
Journal of Advanced Research 25 (2020) 31–38
Contents lists available at ScienceDirect

Journal of Advanced Research

journal homepage: www.elsevier .com/locate / jare
Research Article
Computation of solution to fractional order partial reaction
diffusion equations
https://doi.org/10.1016/j.jare.2020.04.021
2090-1232/� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Al Ain University, Al Ain, United Arab Emirates.
E-mail addresses: hussam.alrabaiah@aau.ac.ae (H. Alrabaiah), sajjad_ali@sbbu.edu.pk (S. Ali).
Haji Gul a, Hussam Alrabaiah b,c,⇑, Sajjad Ali d, Kamal Shah e, Shakoor Muhammad a

aDepartment of Mathematics, Abdul Wali Khan Univeristy, Mardan, Pakistan
bCollege of Engineering, Al Ain University, Al Ain, United Arab Emirates
cDepartment of Mathematics, Tafila Technical University, Tafila, Jordan
dDepartment of Mathematics, Shaheed Benazir Bhutto University Sheringal, Dir(U), Pakistan
eDepartment of Mathematics, University of Malakand, Chakadara Dir(L), Khyber Pakhtunkhwa, Pakistan
h i g h l i g h t s

� Applying the proposed novel method
(PNM) to find the approximate
solution of fractional order CRDE.

� The PNM to fractional order CRDE
gives more realistic series solutions
that converge very rapidly.

� PNM is very simple, effective and
accurate as compared to other
analytical techniques.
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In this article, the considered problem of Cauchy reaction diffusion equation of fractional order is solved
by using integral transform of Laplace coupled with decomposition technique due to Adomian scheme.
This combination led us to a hybrid method which has been properly used to handle nonlinear and linear
problems. The considered problem is used in modeling spatial effects in engineering, biology and ecology.
The fractional derivative is considered in Caputo sense. The results are obtained in series form corre-
sponding to the proposed problem of fractional order. To present the analytical procedure of the pro-
posed method, some test examples are provided. An approximate solution of a fractional order
diffusion equation were obtained. This solution was rapidly convergent to the exact solution with less
computational cost. For the computation purposes, we used MATLAB.
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Introduction

Indeed fractional calculus is an important field of applied math-
ematics in recent decade. Using fractional derivatives and frac-
tional integrals to model real world phenomenons give better
results than classical order. Some interesting applications can be
traced in modeling several physical phenomenons, particularly,
in the field of the damping visco-elasticity, electronic, signal pro-
cessing, biology, genetic algorithms, robotic technology, telecom-
munication, traffic systems, chemistry, physics as well as
economics and finance. Many researchers have devoted some
important developments and contributions to the field of fractional
calculus [1–8]. Due to large interesting usage, fractional calculus is
considered as very important field of research for most of the
researchers and scientists. In the field of fractional calculus, the
study of fractional order partial differential equations (FOPDEs)
has particularly been focused by many researchers. In this concern,
linear and non-linear FODEs have been solved via using various
methods. For instance, analysis of modified Bernoulli sub-
equation and non-linear time fractional Burgers equations has
been presented in [9]. The numerical simulation to space fractional
diffusion equations have been performed in [10,11]. The exact
solutions of nonlinear biological population models of fractional
order has been obtained in [12] by optimal homotopy method
(OHAM). On using OHAM, the solution of Burgers- Huxley models
[13] has been computed. Investigations of nonlinear FOPDEs via
homotopy perturbation transform method was performed in
[14]. In same line, the approximate solution to generalized Mittag
-Leffler law via exponential decay has been discussed in [15].
Moreover, various applications of derivatives and integral of arbi-
trary order have been discussed in [16]. For the development of
this field, In [17,18], some researchers gave the numerical schemes
and stability for two classes of FOPDEs.

On other hand, obtaining the exact as well as an approximate
solutions of FOPDEs is the main interest of many researchers. In
this concern, in 2001, a proposed novel method (LADM) was
applied, for the first time, by Khuri for the solution of ODEs. There-
after, it has been successfully applied for the solution of many clas-
sical PDEs in engineering and natural sciences. LADM is the
combination of two powerful methods that is decomposition and
integral transform, (for detail see [19,20]). Many physical phenom-
ena which have been modeled by PDEs and FOPDEs were solved by
using LADM. For instance, the analytical solution of Whitham-
Broer-Kaup equations has been computed in [21]. Further, the
solution of linear and non-linear FOPDEs were successfully pre-
sented in[22]. Authors [23] have discussed the numerical solution
of nonlinear fractional Volterra Fredholm integro-differential
equations. In same line, system of fractional delay differential
equations have been successfully described in [24]. Also, the solu-
tion of well known diffusion equation has been presented in [25]
and for some applications of proposed method to non-linear
FOPDEs, (we refer [26]).

In this article, we contribute to the field of approximate/ exact
analytical solutions of applied problems which occur in engineer-
ing and many physical phenomena. In this concern, we extend
LADM for the approximate solution of reaction–diffusion equation
(RDE) of fractional order and its various cases. The RDE of fractional
order [27–29] is provided as:

@bz n; tð Þ
@tb

¼ c
@2z n; tð Þ

@n2
þ r n; tð Þz n; tð Þ; n; tð Þ 2 X: ð1Þ

The problem (1) becomes classical RDE if b ¼ 1. In the Eq. (1), the

term c n; tð Þ @2z n; tð Þ
@n2

denotes diffusion and r n; tð Þz n; tð Þ denotes the

reaction, where r n; tð Þ reaction parameter, z n; tð Þ is the concentra-
tion and c is diffusion coefficient constant.
Moreover, we refer to recent papers devoted to the analytical
and theoretical studies of the time-fractional diffusion equation
[30–33].

Preliminaries

Here, in this section we provide background materials of basic
definitions and some known results of the fractional calculus. Also
some important preliminaries are recalled from the field of applied
analysis.

Definition 2.1. [34] ‘‘Riemann–Liouville integral of fractional
order” b 2 Rþ for the function h 2 L 0;1½ �; Rð Þ is given as:
Ib0h tð Þ ¼ 1
C bð Þ

Z t

0
t � sð Þb�1h sð Þds; ð2Þ

provided that integral exists (on right hand side).
Definition 2.2. [34] For the p 2 R, a function f : R ! Rþ is said to
be in the space Cp if it can be written as f nð Þ ¼ nqf 1 nð Þwith

q > p; f 1 nð Þ 2 C 0;1½ Þ such that f nð Þ 2 Cm
p if f mð Þ 2 Cp for

m 2 N [ 0f g.
Definition 2.3. [34] Caputo fractional derivative of a function
h 2 Cm

�1 with m 2 N [ 0f g is provided as:

Db
nh nð Þ ¼ Im�bf mð Þ

; m� 1 < b 6 m; m 2 N;
dm

dnm h nð Þ; b ¼ m; m 2 N:

(
ð3Þ
Definition 2.4. [34] The two parameter Mittag–Leffler function is
provided as:

Ea;b tð Þ ¼
X1
k¼0

tk

C kaþ bð Þ : ð4Þ

If a ¼ b ¼ 1 in (4), we obtain E1;1 tð Þ ¼ et and E1;1 �tð Þ ¼ e�t .
Definition 2.5. [35] Laplace transformation (LT) of the function
g nð Þ; n > 0is provided as:

G sð Þ ¼ L g nð Þ½ � ¼
Z 1

0
e�sng nð Þdn;

where s can be either real or complex.
Definition 2.6. [35] LT in terms of the convolution is defined as:

L g1 � g2½ � ¼ L g1½ � � L g2½ �;
where g1 � g2 is defined by (shows the convolution between g1 and
g2)

g1 � g2ð Þn ¼
Z 1

0
g1 tð Þg2 n� tð Þdn:

The LT of Caputo derivatives is defined as:

L Db
ng nð Þ

h i
¼ sbG sð Þ �

Xn�1

k¼0

sb�1�kg kð Þ 0ð Þ; n� 1 < b < n:
Construction of the method

Here, in this section, we discuss how to establish LADM [21] to
solve RDE of fractional order and its various cases.
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The RDE with fractional order and its formulation by LADM are
given as

@bz n; tð Þ
@tb

¼ c
@2z n; tð Þ

@n2
þ r n; tð Þz n; tð Þ; n; tð Þ 2 X ð5Þ

with initial condition

z n;0ð Þ ¼ g nð Þ:
Now we apply the LT on Eq. (5)

L
@bz n; tð Þ

@tb

� �
¼ cL

@2z n; tð Þ
@n2

" #
þ L r n; tð Þz n; tð Þ½ �:

Using the differentiation properties of LT, we obtain

L z n; tð Þ½ � ¼ g nð Þ
s

þ 1
sb
L r n; tð Þz n; tð Þ½ � þ cL

1
sb

@2z n; tð Þ
@n2

" #
: ð6Þ

Consider the solutions z n; tð Þ in the form as

z n; tð Þ ¼
X1
j¼0

zj n; tð Þ:

The nonlinear terms show that infinite series of the Adomian
polynomials,

N1 z n; tð Þð Þ ¼
X1
j¼0

Aj;

Aj ¼ 1
j!

dj

dkj
N1

X1
i¼0

kjzi

 !" #
:

Hence the Eq. (6) is

L
X1
j¼0

zjþ1

" #
¼ g nð Þ

s
þ 1
sb
L c

@2

@n2
X1
j¼0

zj n; tð Þ þ r n; tð Þ
X1
j¼0

zj n; tð Þ
" #

:

Applying the linearity of LT, we have

L z0 n; tð Þ½ � ¼ g nð Þ
s

;

L
X1
j¼0

zjþ1

" #
¼ 1

sb
L c

@2

@n2
X1
j¼0

zj þ r
X1
j¼0

zj

" #
;

where r ¼ r n; tð Þ, for j ¼ 0;1;2;3; . . ..
By applying inverse LT, we can obtain z0; z1; z2; . . . :.
Therefore, the series solution is given by

~z n; tð Þ ¼ z0 þ z1 þ z2 þ . . . :
Table 1
Solutions of Problem 4.1 by LADM for various value of the t at n ¼ 1 and taking
b ¼ 0:7;0:8; 0:9.

t LADM b ¼ 0:7ð Þ LADM b ¼ 0:8ð Þ LADM b ¼ 0:9ð Þ
0 1:36787944117 1:36787944117 1:36787944117
0:04 1:26063785322 1:29003540632 1:3122734338
0:08 1:20140342889 1:23708540691 1:2668713807
0:12 1:15498262073 1:19258355139 1:2260185458
0:16 1:11606160395 1:15352738033 1:18848488707
0:20 1:0823166425 1:11850470929 1:15364185989
0:24 1:05245054008 1:08667976807 1:12108982079
0:28 1:02564040204 1:05749488452 1:09054418331
0:32 1:00132074622 1:0305491701 1:06178776421
0:36 0:979080995722 1:00553943111 1:03464697699
0:40 0:958610800117 0:982227775522 1:0089784682
0:44 0:939668244664 0:960422291871 0:984660961807
0:48 0:922060129646 0:939964769682 0:961589956907
Test Problems

Here, in this section, we provide the easy and smooth conver-
gence of LADM for the solutions of some test problems which are
special cases of CRDE of fractional order.

Example 4.1. We study the LADM for a special case of FOPDEs (1)
at positive t

@bz n; tð Þ
@tb

¼ @2z n; tð Þ
@n2

� z n; tð Þ; b 2 0;1ð �; ð7Þ

with initial condition

z n;0ð Þ ¼ e�n þ n:

Now, we apply the LT of Eq. (7)
L
@bz n; tð Þ

@nb

� �
¼ L

@2z n; tð Þ
@n2

� z n; tð Þ
" #

;

sbz n; tð Þ � sb�1z n;0ð Þ ¼ L
@2z n; tð Þ

@n2
� z n; tð Þ

" #
:

According to Laplace inverse transform, we have

z0 n; tð Þ ¼ L�1 z n;0ð Þ
s

h i
; zjþ1 n; tð Þ ¼ L�1 1

sb L
@2zj n;tð Þ

@n2
� zj n; tð Þ

h i
, for

j ¼ 0;1;2; . . ..
Therefore, we obtain

z0 n; tð Þ ¼ e�n þ n;

z1 n; tð Þ ¼ � ntb

C bþ 1ð Þ ;

z2 n; tð Þ ¼ nt2b

C 2bþ 1ð Þ ;

z3 n; tð Þ ¼ � nt3b

C 3bþ 1ð Þ ;

z4 n; tð Þ ¼ nt4b

C 4bþ 1ð Þ :

Similarly, we can find z5; z6; . . ..
Hence, the series solution becomes

~z n; tð Þ ¼ e�n þ n 1� tb

C bþ 1ð Þ þ
t2b

C 2bþ 1ð Þ �
t3b

C 3bþ 1ð Þ þ
t4b

C 4bþ 1ð Þ . . .
� �

;

ð8Þ

z
�

n; tð Þ ¼ e�n þ nEb �tb
� �

: ð9Þ
When b ¼ 1, then Eq. (9) becomes the exact solution of RDE of inte-
ger order [27,28].

For accuracy and simplicity of the LADM, truncating the
solution in (8) at level n ¼ 12. Numerical results of Example 4.1
are shown in Tables 1, 2 which are also plotted in Figs. 1–3. The
results in Table 2 and Fig. 1 (Green line shows approximate
solution and blue dots line shows exact solution) provide the
comparison of exact and LADM approximate solutions at b ¼ 1. A
surface graph of the solutions of Example 4.1 is plotted in Fig. 2,
wherein for simple execution of the Matlab code, we have replaced

z
�

n; tð Þ by w x; tð Þ. Each plot in the figures has the demonstration of
physical behavior of the approximate solutions. Moreover, the
absolute error are plotted in Fig. 3. It shows significance indication
that the exact and approximate solutions are closed to each others.



Table 2
Absolute error of LADM results of Problem 4.1 for various value of the t at n ¼ 1 and
taking b ¼ 1.

t Exact solution b ¼ 1ð Þ LADMsolution b ¼ 1ð Þ Error

0 1:36787944117 1:36787944117 0
0:04 1:32866888032 1:32866888032 0
0:08 1:29099578756 1:29099578756 0
0:12 1:25479987789 1:25479987789 0
0:16 1:22002323014 1:22002323014 0
0:20 1:18661019425 1:18661019425 0
0:24 1:15450730224 1:15450730224 0
0:28 1:12366318263 1:12366318263 1:04e� 17
0:32 1:09402847825 1:09402847825 5:9e� 17
0:36 1:06555576724 1:06555576724 2:67e� 16
0:40 1:03819948721 1:03819948721 1:05e� 15
0:44 1:01191586225 1:01191586225 3:61e� 15
0:48 0:986662832978 0:986662832978 1:11e� 14

Fig. 1. Comparison of exact and LADM results of the Problem 4.1 at n ¼ 1 for various
values of t and b.
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Example 4.2. We study the LADM for another special case at t > 0
of RDE (1),

@bz n; tð Þ
@tb

¼ @2z n; tð Þ
@n2

� 1þ 4n2
� �

z n; tð Þ; b 2 0;1ð �; ð10Þ

with initial condition
Fig. 2. LADM results of the Problem 4.1
z n;0ð Þ ¼ en
2
:

We apply LT method to Eq. (10) as

L
@bz n; tð Þ

@tb

� �
¼ L

@2z n; tð Þ
@n2

� 1þ 4n2
� �

z n; tð Þ
" #

;

sbz n; tð Þ � sb�1z n;0ð Þ ¼ L
@2z n; tð Þ

@n2
� 1þ 4n2
� �

z n; tð Þ
" #

:

Therefore, according to inverse LT

z0 n;0ð Þ ¼ L�1 z n;0ð Þ
s

� �
;

zjþ1 n; tð Þ ¼ L�1 1
sb

L
@2zj n; tð Þ

@n2
� 1þ 4n2
� �

zj n; tð Þ
" #" #

;

for j ¼ 0;1;2; . . ..
We compute
z0 n; tð Þ ¼ en
2
;

z1 n; tð Þ ¼ en
2
tb

C bþ 1ð Þ ;

z2 n; tð Þ ¼ en
2
t2b

C 2bþ 1ð Þ ;

z3 n; tð Þ ¼ en
2
t3b

C 3bþ 1ð Þ :

Similarly, we can find z4; z5; . . ..
Hence, the series solution becomes
~z n; tð Þ ¼ en
2
1þ tb

C bþ 1ð Þ þ
t2b

C 2bþ 1ð Þ þ
t3b

C 3bþ 1ð Þ þ . . .

� �
; ð11Þ

z
�

n; tð Þ ¼ en
2
Eb tb
� �

: ð12Þ
When b ¼ 1, then solution in Eq. (12) is transferred to

z
�

n; tð Þ ¼ en
2þt ; ð13Þ

which is the exact solution of the RDE of integer order that is
obtained in [27,28].
for various values of x nð Þ; t and b.



Fig. 3. Absolute error plot of LADM results of the Problem 4.1 for various values of t and b ¼ 1.

Table 4
Absolute error of LADM results of Problem 4.2 corresponding to various value of t at
n ¼ 1 and taking b ¼ 1.

t Exact solution b ¼ 1ð Þ LADMsolution b ¼ 1ð Þ Error

0 2:71828182846 2:71828182846 0
0:04 2:82921701435 2:82921701435 6:94e� 18
0:08 2:94467955107 2:94467955107 6:94e� 18
0:12 3:06485420329 3:06485420329 0
0:16 3:18993327612 3:18993327612 6:94e� 18
0:20 3:32011692274 3:32011692274 6:94e� 18
0:24 3:45561346476 3:45561346476 1:39e� 17
0:28 3:59663972557 3:59663972557 2:78e� 17
0:32 3:74342137726 3:74342137726 1:67e� 16
0:36 3:8961933018 3:8961933018 7:70e� 16
0:40 4:05519996684 4:05519996684 3:03e� 15
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For accuracy and simplicity of the LADM, truncating the
solution in (11) at level n ¼ 12. Numerical results of Example 4.2
are shown in Tables 3, 4 and have been plotted in the Figs. 4–6. The
results in Table 4 and Fig. 4 (Green line shows approximate
solution and blue dots line shows exact solution) provide the
comparison of exact and LADM approximate solutions at b ¼ 1. A
surface graph of the solutions of Example 4.2 is plotted in Fig. 5,
wherein for simple execution of the Matlab code, we have replaced

z
�

n; tð Þ by w x; tð Þ. Each plot in the figures has the demonstration of
physical behavior of the approximate solutions. Moreover, the
absolute error are plotted in Fig. 6. They show significance
indication that the exact and approximate solutions are very
closed to each others.
0:44 4:220695817 4:220695817 1:04e� 14
0:48 4:39294568092 4:39294568092 3:24e� 14
Example 4.3. We study the LADM for another special case t > 0 of
FOPDEs (1)

@bz n; tð Þ
@tb

¼ @2z n; tð Þ
@n2

� 2þ 4n2 � 2t
� �

z n; tð Þ; b 2 0;1ð �; ð14Þ
Table 3
Results of Problem 4.2 by LADM corresponding to various value of t at n ¼ 1 and
taking b ¼ 0:7; 0:8;0:9.

t LADM b ¼ 0:7ð Þ LADM b ¼ 0:8ð Þ LADM b ¼ 0:9ð Þ
0 2:71828182846 2:71828182846 2:71828182846
0:04 3:05824497161 2:95195691542 2:87931553947
0:08 3:29928547606 3:14087530059 3:02729013991
0:12 3:52498051186 3:32345744113 3:17545582751
0:16 3:74615701638 3:50557634111 3:3262496936
0:20 3:96731861322 3:68981262922 3:48085001233
0:24 4:19095246225 3:87766326559 3:64000821733
0:28 4:41867367697 4:07014825832 3:80428597497
0:32 4:65165413111 4:26804311495 3:97414838383
0:36 4:8908169499 4:47198611344 4:15000791035
0:40 5:13693654863 4:68253429259 4:33224777814
0:44 5:3906949783 4:90019541171 4:52123558949
0:48 5:65271595406 5:12544750429 4:71733184507
with initial condition

z n;0ð Þ ¼ en
2
:

We apply the LT method to Eq. (14) as

L
@bz n; tð Þ

@tb

� �
¼ L

@2z n; tð Þ
@n2

� 2þ 4n2 � 2t
� �

z n; tð Þ
" #

;

sbz n; tð Þ � sb�1z n;0ð Þ ¼ L
@2z n; tð Þ

@n2
� 2þ 4n2 � 2t
� �

z n; tð Þ
" #

:

Therefore, according to inverse LT

z0 n; tð Þ ¼ L�1 z n;0ð Þ
s

� �
;

zjþ1 n; tð Þ ¼ L�1 1
sb

L
@2zj n; tð Þ

@n2
� 2þ 4n2 � 2t
� �

zj n; tð Þ
" #" #

;

for j ¼ 0;1;2; . . ..



Fig. 6. Absolute error plot of LADM results of the Problem 4.2 against various values
of t and b ¼ 1.

Fig. 4. Comparison of exact and LADM results of the Problem 4.2 at n ¼ 1 against
various values of t and b.

Fig. 7. Comparison of exact and LADM results of the Problem 4.3 at n ¼ 1 at various
values of t and b.

36 H. Gul et al. / Journal of Advanced Research 25 (2020) 31–38
We obtain

z0 n; tð Þ ¼ en
2
;

z1 n; tð Þ ¼ 2en
2
tbþ1

C bþ 2ð Þ ;

z2 n; tð Þ ¼ 22 bþ 2ð Þen2 t2 bþ1ð Þ

C 2bþ 3ð Þ ;

z3 n; tð Þ ¼ 23 bþ 2ð Þ 2bþ 3ð Þen2 t3 bþ1ð Þ

C 3bþ 4ð Þ :

Similarly, we can find z4; z5; . . ..
Hence, the series solution becomes

~z n; tð Þ ¼ en
2

1þ 2tbþ1

C bþ 2ð Þ þ
22 bþ 2ð Þt2 bþ1ð Þ

C 2bþ 3ð Þ þ 23 bþ 2ð Þ 2bþ 3ð Þt3 bþ1ð Þ

C 3bþ 4ð Þ þ . . .

" #
:

ð15Þ
When b ¼ 1, then solution in Eq.(15) is transferred in the solution

z
�
n; tð Þ ¼ en

2þt2 ;

which is the exact solution of the RDE of integer order as provided
in [27,28].
Fig. 5. LADM results of the Problem 4.2 at against values of x nð Þ; t and b.



Table 5
Results of Problem 4.3 by LADM against various value of the t at n ¼ 1 and taking
b ¼ 0:7;0:8;0:9.

t LADM b ¼ 0:7ð Þ LADM b ¼ 0:8ð Þ LADM b ¼ 0:9ð Þ
0 2:71828182846 2:71828182846 2:71828182846
0:04 2:73312373116 2:72818011041 2:7248581844
0:08 2:76688128388 2:75293336794 2:74291387866
0:12 2:81620183588 2:79075517308 2:77180587154
0:16 2:88027427114 2:84121235614 2:81145537499
0:20 2:95912229771 2:90438042967 2:86204560226
0:24 3:0532763561 2:98066783941 2:92395606779
0:28 3:16366443355 3:07075551358 2:99774152444
0:32 3:29157867182 3:17557811528 3:08412827752
0:36 3:43867905661 3:296326369 3:18402006405
0:40 3:60702090656 3:43446312627 3:29851072705
0:44 3:79910158286 3:59175047 3:42890272669
0:48 4:01792566985 3:77028720192 3:57673135879

Table 6
Absolute error of LADM results of Problem 4.3 at various values of the t at n ¼ 1 and
taking b ¼ 1.

t Exact solution b ¼ 1ð Þ LADMsolution b ¼ 1ð Þ Error

0 2:71828182846 2:71828182846 0
0:04 2:72263456064 2:72263456064 6:94e� 18
0:08 2:73573462153 2:73573462153 0
0:12 2:75770827592 2:75770827592 6:94e� 18
0:16 2:78876821962 2:78876821962 6:94e� 18
0:20 2:82921701435 2:82921701435 6:94e� 18
0:24 2:879452005 2:879452005 6:94e� 18
0:28 2:93997183096 2:93997183096 0
0:32 3:01138468133 3:01138468133 6:94e� 18
0:36 3:09441848514 3:09441848514 0
0:40 3:18993327612 3:18993327612 6:94e� 18
0:44 3:2989360256 3:2989360256 0
0:48 3:42259830184 3:42259830184 0

Fig. 9. Absolute error plot of LADM results of the Problem 4.3 at various values of t
and b ¼ 1.

H. Gul et al. / Journal of Advanced Research 25 (2020) 31–38 37
For accuracy and simplicity of the LADM, truncating the
solution in (15) at level n ¼ 12. Numerical results of Example 4.3
are shown in Tables 5, 6 and have been plotted in Plots 7–9. The
results in Table 6 and Fig. 7 (Green line shows approximate
solution and blue dots line shows exact solution) provide the
comparison of exact and LADM approximate solutions at b ¼ 1. A
surface graph of the solutions of Example 4.3 is plotted in Fig. 8,
wherein for simple execution of the Matlab code, we have replaced

z
�

n; tð Þ by w x; tð Þ. Each plot in the figures has the demonstration of
physical behavior of the approximate solutions. Moreover, the
Fig. 8. LADM results of the Problem 4.3 a
absolute error are plotted in Fig. 9. They show close agrement
between the analytical and approximate results.
Conclusion

In this research article, we have applied LADM to find the
approximate solution of fractional order RDE. The concerned equa-
tions have great advantages in sciences and engineering. Further,
the said equation constitutes more appropriate models for various
physical systems in numerous areas such as spatial effects in biol-
ogy, ecology and engineering. The LADM to fractional order RDE
gives more realistic series solutions that converge very rapidly. It
is noticeable that the LADM is less computational cost and con-
sumes minimum time for treating FOPDEs. The main advantage
of this method is its smooth convergence to the desired solution.
The procedure of LADM is very simple, effective and accurate as
observing the comparison of approximate solutions obtained via
LADM to the exact solutions of problems. The LADM results also
suggests that it can be used for other FOPDEs as well. All the com-
putational works associated with problems in this research article
are performed by using MATLAB.
gainst various values of x nð Þ; t and b.
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