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ABSTRACT There are surplus applications in modern smart cities where localization of indoor environments
is critical ranging from surveillance and trailing in smart structures to the localized wireless distribution of
advertising content in shopping malls. These applications are only successful if a robust and cost-effective
real-time system is developed for precise localization. Another aspect considered for indoor localization is
power consumption. Recent wireless standards such as Bluetooth Low Energy (BLE) and LoRa consume
less power which makes them a perfect candidate for indoor localization. This work aims to carry out an
experimental evaluation which would help to decide which wireless standard i.e., Wi-Fi, Bluetooth Low
Energy (BLE), and LoRa are most suitable for indoor localization. Experiments are carried out using
trilateration in three multiple environments. RSSI is used to calculate the coordinates of a sensor node.
Results obtained from the experiment show that Wi-Fi is most accurate with an average error of 0.54 m. LoRa
is second most accurate with an average error of 0.62 m and BLE is the least accurate with an average error
of 0.82 m. These results can be used to decide which wireless standard is best suited for indoor localization.

INDEX TERMS Indoor localization accuracy, Internet of Things, RSSI, Wi-Fi, Bluetooth low energy,

LoRaWAN.

I. INTRODUCTION

Nowadays Internet of Things (IoT) are using cheaper, low
energy devices such as Bluetooth Low Energy (BLE) which
are being used to communicate with the IoT and provide
much-needed information for the users to control the overall
physical world which seemed impossible in the past [1], [2].
Different techniques in IoT are used for location awareness
of the sensor nodes especially in an indoor environment
where it is difficult to track the position of the node. Without
knowing the location, the data obtained from a specific sensor
node is futile. Therefore in order to successfully utilize the
resources it is important to determine the location [3]-[5].
For this purpose, a technique called indoor localization is
used. Notable applications for indoor localization include
guiding the people in a. It can also be used for tracking of
patients in a hospital [6], [7]. Another application would be
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to locate the position of the alarm if there is a fire emergency
in a building [8]. A lot of work is still being done on indoor
localization for improving accuracy. Global Positioning Sys-
tem (GPS) is considered a promising technique for outdoor
localization but due to the absence of Line of Sight (LoS)
between transmitter and receiver, it cannot be used indoors.

This technique is used because the Global Positioning
System (GPS) is not able to determine the position of the
object being tracked inside buildings. Indoor localization is
used to track nodes/objects in those environments in which
GPS does not operate and is often set up in outdoor envi-
ronments and needs more energy to operate [9]. Moreover,
GPS is only accurate up to 5 m [10] and needs a line of sight
between the transmitter and the receiver to function properly.
However this is not the case for indoor localization as in these
environments an accuracy of less than a meter is needed for
properly determining the position [11]-[13].

A biggest constraint that is observed in IoT based devices
is their limited size and limited storing capacity as well as
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low processing power, so any scheme that is used to carry
out for localization should take into account all these factors.
Additionally indoor localization also faces issues related to
obstacles which are not encountered outdoors. For example
in a building there are different levels, walls, movable items,
people and other electronic and wireless devices such as PCs,
luminous lights, Wi-Fi, Bluetooth which may continuously
add multi path fading effect [10], [11]. Apart from the above
discussed disadvantages notable advantages of indoor local-
ization are also present in diverse fields [14], [15]. So far
a benchmark for indoor localization has not been set due
to increased number of hurdles inside a building [11] and
multiple schemes are used to determine the position of the
node indoors.

Different wireless standards have been nominated in differ-
ent research papers, in which Bluetooth Low Energy (BLE),
Wi-Fi and Radio Frequency Identification (RFID) gain much
attention [11]. Due to the availability of Wi-Fi networks in
buildings in large quantity, it has proven to be a good agent
for indoor localization. Moreover due to the advent of BLE
beacons indoor localization can be carried out with inexpen-
sive hardware [16]-[18]. Moreover, with the advancement of
these wireless standards, new areas are being explored to use
them for localization-based services.

A. MOTIVATION

Due to this increase, there is a growing demand in the area of
location awareness especially in indoor space. For designing
an accurate localization system, the selection of a suitable
wireless standard is considered crucial. Most wireless stan-
dards use RSSI as a way to determine the location of a
user using an indoor propagation model. RSSI of different
wireless standards is affected by several indoor factors such as
multipath fading due to reflection, refraction of signals from
surrounding objects e.g. furniture, walls, etc, and shadowing.
These uncertainties affect localization accuracy. As a conse-
quence of localization error, unwanted behavior of a localiza-
tion system may be expected. To overcome this problem, a
motivation to evaluate and select a suitable wireless standard
is required. In this research work, an experimental approach
is used to carry out a comparison between Wi-Fi, BLE, and
LoRaWAN’s location accuracy based on RSSI values using
Pycom’s Lopy v1.0 hardware. RSSI is used because it is
easily available in any wireless hardware available today.
Moreover, selected hardware has the additional feature of
having built-in Wi-Fi, BLE, and LoRaWAN standard and
requires no additional hardware for the experimental work
to be carried out. The mentioned wireless technologies were
chosen due to their easy availability. Trilateration was used
in the testbed and three different environments were selected
with different architecture to test wireless standards under
different conditions.

The rest of this paper is organized as follows: related work
is described in section II. Related background is provided
in section III. Description of wireless standards is given
in section IV. Description of experimental setup is given
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in section V. Hardware and software used in this work is
described in section VI. Details on experimental procedure
is given in section VII and section VIII concludes the work.

Il. RELATED WORK

Different approaches have been applied in the last few years
to build an efficient indoor localization system. An ideal
system would efficiently perform in various environments
and also, would be capable of tracking different targets with
negligible error. A comparative study of wireless technol-
ogy would be necessary to figure out the optimal indoor
localization.

In [19] BLE and Wi-Fi are compared, the technique used
in the experiments is trilateration in both outdoor and indoor
environments. Experiments were performed for both line of
sight (LoS) and non-line of sight (NLoS) conditions, RSSI
values along with lognormal attenuation model were used to
determine the distance between nodes. The results suggest
that BLE has outperformed Wi-Fi in indoor localization and
is 27 percent more accurate.

In [20] ISM868 and Zigbee, wireless technologies are
compared using a similar RSSI-based trilateration model.
Experiments were performed in both outdoor and indoor
environments using RSSI measurements to determine the
distance between nodes. Here results suggest that both tech-
nologies are not suitable for indoor localization but Zigbee
is the better of the two technologies. The hardware used for
the experiment may have contributed to the error rate, a fall
detector is used as the transmitter to test using ISM868 but
this fall detector is not a recommended device for localization
purposes and may have contributed to the high error rate.

In [21] RFID and BLE are compared for localization of
objects in outdoor environments and like other papers RSSI
along with the path loss model is used for localization using
the trilateration model. Results concluded that BLE is bet-
ter than RFID with higher accuracy of tracing and locating
objects but the number of devices used was two instead of
three for proper positioning.

In [22], Wi-Fi,BLE, Zigbee and LoRaWAN were com-
pared. Here the parameters in consideration are accuracy
and power consumption of different devices used to compare
between different wireless technologies. Three devices were
used as beacon nodes (Transmitters) while the fourth device
was used as a sensor node(Receiver) to approximate the
location. Results suggested that Wi-Fi is more accurate of all
the technologies used with a low error rate, BLE proved to
be second best and LoRaWAN which transmits at a low fre-
quency of 915MHz had a high deviation off its transmission
range when transmitting at maximum power.

In this paper we have compared the three of the most
commonly used wireless solutions prevailing in indoor local-
ization i.e. Bluetooth low energy (BLE), LoRaWAN, and
Wi-Fi (IEEE 802.11n 2.4 GHz band). We measured RSSI
along with path loss to approximate distance between nodes
and implemented trilateration model for localization. We per-
formed the experiments in three different environments for

VOLUME 9, 2021



F. U. Khan et al.: Comparison of Wireless Standards in loT for Indoor Localization Using LoPy

IEEE Access

better analysis i.e. Lab environment with different electronic
devices around, corridor and class room with chairs and tables
around. Hardware used for localization is Pycom’s LoPy.
Reason for using this hardware is availability of Wi-Fi, BLE
and LoRa on a single chip.

Ill. BACKGROUND

A. LOCALIZATION

The process of localization involves finding the precise loca-
tion of either the sensor node or the beacon node or both
nodes in a given network. In small-scale applications where
the number of nodes is limited, the localization process can
be carried out manually but in large-scale applications having
a large number of nodes manual localization is not possible.
Therefore, self-localization is used in these scenarios. In self-
localization, a group of beacon (anchor) nodes identifies their
position by either GPS or by placing the anchor nodes in
known locations. The location of anchor nodes is used as
a reference by the sensor nodes to determine their location
[23]. Localization can be classified as range-based or range-
free based. Most popular algorithms such as Time of Arrival
(ToA), Time Difference of Arrival (TDoA), Angle of Arrival
(AoA), Received Signal Strength Indicator (RSSI) are cate-
gorized under range-based algorithms. Range free algorithms
include DV-HOP, Multihop APIT, Gradient, Cnetroid [24].
According to [25] ToA, TDoA and AoA provide accurate
location information but require additional hardware. The
setup of AoA requires a large array of antennae at each node
to be able to know the exact angle of the propagated signal
and requires complexity as well as increased multipath effects
which make AoA unsuitable for indoor localization. ToA and
TDoA use time synchronization between the access point and
the receiver for localization. The setup used in ToA and TDoA
requires extra hardware and cost become a major constraint.
Until now the easiest way to carry out localization is the
method of measuring the RSSI of the received signal. RSSI
measures the signal strength of the transmitted data on the
receiver.

B. RSSI AND CHANNEL MODEL

RSSI is an efficient method for range-based localization.
The signal strength is inversely proportional to the power of
distance. The greater the distance the smaller the value of
RSSI. The relation of RSSI values and distance between the
nodes is represented by the path loss model [26]

RSSI[dBm] = —10nlog;o(D) + ¥ )

where 7 is the path loss exponent, D is the distance between
the transmitting and the receiving device and y is the RSSI
at the reference distance which is normally taken as 1 m.
The path loss model is a reliable relation to find the distance
using the received RSSI values. The path loss model is chosen
because it also compensates for interference parameters such
as multi-path effect using the path loss exponent as it is
different for each environment.
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C. TRILATERATION

Trilateration is a technique in which the two-dimensional
coordinates of the sensor node are determined using a point
of intersection formed by the three concentric circles of each
wireless standard to estimate the position of the sensor node
[27]. The trilateration experiment involves three nodes which
are called anchor nodes are continuously broadcasting pack-
ets. Upon receiving these packets of data by the sensor node,
the RSSI values are extracted and recorded. These values
are used to determine the distance between the nodes. In the
trilateratio experiment, the anchor nodes are set as stationary
and their coordinates are known while the sensor node whose
location is to be determined is placed at geometric locations
in between the anchor nodes. Coordinates of these nodes are
chosen in a 2D plane. e.g. coordinates for one of the anchor
nodes are chosen to be (0,0). This point is also called the
“origin” and this node is referred to as a reference node.
Coordinates of the other two anchor nodes are chosen with
respect to the reference node. In trilateration, anchor nodes
are placed in a triangular fashion. This concept is shown in
Fig. 1. In the given figure the distance of sensor node from

FIGURE 1. General trilateration setup.

anchor nodes 1, 2 and 3 is dy, d», d3 respectively. By using
the geometric equations of circle and (1) the location of the
sensor node can be estimated.

IV. WIRELESS STANDARDS

A. WI-FI

Introduced in 1997 [28], this technology is the most
popular wireless technology. It operates in the 2.5 GHz
band as well as the 5 GHz band. It has multiple modes
i.e. IEEE 802.11 a/b/g/n. This technology is readily available
in all types of the indoor environment such as office build-
ings, houses, educational institutions, etc. It has a greater
range of about 100 m and now 1 Km [9]. A lot of work
in the literature focus on using Wi-Fi for localization due
to ease of availability. One example of such a localization
system is Wi-Fi based fingerprinting method [29], [30]. Due
to its long-range it can cover a larger area than Bluetooth
which makes it a perfect candidate for commercial indoor
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localization systems. Moreover, Wi-Fi is more secure than
Bluetooth due to its advanced encryption method. Due to
enormous usage of Wi-Fi in multiple applications, there will
be interference issues, as more and more devices continue to
take part.

B. BLUETOOTH LOW ENERGY

BLE was introduced in 2010. This technology consumes
less power and is designed for nodes and such applications
that require less amount of data rate. It makes devices cost-
effective [28]. BLE initiated by Bluetooth special interest
group uses less amount of energy in contrast to regular Wi-Fi
thus reducing its bitrate. Over the past few years, the use of
BLE in various applications has significantly increased. Due
to its less consumption of power, much new hardware has
been introduced in IoT. This technology is perfect is consid-
ered favorable for applications where short-range transmis-
sion of a small amount of data is required. The use of BLE
is not restricted to specific areas. An innumerable number
of devices have been developed until now that use BLE
technology such as from the field of health care to the home
entertainment devices. The devices compatible with BLE can
have different states. These states are Initiator, Master, Slave,
Scanner, Standby, Advertiser. BLE is often called Bluetooth
smart and is considered an ideal technology for IoT.

C. LoRaWAN

The low range wide area network can transmit data at a fre-
quency of 915MHz. It was developed by LORA alliance [31].
The transferal of encoded data at different frequencies makes
this technology secure as compared to other technologies.
In LoRaWAN, since the low requency is used, this allows
signals to pass through various hurdles or obstacles that might
cause issues with the transmission of large wavelengths.
This advantage ultimately leads to the transference of large
wavelength signals to greater distances. The devices using
this technology are not liable to be influenced by noise since
the frequency of 915MHz exploited by Lorawan is empty.
Sometimes for using LoRaWAN extra hardware (antennas
and nodes) is required for communication. Lorawan requires
no authentication as it uses a 915 MHz band and requires
no additional license for its operation [32]. Its long-range
data transmission capability makes it favorable for various
projects such as those projects that use different types of sen-
sors to deliver information (smart city projects). LoORaWAN
in line of sight mode is considered efficient in long-range
outdoor localization but when it comes to short-range indoor
localization, it can create problems.

V. EXPERIMENTAL SETUP
In this section the methodology adapted, the description of
the three environments and the hardware used are described.

A. LOCATION AND DIMENSIONS

The experiments were carried out at The University of Man-
agement and Technology, Lahore at the Department of Infor-
matics and Systems at the following locations.
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o Graduate Lab

o Corridor

o Class Room
The experimentation was carried out in between the time
duration of 1700 hours and 2100 hours because a minimum
amount of student strength was available during this period.
The graduate lab is a 24 x 24 square feet room and was an
ideal location for testing as it contained 25 to 28 computer
systems as well multiple access points which would create a
perfect interference environment for testing. The corridor has
a 23 x 23 square feet area and was the second-best option for
a noisy environment as multiple access points were available
throughout the corridor. Moreover, the physical existence of
the students passing frequently from the corridor and the
narrow architecture created the best fit for a multipath fading
environment. The third location selected was a classroom
with an area of 50 x 30 square feet with 20 to 25 tables and
chairs. This environment contained no wireless access points
which would create a perfect noise-free environment. In all
three locations, the nodes were placed at 0.76 m from the
floor.

B. NODES PLACEMENT

Since RSSI values are interference susceptible, therefore to
make the readings more consistent and to avoid inappropriate
RSSI values, their number was increased to 100 readings
per experiment whose mean was taken afterward. In each
of the experiments, nine observations were considered for
all environments by continuously changing the position of
the sensor node. The layout of the experiment for the three
locations along with the node placement is shown in Fig. 2. In
the experiment, a triangle was created as shown. P1, P2, and
P3 are the known position of the sensor nodes respectively.
The distance between the beacon nodes was considered equal
ie 1 and 3 m.

C. NODES CONFIGURATION

To maintain fairness in the overall experiment the transmit
power and the transmission time were configured to be equal
for the three wireless standards. Since the transmit power for
Wi-Fi and BLE was nonconfigurable and according to [33]the
common value for both is 414 dBm. The LoRaMAC was
configured to transmit at 414 dBm at a spreading factor of 7.
The delay between transmission intervals can be configured
for all the three wireless standards so a common delay was
set i.e 2 seconds. The transmitters were powered up using
external battery banks with an output rating of 5v 2.0A and a
backup time of 11000 mAh.

Vi. HARDWARE AND SOFTWARE

The hardware which was used as a building block of the
experiment was Pycom’s Lopy v1.0. It is built upon a pow-
erful dual-core 32-bit microprocessor (ESP32) along with
a 512 KB memory and a 4 MB external flash memory for
storing code. It is Micropython enabled. It contains three
communication modes i.e Wi-Fi, BLE, and LoRa. LoPy uses
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FIGURE 2. Layout for (a) Class room, (b) Corridor and (c) Graduate lab.

deep sleep mode when not in use to save power and hence
it can be considered the best option in those scenarios where
power is a serious issue. The ESP32 interfaces in the LoPy
consist of UART, GPIO, 12C, SPI, and a micro SD card for
storage purposes [34]. It takes a voltage range from 3.5 V to
5.5 V and regulates it to 3.3 V. It also has a built-in RTC of
150 kHz [33]. Fig. 3 shows a LoPy v1.0 module.

A. HARDWARE

Pycom’s LoPy has built-in Wi-Fi, BLE, and LoRa. This
makes LoPy a perfect candidate for applications that may
require more than one wireless standard. Moreover, it saves
power by going to deep sleep mode. In this mode, LoPy only
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consumes about 25 A current. Table. 1 shows specifications
for both hardware and wireless standards available in LoPy.

TABLE 1. LoPy v1.0 hardware specifications.

. UART, I2C, SPI, CAN, JTAG,
Peripherals
PWM, ADC, DAC, SD
3.5V~5.
Hardware Source Input Voltage 5 55V
Source Output Current 12A
Operation Temperature 40~80
Moisture Sensitivity Level (MSL) 1
Tx Power +14 dBm
Wi-Fi Protocol 802.11 b/g/n/eli
Frequency 2.4 GHz ~2.5 GHz
Tx Power +12 dBm
Class-1, Class-2, Class-3
Bluetooth
Modes with Adaptive Frequency Hopping
and NZIF with -97 dBm sensitivity
Frequency 860~1020 MHz
Spreading Factor 6~12
LoRa
Bandwidth 125~500 KHz
Bit Rate 0.24~37.5 Kbps
Sensitivity -117~-137 dBm

€
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Bluetooth
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FIGURE 3. LoPy v1.0 on expansion board.

B. SOFTWARE

From the software end, Micropython was used as a pro-
gramming language for the LoPy written on the ATOM IDE.
Micropython is an extension of the python 3 language [35] to
be able to run on microcontrollers. Micropython’s interpreter
called Repeat Evaluate Print Loop (REPL) resides directly
on the microcontroller which subtracts excessive compilation
steps to be performed when coding the hardware. Micropy-
thon contains almost all the core features that are available in
the traditional Python 3 programming language. Micropython
has built-in libraries that allow the user to directly control the
hardware.

VIi. PROCEDURE

A. ESTIMATION OF PATHLOSS EXPONENT

The first step in the experiment was to estimate the path loss
exponent 1 used in (1) for each of the environments. To carry
out this task one LoPy device was configured to transmit
RSSI values and one was configured to receive the RSSI
values for each of the three wireless standards at a distance
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FIGURE 4. Fitted Curves for (a) BLE, (b) LoRa and (c) Wi-Fi in different
locations.

ranging from 1 m to 3 m. In between 0 and 1 m, 9 points
were taken and at each point, the RSSI value was recorded,
and thereafter a difference of 0.5 m was taken between 1 and
3 m and after each 0.5 m distance, the RSSI values were
recorded. The idea of recording RSSI values at fixed distances
was to estimate  which reflects the rate at which the path loss
changes with varying distances. These recorded RSSI values
were provided to the MATLAB’s cftool which estimated the
value of the path loss exponent. Fig. 4 shows the fit curves
for BLE, LoRa, Wi-Fi for all three locations. The path loss
exponent values along with the system Loss constant for the
three environments are shown in Table. 2

B. PERFORMING TRILATERATION

The second step in the experiment was to carry out trilat-
eration. When using Wi-Fi, the device’s internal 802.11n
2.4 GHz Wi-Fi chip was used. Also, two U.FL connectors

TABLE 2. Pathloss exponent for class room, Corridor and graduate lab.

Location Parameter Wi-Fi BLE LoRa
Path Loss Exponent (7)) 0.907 2.256 2.280
Class Room

System Loss (7) -49.071 | -57.375 | -29.814

N Path Loss Exponent (1) 1.916 2.481 2.158

Corridor

System Loss () -51.286 | -51.768 | -26.953

Path Loss Exponent()) 2.062 2.221 2.347

Graduate Lab

System Loss (7) -45.919 | -58.549 | -26.850
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were available to connect external Wi-Fi antennae. To per-
form trilateration 3 LoPy devices were programmed to act
as access points while one node was programmed to act as
a station. The access points continuously relayed their SSID
in addition to their RSSI values. The sensor node stored
the received RSSI values in the internal memory for further
calculations.

Similarly to perform trilateration using BLE the device’s
Bluetooth v4.2 (BLE) was used. Three nodes were pro-
grammed to act as advertisers and to continuously advertise
the name and the manufacturer data. On the other hand,
one device was programmed to keep scanning for available
advertisements and if it receives one then it should extract
the RSSI values from those advertisements and store them in
the device’s storage.

To perform trilateration using LoRa the device’s
LoRaMAC (also called Raw-LoRa) [36]functionality was
used. Three LoPy devices were programmed as transmitting
devices while one LoPy device was used as a sensor node.
The transmitters continuously transmitted their unique node
names that could be used by the sensor node to differentiate
between different transmitting devices. The RSSI values
were recorded by the sensor node and stored on the device’s
storage.

In the setup, three transmitters were placed according to the
architecture shown in Fig. 2. The known distances selected
were 1 m and 3 m respectively. The sensor node’s location
was varied in between nodes A and B, Nodes A and C, and
then in the centroid of the triangle. The aim was to gather the
RSSI values at each of the sensor node’s locations and then
take the average of those RSSI values. These averaged RSSI
values are then used in (1) to estimate the actual coordinates
of the sensor node. The estimated coordinates were compared
with the actual coordinates using

er =+/(ac — ap)* + (be — by ©)

where a., b, are the calculated coordinates while a,, b, are
the real coordinates. After determining the error between
different wireless standards an average can be computed
which will decide the most accurate wireless standard for
all three environments. These results are shown in Figure. 5
respectively. An average of the error values was then taken
to estimate the accuracy for each of the wireless technologies
used.

VIIl. RESULTS AND ANALYSES
This section gives an overview of the results presented as well
as an appropriate analyses.

A. RESULTS

Experimental results are provided in Figure. 5. These show
that of all three environments, BLE was the least accurate
of all with an overall average error of 0.884 m. This is also
shown in the classroom where BLE was most accurate with
an average localization error of 0.679 m while in the corridor
BLE’s average error was found to be 1.2725 m which makes
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FIGURE 5. Error between real and estimated coordinates of sensor node in (a) Class Room (b) Corridor and (c) Graduate Lab.

it the least accurate in this environment. Similarly, in the
graduate lab, its average error was 0.701 m. The second
least accurate wireless technology was LoRa with an overall
average error of 0.614 m. In the classroom, the average error
was found to be 0.608 m which makes it most accurate in
the classroom. Whereas, in the corridor, it was less accurate
with an average error of 0.669 m. Moreover, in the graduate
lab, LoRa’s average error was 0.565 m. Of all the wireless
standards used in the experiment, Wi-Fi was the most accu-
rate with an overall average error of 0.555 m. Of all the
environments, Wi-Fi was more accurate in the classroom with
an average error of 0.507 m. Whereas, it was least accurate
in the corridor with an average error of 0.652 m. It performed
substantially better in the graduate lab with an average error
of 0.507 m. By closely visualizing Figure. 5, the behavior of
wireless standards with respect to distance can also be seen. In
the classroom, when anchor nodes are placed at 1 m distance,
the localization error of Wi-Fi, BLE, and LoRa was 0.160 m,
0.309 m, and 0.290 m respectively. When anchor nodes are
placed at a distance of 3 m with each other, the error was
0.853 m, 1.049 m, and 0.927 m respectively for Wi-Fi, BLE,
and LoRa. Similarly, in the corridor at 1 m distance between
anchor nodes, the error was 0.291 m for Wi-Fi, 0.676 m for
BLE, and 0.414 m for LoRa. When anchor nodes are placed at
a 3 m distance, the error was 1.012 m, 1.869 m, and 0.924 m
for the three standards respectively. Lastly, in the graduate
lab, localization error was 0.145 m for Wi-Fi, 0.339 m for
BLE, and 0.343 m for LoRa when anchor nodes are placed
at 1 m distance. When placed at a 3 m distance, localization
error for Wi-Fi, BLE, and LoRa was 0.869 m, 1.062 m, and
0.786 m respectively. From these values, it can be seen that
localization error increases as distance among anchor nodes
increase.

B. ANALYSES

Figure.5 and 6 provide useful insights. Localization accuracy
is a function of several factors which include the power con-
sumption of wireless standards, type of environment, other
wireless interfering sources, etc. From the above figures, it
can be seen that Wi-Fi performs better in all environments.
This is because localization accuracy is dependent on RSSI
variation [37]. This means more variation captures the effect

VOLUME 9, 2021

E
s
i
ClassRoom Corridor GraduateLab
[mmmmm Wi-Fi == BLE ==== LoRa |
FIGURE 6. Location wise localization error.
1.2
1 N-QaQA
3 U.0o04
5 0.8
o
5 06 0.555 0.614 |
0.4
Wi-Fi BLE LoRa

FIGURE 7. Average accuracy of wireless standards at different locations.

~-15
E %0 N Wi-Fi
)
—-25 LoRa
?
oc -30 BLE

-35

0 50 100 150 200 250 300

No. of Samples
FIGURE 8. RSSI variation of wireless standards.

of its surrounding more effectively as compared to less vari-
ation. This is also seen in Figure. 8, where BLE and Wi-
Fi show more RSSI variation than LoRa in our experiment.
Wi-Fi operates in the 2.4 GHz band and its transmission
radius are much greater than BLE. Moreover, Wi-Fi has
greater penetration power which allows signals to penetrate
objects much easier. Due to these properties, Wi-Fi has better
localization accuracy. BLE on the other hand also operates
in the 2.4 GHz band. It consumes less power than Wi-Fi. It’s
transmission/reception radius is much less than that of Wi-Fi
which may require more devices to communicate with each
other. Due to this increase in number, a high level of co-
channel interference may exist as both Wi-Fi and other BLE
devices operate in this band. At the time of the experiment,
several Wi-Fi devices were operating which could be the
cause of high-level interference. Due to these factors, BLE
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has shown to be least accurate in all environments. LoRa is
designed to operate in the sub-GHz band which means that
its transmission radius is much more than that of Wi-Fi and
BLE. The only drawback of this standard is that it can only
transmit a small amount of data in Kilobytes. Due to its large
transmission/reception range, a fewer number of devices may
be required for communication. This causes less interference
with LoRa devices being used in localization.

Environment plays an important role in localization accu-
racy because of its surroundings which may include types
of objects, walls, obstacles, etc. By looking at Figure. 6,
one can see that all wireless standards show less localization
error in the classroom. This may be because the room only
contained wooden furniture with fewer wireless interfering
sources such as Wi-Fi routers. Moreover, localization accu-
racy also depends on room area. Larger rooms tend to have
fewer obstructions [38], which also increases localization
accuracy. The area of the classroom was much larger than
that of the remaining two environments which may have
increased localization accuracy. The Graduate lab contained
several computer systems as well as a considerable num-
ber of students using Wi-Fi/Bluetooth devices. This affects
localization accuracy as is also seen in our findings. Lastly,
while performing localization in the corridor, the error was
much greater for all wireless standards. As can be seen from
Figure. 2, narrow hallways were present which contribute
towards multipath. Moreover, the presence of students within
the corridor was considerably greater than in the other two
environments. Usage of Wi-Fi-based mobile/laptop devices
was also considerably greater. All these contribute to degrada-
tion localization accuracy. This can also be seen in the results.

Based on the above findings, we deduce that Wi-Fi is the
best candidate for indoor localization. But if the localization
system was powered with batteries then a Wi-Fi-based system
would require charging the batteries more frequently. In this
case, another alternative i.e. LoRa could be used. It has
considerable accuracy and it also consumes less power. The
only drawback of this standard is that the cost of LoRa based
devices is comparatively higher than that of Wi-Fi and BLE.
Therefore, if cost is not an issue, this standard should have
opted. If the requirement of a localization system demands
less power consumption and low cost then BLE-based devices
can be used. The only drawback would be its less accuracy as
well as more devices may be needed if a localization system
is to be developed for larger distances.

IX. CONCLUSION

In this paper, a comparative study of different wireless tech-
nologies for indoor localization systems for the estimation
of the sensor node’s location is discussed. Path loss model
is used which relates signal strength to distance. By using
trilateration along with the path loss model an error between
the actual and the calculated position is estimated and the
results show that Wi-Fi is the most accurate for indoor local-
ization followed by LoRa which is less accurate than Wi-Fi in
the given environments but its long range makes it a perfect
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candidate without exposing extra hardware. The worst of all
was BLE with the least accuracy than Wi-Fi and LoRa but
due to its less power consumption, it can be the best solution
in those environments localization systems need to operate on
batteries.
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