(){,t), instead of the term arising into Eq. (7), we
propose another expression, such that Eq. (7) can be written as

L& (s 6, C)l + 11 (&0, DIN G (D] + 72 [fo()(v 1), Cj] =0,
9%, ©
o) <o

Results in Physics 20 (2021) 103744

Remark 1. InEq. (9)y; and y, are arbitrary auxiliary functions. Which
depend on the initial approximation &,(y,t) and a number of the un-
known parameters C; and Gj,i =1,2,3...,j =s + 1,5 + 2,.p.

Remark 2. The auxiliary functions A; and A, are not unique and are of
the same form as &;(y, t) is the form of N[&,(y,t)] or the combination of
bOth 50 ()(7 t) and N[fo (X? t)]

Remark 3. o If &(y,t) or N[&,(y,t)] a polynomial functions then the
axillary functions should be the sum of sum of poly-
nomial functions.

o If & (y,t) or N[&y(y, t)] an exponential functions then then the axillary
functions should be the sum of exponential functions.

o If & (y,t) or N[&y(y,t)] a trigonometric functions then then the axil-
lary functions should be the sum of trigonometric functions.

e If in the special case N[£y(y,t)] = O then it is clear that &y(y,t) is an
exact solution of Eq. (2)

Least Square method: for finding the convergence control param-
eters C;C; with help of least square method. For this we introduce the
following functional which containing the convergence control pa-
rameters in the given domain.

ot
Z(Civcf) :/0' \/QRZ(ZJ‘; Ciaq)d){dt: (10)

where R shows the residual,
R(){,t, C[,C,-) :L[E()(,Z‘,C[,C/-)} +g()(7t)+N[E(Z,t~,ChC/)}’ i
=1,2,.5, j=S+1,5+2,.p,

To find the numerical values of convergence control parameters, we
differentiate the functional A with respect to C;and solving the following
system of equation,
0A,  JA, A, dA,,

T T A T e —=0 11
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Implementation of OAFM

In this part, to represent the effectiveness and exactness of the pro-
posed technique, we have accomplished series solution of seventh order
Lax’s Kdv and seventh order Sawada Kotera equations. All computa-
tional work has done with help of Mathematica 10.0.

Lax’s seventh order KDV equation

Firstly, we take the Lax’s seventh order Kdv equation,

o .08 FE e _ogog | 0EdE o dFEdE %
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12)
with I.C
&(x,0) = 2a* (sech’(ay) ) (13)

Here a is an arbitrary constant and the exact solution has been found
for Eq. (12) in [34],

E(x,1) = 207 (sech’ (a(y — 64a°t) ) ) a4

Linear and nonlinear terms in Eq. (12) are given as follow,
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Using Eq. (6), we get the initial value &(y,t),
‘3500—05”) =0, &(y,0) = 20> (sech’(ay)) (18)
The solution of Eq. (18) is
Co(n,1) = 2a*(sech’ (an)) 19

By substituting Eq. (19) into Eq. (17), the nonlinear operator
becomes

08 P8 P 06 05 05 0
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The first approximation & (y, t) is given by Eq. (9)
0, (y,t
WD) 4y et ), NGl 0] + 12t 1,6 =0, o

¢ ()(7 0) =0,

Using the OAFM procedure we choose the axillary functions as
follow,

71 = Ci[sech(y)]” + Cyfsech(y)]*.
{ 72 = Calsech(¢)]° + Culsech(p)]" @2

Using Egs. (19), (22) into Eq. (21), we get the first approximation as

sinh(ya) + Cisinh(y(2 + @))

Adding Egs. (19) and (23), we obtain the series solution in the
following expression,

Et) = &l ) +E (11,01, G G, C). 24
Seventh order SK equation

The seventh order Sawada Kotera equation is given as follow,

tsech’ () (( — sech®(y)(C; + Casech®(y) — 64a®(C; + 2C, + Cicosh(2y))
sech?(ya) — 2240 (=9 + 160%)(Cy + 2C, + Cycosh(2y))sech (ya) + 1792a®
(=5 +18a%)(C, +2C, + Cicosh(2y))sech® (ya) — 560a° (—13 + 1200?)
(Cy +2C, + Cicosh(2y))sech® (ya) + 40320a'°(C, +2C, + Cycosh(2y))
sech'®(ya) + 448a’ (3 + a)sech’ (xa)(Cysinh(x(—2 + @) + 2(C;y +2C,) 23)
sinh(ya) + Cysinh(y(2 + a)) + 280a’ (=9 — 12a* + 64a*)sech’ (ya)
(Cisinh(y(=2 + a)) +2(C, + 2C,)sinh(ya) + Csinh(y(2 + a)) — 44800’
(=1 + 170%)sech’ (ya)(Cysinh(y (=2 + @)) + 2(Cy + 2Cy)sinh(ya) + C
sinh(y(2 + @)) + 67200a''sech"! (ya) (Cysinh(y(—2 + a)) + 2(C, +2C>)
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(23)
with I.C
4
£01,0) = (2 — (tanh(ar))) 24)

Here a, k are arbitrary constants. The exact solution for Eq. (23) can
be found in [34]

&) = %kz (2 — 3tanh’ (a( - 2"6t> ) ) (25)

Using the same procedure like above problem, we have the initial
approximate &(y,t) is given,

Bfoa_(;tm) =0, &(x,0) = ;—‘kz(z — 3(tanh(ay)) ), (26)

We get the solution for Eq. (26) is,
4
Eolr 1) = 3K°(2 = 3(tanh(ay)) ) 27)

By substituting Eq. (27) into Eq. (23), the nonlinear operator
becomes

&, 0L 0L, 08 08 05 d'E . O
] =632 4126 =0 =2 =0 20491 20 220 9120
N[&(x,1)] = 63 0x+ 66)(2 a){3+63 o a}(-‘r o 014-&- 0
0 Th TG PG
o ayt oyt
(28)

The first approximation &, (y, t) is given by Eq. (9)

0E,(y,t
SO 4 o), CNE 0] + 1 8000, 6] =0, 29
61 (Z: O) =0.
Here y,,7, are chosen according to initial approximation,
{ 71 = Ci(Tanh(y))* 4+ C,(Tanh(y))*. 30)
72 = C3(Tanh(y))® + C4(Tanh(y))®.

Using Eq. (27), (28) and (30) into Eq. (29), we get the first approx-
imation as
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1
7§ttanh20() (@’(Cy = Cy + (Cy + C)cos(2y) )sech® (2y)sech'® (ya) (147

(=254 192a%) — 42a(11 + 100a* )cosh(2ya) + 2856acosh(4ya) — 6a

‘fl (X7 L Cl) =

(59 + 336a°)cosh(2ya) + 3acosh(8ya) + 98(93 + 80a*)sinh(2ya) + 14

(3D

(201 — 6640%)sinh(4ya) — 42(27 + 16a7)sinh(6ya) + 7(3 + 8a?)sinh(8ya)

+3tanh*(y)(Cs + Cytanh®(y).

Adding Egs. (27) and (31), we acquire the first order series solution
by the following expression,

Et) = &0 + & (1,1,C1, Gy, Cs, C). (32)
Numerical results

In this section, we illustrate the accuracy of our procedure for an
arbitrary constant a = 0.1, also we show the comparison of absolute
errors with Homotopy perturbation method (HPM) and Optimal
Homotopy asymptotic method (OHAM) for different values of the time.

4.1: For finding the convergence control parameters C;, i = 1,2, 3..
we used the least square method. Whose values are given as
following.

Table 1
Comparison of absolute errors of OAFM with HPM, OHAM when t = 0.1 for
Lax’s seventh order Kdv equation.

V3 Absolute error HPM Absolute error OHAM
[34] [34]

Absolute error OAFM

8.88283 x 107
7.54594 x 1077
6.07229 x 107 x 107°
4.63123 x 1077
3.36451 x 107°

7.09824 x 1078
1.19166 x 108
7.13055 x 107°
1.42267 x 1078
2.12695 x 1078

0.1  1.523567 x 10°*
0.2 3.046766 x 10°*
0.3 4.569652 x 10~*
0.4 6.092284 x 10*
0.5 7.614719 x 10°*

Table 2
Comparison of absolute errors of OAFM with HPM, OHAM when t = 0.3 for
Lax’s seventh order Kdv equation.

V4 Absolute error HPM Absolute error OHAM Absolute error
[34] [34] OAFM

2.66484 x 1078
2.26378 x 1078
1.82168 x 1078
1.38937 x 1078
1.00935 x 1078

1.49674 x 1078
5.96959 x 1078
2.68558 x 1078
4.75981 x 1078
6.81050 x 1078

0.1 1.51770 x 10~*
0.2 3.03446 x 10°*
0.3 4.55033 x 10~*
0.4  6.06538 x 10~*
0.5 7.57965 x 10~*

Table 3
Comparison of absolute errors of OAFM with HPM, OHAM when t = 0.5 for
Lax’s seventh order Kdv equation.

Vs Absolute error HPM Absolute error OHAM Absolute error
[34] [34] OAFM

4.4414 x 1078

3.77295 x 1078
3.03613 x 1078
2.31560 x 1078
1.68224 x 1078

1.37177 x 1078
2.12036 x 1078
5.59122 x 1078
9.02518 x 1078
1.24071 x 1077

0.1  1.50294 x 10°*
0.2 3.00437 x 10~*
0.3 4.50436 x 10°*
0.4  6.00296 x 10~*
0.5  7.50021 x 10~*

C, = 0.4921659704908877.
C, = —0.2606759872371297.
C; = —0.05781845184781508.
C, = —0.10563165777129231.

(33)

By using the above values of C;, C,, C3, C4 in Eq. (20) we achieve the
series solution for the Lax’s seventh order Kdv equation.

4.2: Similarly with help of least square method we found the values C;,
i=1,2,3.. which are given below, Eq. (35), are

C, = —0.03285281870901489.
C, = 0.0243874058162013.
C; = 1.5782393304235135 x 10°%.
Cy = —1.7257248359166504 x 105,

37)

Using these constants these constants in Eq. (34), we get the first
order approximate solution for seventh order SK equation.

To verify the accuracy of the approximate solution if we compare
these analytical results with other analytical methods used in literature
for these problems. In Tables 1-3 it can be seen that our proposed
method gives more accurate results than HPM and OHAM. Figs. 1-3
show the approximate solution, exact solution and absolute errors ob-
tained by OAFM for Eq. (16) while Fig. 4 shows the 2D graph for the
approximate solution at different values of t (see Figs. 5 and 6).

Conclusion

In the present work, we extended the new algorithm namely called
optimal axillary function method and successfully applied for the
approximate solution of Lax’s seventh order Kdv and Sawadara Kotera
equations. The numerical results obtained by the planned method are
compared with those obtained by HPM and OHAM presented in the

Fig. 1. 3D surface obtained by OAFM solution for Lax’s Seventh order
Kdv equation.
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Fig. 5. 3D surface obtained by the exact solution for Seventh order

Fig. 2. 3D surface obtained by the exact solution for Lax’s Seventh order SK equation.

Kdv equation.

4.%10°%
321084
2 %108
1.x10°8%

~100

Fig. 6. 3D surface for the absolute errors obtained by OAFM for Seventh order

SK equation.
Fig. 3. 3D surface for the absolute errors obtained by OAFM for Lax’s Seventh

order Kdv equation.

Table 4
Comparison of absolute errors of OAFM with HPM, OHAM when t = 0.1 Sev-
enth order SK equation.

n Absolute error HPM Absolute error OHAM Absolute error
[34] [34] OAFM
0.1  9.68087 x 107° 3.24071 x 107° 5.8155 x 10710
0.2 1.93593 x 10°* 1.26255 x 1077 8.94501 x 107 1°
0.3 2.90358 x 1074 5.77130 x 10~° 6.62134 x 107°
0.4 3.87106 x 10~* 1.02658 x 1078 1.76305 x 1078
0.5 4.83840 x 10°* 1.47269 x 1078 3.3821 x 1078

literature. Our proposed method is valid if even the nonlinear equation
does not contain small or large parameters. The proposed method
especially contains A; and A, auxiliary functions and some parameters
Cy,Cq, ... which ensure a very rapid convergence of the solution. The
proposed method can be applied for different fractional order partial
differential equation (FPDEs) and Integro-differential equations (see
Tables 4-6).

Fig. 4. 3D surface obtained by OAFM solution for Seventh order SK equation.
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Table 5
Comparison of absolute errors of OAFM with HPM, OHAM when t = 0.2 Seventh
order SK equation.

n Absolute error HPM Absolute error OHAM Absolute error
[34] [34] OAFM
0.1  9.63425 x 107° 1.65768 x 1078 2.66484 x 107°
0.2 1.92540 x 10°* 3.16429 x 1078 2.26378 x 107~°?
0.3 2.88597 x 1074 4.64205 x 1078 1.82168 x 1078
0.4  3.84516 x 10~* 6.08325 x 1078 1.38937 x 1078
0.5  4.80300 x 10~* 7.48078 x 1078 1.00935 x 1077
Table 6

Comparison of absolute errors of OAFM with HPM, OHAM when t = 0.5 for
Seventh order SK equation.

n Absolute error HPM Absolute error OHAM Absolute error
[34] [34] OAFM
0.1 951987 x 107° 7.14596 x 107° 2.90717 x 107°
0.2 1.90135 x 10~* 9.91635 x 1078 4.47308 x 107°
0.3 2.84813 x 10°* 1.25879 x 1078 3.31073 x 1078
0.4  3.79236 x 10~* 1.51446 x 1078 8.81531 x 1078
0.5  4.73405 x 10~* 1.757225 x 1077 1.68411 x 1077
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