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In this research, we have suggested a combined strategy to calculate and determine the solutions for
problems originating in combustion theory and heat transfer, that are known as Bratu differential equa-
tions. We aim to suggest and test a soft computing technique using an efficient meta-heuristic the
Symbiotic Organism Search (SOS) algorithm and Artificial neural network (ANN) architecture to obtain
better solutions for Bratu differential equations by utilizing fewer computational resources and minimal
time. We have simulated our computing approach for different cases, and we compare the outcome of our
experiments with solutions obtained by the existing state-of-the-art methods. For novelty, we have
found an accurate critical value of /. by using SOS algorithm. Values of TIC, MAD, and NSE confirm that
our method is a convenient and potential candidate for handling real-application problems. We found
that this ANN-SOS algorithm takes less time and is accurate in getting results of the expected standard.
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1. Introduction

Bratu problems are also known as “Liouville-Gelfand-Bratu”
problems named after Gelfand and nineteenth-century French
mathematician Liouville [1]. Bratu problems are essential in
applied mathematics, which has a large variety of applications in
chemistry, including thermal reactions in different processes, Nan-
otechnology, and Chandrasekhar mathematical model of the evolu-
tion of the universe. Ignition problems or Bratu differential
equations are essential for the analysis of systems involving heat
transfer problems, which are studied in [2]. Exothermal explosions
are studied in a slab, cylindrical pipe, and in symmetric geometries
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by using series summation technique and perturbation technique
[3-5]. In thermal combustion theory, rearranging the mathemati-
cal model representing the solid fuel ignition results in an elliptic
partial differential equation having characteristics of a highly
non-linear Eigenvalue problem, known as Bratu differential equa-
tions. In the current paper, we have considered a one-
dimensional Bratu differential equation which is given in Eq. (1)
[6]:

Y'(x)+ 2" =0, y(0)=y(1)=0, (1)

where x € [0,1] and 2 > 0. Eq. (1) represents a standard Bratu prob-
lem which shows modeling of the combustion problem in a numer-
ical slab. Many researchers in [7-12], have presented interesting
work about the solution of Bratu’s problems. Various numerical
approaches such as B-spline method [7], Adomian decomposition
method (ADM) [9], finite difference method [8], weighted residual
method [11] and 1-D differential transform method [10] have been
applied for the solution of the Bratu’s problems. Artificial Neural
Networks (ANN) along with the Interior point technique has also
been applied for the solution of 1-D Bratu’s problems [13]. The
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Nomenclature

e Critical value of 4

f Activation function

j Total number of neurons

o, B, @; Unknown weights

y(x) Approximate series solution

Eq Solution error of ordinary differential equation
E, Solution error of initial/boundary values

MV Mutual vector

Xpest the best degree of adaptation

rand(0,1) Vector generated from random numbers in interval
0,1)

BF4 Benefit factor for first organism
BF, Benefit factor for second organism
Xinew Updated iy, organism

Xjnew Updated j;, organism

Ym The exact solution

ANNs  Artificial Neural Networks

ODE Ordinary Differential Equation
SOS Symbiotic Organism Search algorithm
STD Standard Deviation

TIC Theil’s Inequality Coefficient

MAD Mean Absolute Deviation

NSE Nash-Sutcliffe Efficiency

ENSE Error in Nash-Sutcliffe efficiency
IVP Initial Value Problem

BVP Boundary Value Problem

ADM Adomian Decomposition Method
CANN  Cascade Artificial Neural Networks
GA Genetic Algorithm

exact solution of 1-D Bratu’s problem has the following form in pla-
nar coordinates:

- cosh((x —0.5)9)
y(x)=-2In [T%)Z} )

where 0 satisfies the equation

0* = 2Jcosh? <§),

Eq. (1) has zero solution if the value of /. is greater than the critical
value /., one solution if 1 = /. and two solutions if the value of / is
less than /.. Differentiating Eq. (3) with respect to 6 and taking
M1(6) = 0 then we get:

().

from Eq. (4), we use the value of /. in Eq. (3), we get

0. 0
= coth (Z) .

4

We have used SOS algorithm to solve Eq. (5) and obtained
0. = 4.79871456103093. Using value of 0. in Eq. (3) we obtained
Jc =3.513830719125161.

ANNSs are capable of finding quality solutions at instantaneous
points in the search space. Series solutions calculated by ANN
can approximate the solution for a differential equation on the
points that were not considered during simulations. Methods
based on ANN for solving differential equations are more accurate
than other classical numerical techniques [15]. The ANN-based
mathematical models have been used for the solution of problems
with initial and boundary conditions [16,17,15,18]. A two-
dimensional mathematical model representing the Kirchhoff plate
theory is analyzed by using a deep collocation method [19]. An
artificial neural network is designed for the solution of second-
order boundary value ordinary differential equations [20]. Mathe-
matical models represented by partial differential equations are
solved by an energy approach using machine learning [21]. Longi-
tudinal waves are studied in a circular rod with magneto-electro-
elastic characteristics in [22]. Another study of the propagation
of surface waves with the help of the nonlinear dispersive
Davey-Stewartson system and its stability is presented in [23].
Solutions of Kadomtsev-Petviashvili and modified Kadomtsev-
Petviashvili dynamical equations are elaborated in [24]. In [25], a
detailed study is carried out for exact solitary wave solutions by
using mathematical methods for the nonlinear two-dimensional

(2)

3)

H:lkmm

; 4)

(5)
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water waves of the Olver dynamical equation. Several exact and
approximate techniques are developed to solve mathematical
models involving partial differential equations [23,26,25,27,28,
22,24,29]. ANNs based soft computing paradigms gained the atten-
tion of researchers in recent years. A plant propagation algorithm
(PPA) was designed to solve design engineering problems [30]. A
modified version of PPA is presented in [31]. Impacts of different
crossover operators are investigated for handling multi-objective
problems [32]. An improved version of the genetically adaptive
multi-algorithm paradigm is studied in [33]. Plant propagation
algorithm is modified and applied to constrained, unconstrained
problems, and theoretical analysis are studied in [34-36]. A
state-of-the-art survey is published in [61], where evolutionary
algorithms are investigated in terms of decomposition and indica-
tor functions [37,38,61]. In electrical engineering, several meta-
heuristics are used to solve complex optimization problems [39-
42]. Unconstrained single-objective optimization problems are
solved by using a hybrid of global and local search procedures
[43,38]. The optimal design of heat fins is proposed in [44]. A study
of temperature distribution in heat fins is carried out by using a
hybrid of the Cuckoo Search (CS) algorithm and Artificial Neural
Network architecture [45,46]. Neuro-fuzzy modeling is used to
predict the summer precipitation in targeted metrological sites
[47]. An interesting study of financial market forecasting is accom-
plished by the ARFIMA-LSTM technique [47]. Fractional order
DPSO algorithm is used to solve the corneal model for eye surgery
[48]. A novel initialization strategy is introduced in a multi-verse
optimization technique, and different design engineering problems
are solved in [49]. Nonlinear dusty plasma systems are analyzed
with the help of NAR-RBFs neural networks [50]. A neuro-
evolutionary algorithm is applied to investigate oscillatory behav-
ior of heart beat [51]. Singular ordinary differential equations are
handled by a hybrid of DPSO and artificial neural networks [52].
Fractional differential equations representing the damping materi-
als are analysed by an efficient soft computing algorithm
[52,53,61].

In [13], a hybrid algorithm of ANN and a single path following
local search technique, the Interior point technique (IPT) was
developed to train the unknown weights involved in the architec-
ture of neural networks. IPT is a local search technique, and it can
easily get trapped in local optima. In [54], a hybrid technique is
proposed in which two metaheuristics are combined to solve
Bratu,s differential equations. The unknown weights of ANNs are
trained by the Genetic algorithm and the Teaching learning-
based optimization (TLBO) algorithm. It is evident that CANN-
GA-TLBO was slow, and it was consuming more computational
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resources. To address this issue, the authors of this manuscript
have hybridized ANNs with a new and efficient single
population-based technique known as the SOS algorithm, which
is capable of balanced exploration and exploitation. The outcome
of the ANN-SOS algorithm is encouraging and better than the
results of state-of-the-art algorithms. The ANN-SOS algorithm is
used for finding solutions for three cases of 1-D Bratu’s differential
equations. To further evaluate the quality of our solutions, we have
calculated the values of three performance indicators: MAD, TIC,
and ENSE. It is sown that the ANN-SOS technique is efficient and
consumes less computing resources. A comparison of our results
with well known analytical techniques like the B-Spline Method
and the Adomian Decomposition Method (ADM) dictates that the
ANN-SOS algorithm is fast and efficient. Four Bratu problems are
considered. Problem one is an initial value problem, and the rest
of the three cases are boundary value problems with different val-
ues of constant A.
Key findings in this paper are summarised as follows:

e We have developed a new unsupervised computing paradigm,
the ANN-SOS algorithm. It is fast and efficient and consumes
less computational resources. A flowchart is explaining how
our algorithm works is depicted in Fig. 1.

An important real-life application from ignition problems is
analyzed. These problems are named as Bratu differential equa-
tions. Four cases of Bratu problems are solved with the help of
the ANN-SOS algorithm. One problem is an initial value differ-
ential equation, while the rest of the three cases are boundary
value problems with distinct values of /.

Performance indicators, MAD, TIC and ENSE, are used to evalu-
ate the efficiency and accuracy of the ANN-SOS algorithm.

Problems of Bratu type

|

Construction of ANN model and fitness function for
the problem

Population initialization
and setting of termination
criteria

Select organism
with best fitness

Evaluate the fitness

of individuals

Commensalism
state

Parasitism state

Fig. 1. Flowchart for ANN-SOS algorithm.
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Table 1
Comparison of values of 0, and /. obtained by iterative method and SOS algorithm.
Iterative Method [14] SOS
0¢ 4.798714560 4.79871456103093
e 3.513830720 3.51383071912516
Error according to Eq. (3) 5.73E-09 3.55E-15

2. Mathematical formulation

An estimated simplified approach to the problem under consid-
eration and its nth derivative is given in Eq. (6) [54]:

J

X)) = of (Bx + ), (6)
i-1

d" . Lo

W.V(X) = ;%‘ Wf(ﬁix + ), (7)

In Eq. (4), f is used as an activation function and the unknown
weights are given as o;, 8; and w;. The number of terms in series
solution are j. In ANN architecture, log-sigmoid function is used as
an amplifier and is given as follows,

f@) =" ®)

Tl+ye?
The approximate series solution for Bratu differential equation is
given in Eq. (9),

. J 1
Y =3 o (W) )
iz
and the second derivative of y(x) is given in Eq. (10),
S i 2672(/1,-X+u)1-) e*(/}iXeri)
Y =3 uhi ). (10)
i1 (1 + E*(ﬁ,Xerx)) (] + e—(/f1x+wl))

2.1. Fitness criteria for solutions

After calculating y(x) by Eq. (9), then a mean-squared error is
calculated by putting the value of y(x) in differential equation
and initial/ boundary conditions. These errors are denoted by E;
and E, and are given in Egs. (12) and (13). The minimization objec-
tive is as follows,

min E=E; +E,, (11)
where E; is given by:

1 . o 2
E =N7HT;(YZ1(X) +2em), (12)

Range

1 2 S
\Ne'\g\"\

Fig. 2. Best set of weights obtained by ANN-SOS algorithm for Bratu IVP.
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(a) The graph of ANN-SOS and exact solution.
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<105
T

Fitness value

(c) Convergence of the fitness values in 100 runs.

20 30 40 50 60 70 80 90 100
Number of runs

Runs

Runs

where N = % ,¥m = Y(xm) and x,, = mh. The domain for the problem
is taken from the interval (0, 1) which is divided in N subintervals
(X0 = 0,%1), (X2,X3),..., (Xn_1,Xy = 1) with the step size h,j(x) and

MAD Value %10
(e) Histogram of MAD values.
-2 -1 0 1 2 3 4 5
ENSE Value %10

(g) Histogram of ENSE values.

Absolute errors

Fitness value

(d) Histogram of fitness values.

2 -1 0 1 2 3 4 5
TIC Value

(f) Histogram of TIC values.

Values
3
£
r

(h) Best,
indicators.

Fitness

MAD TIC
Performance indicators

ENSE

mean and worst values of performance

Fig. 3. Results obtained by ANN-SOS for Bratu initial value problem.

¥"(x) are the series solutions based on the neural networks as given

in Egs.

(9) and (10).

Similarly, E, is defined as:

2214
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Range
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Fig. 4. Weights obtained for ANN-SOS for Bratu BVP with 1 = 1.

B = 2 (000 + (51 (0)). (13)

E; is the error related to the differential equation while E, repre-
sents errors related to the boundary conditions in the Bratu prob-
lem. It is evident that for the weights «;, f; and w; in Egs. (9) and
(10) which are adjustable parameters, if E; and E, approaches to 0
for these parameters then E will also approach zero. Hence, the
solution y(x) will be the best required result.

3. Optimizer for objective function

After building the neural network, we get unknown weights and
minimization objective function as in Eq. (11). A well-balanced
minimizer is needed to optimize the objective function and obtain
the best set of weights. In our novel approach, we have chosen the
Symbiotic Organism Search (SOS) algorithm to accomplish the task
of optimization. We name our technique the ANN-SOS algorithm.
SOS optimizer is a nature-inspired technique that simulates the
process of survival of organisms in an ecosystem [55]. The SOS
algorithm uses three phases; mutualism, commensalism, and
parasitism. Each phase defines the states of organisms in an
ecosystem. The search equations mimicking all the three phases
are given in the following sections.

3.1. Mutualism state

The example of flowers and bees shows a mutualism relation-
ship, which is beneficial for both participant organisms. This phase
of SOS represents such a mutual relationship between organisms of
the ecosystem. In the SOS algorithm, X; is the organism assumed as
the i;, member in the ecosystem. It randomly selects the other
organism X; from the ecosystem for interaction with organism X;.
Both of the organisms want to improve their survival inside the
ecosystem, so they engage in a mutual relationship with one
another. The new candidate solutions for organisms X; and X; are
computed based on the mutual symbiosis between them, accord-
ing to the Eq. (11)

Xinew = Xi + 1and(0, 1) * (Xpest — MV x BFy), (14)

Ain Shams Engineering Journal 12 (2021) 2211-2225

Xinew = X; + rand(0, 1) * (Xpest — MV x BF3), (15)
My =% ;X] (16)

rand(0,1) is a vector generated from random numbers. Here, the
benefit factors BF; and BF, are randomly chosen either 1 or 2. The
factors denote the benefit level for each organism if an organism
is partially or fully getting benefits from the mutual relationship.
Eq. (16) represents a vector that is known as Mutual Vector that
denotes the characteristics of the relationship between the organ-
isms X; and X;. In Egs. (14) and (15), Xp.s: represents the best degree
of the adaptation. Therefore, X,.;; sShows the best-adapted candidate
solution. By using the dimensions of X, the fitness of both X; and
X; is improved. Finally, the fitness of the current best and global best
is compared, and the global best is replaced by the fittest solution.

3.2. Commensalism state

At this stage, two organisms X; and X; are selected from a pole of
candidate solutions. X; is privileged to have more benefit than X;.
Moreover, X; participates in this stage on a "no profit no loss” basis.
A new solution is computed by using Eq. (15). If the candidate solu-
tion X; is improved then it is updated as follows,

Xinew = Xi + rand(—1,1) % (Xpest — Xj) (17)

The part of the equation, (Xp.ss — Xj), mimics the advantage provided
by X; to X;, improving changes of its survival in the ecosystem.

3.3. Parasitism state

In the parasitism stage, a random candidate solution X; is cho-
sen as a base vector for reproduction. X; is then modified by ran-
domly changing its dimensions. Another solution X; is randomly
picked from a population of solutions, and finally, the fittest solu-
tion replaces the solution with low fitness.

4. Performance measures

We have performed 100 simulations on all four problems to
establish the stability, adaptability, and certainty of the ANN-SOS
algorithm. For this purpose, we have determined the mean abso-
lute deviation (MAD) in solutions, root-mean-square error (RMSE),
error in Nash-Sutcliffe efficiency (ENSE), Theil’s inequality coeffi-
cient (TIC), and Nash-Sutcliffe efficiency (NSE). The analytical def-
inition of these indexes are provided in Egs. (18)-(21), (see Table 1)

1¢ -
MAD = |V = Iml, (18)

m=1

TIC = ol , (19)
n n N
(i i3]
m=1 m=1
& ~ N2
(ym —ym) 1 n
NSE=1-"1— ym=52ym7 (20)
(.ym _ym)Z m=1
m=1
ENSE = 1 — NSE. (21)
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(a) The graph of ANN-S0OS and exact solutions.
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Fig. 5. Results obtained by ANN-SOS for Bratu BVP with 1 = 1.
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Range

Fig. 6. Weights obtained for ANN-SOS for Bratu BVP with 1 = 2.

5. Simulations and results

The proposed ANN-SOS algorithm has been implemented to
solve four cases of the Bratu boundary/ initial value problems for
different values of constant A, and the results achieved by the
ANN-SOS algorithm for 4 =1,2, and 3.51 are given in Figs. 2-9
and Tables 2-16. We have compared our results with the B-
spline technique and state-of-the-art solutions. In this paper, we
have considered one initial value problem and three boundary
value problems, which are collectively identified as Bratu differen-
tial equations.

5.1. Problem 01: Bratu Differential Equation with Initial Values

The Bratu initial value problem is given by:

y'(x) -2 =0, 0<x<1,

¥(0) =y'(0) =0, (23)

we have solved the problem in (22) and (23) using the ANN archi-
tecture given in Egs. (9) and (10). In each hidden layer, there are 10
neurons (10 terms in series solution) and the unknown weights are
30. The input variable x is varied over the interval (0, 1) choosing a
step size of h = 1/10, i.e., solutions are found at 11 grid points. We
give the fitness function for Bratu IVP as:

(22)

10
E= g7 06 =260+ (00 +03)) 24)
m=
The fitness function (24) is trained and optimized by the ANN-SOS
algorithm. Our approach has successfully calculated the best solu-
tion with lower residual error as 1.6492 x 107, The best set of
weights obtained by ANN-SOS technique to minimize the fitness
function are plotted in Fig. 2 and the series solution of the problem
is given in Eq. (25),

2217
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2.80930375218414 + 1.88533586713111
1+¢—(3-25877858055612x—4.42324022732111) | 1 ¢—(1.92935080260280x—6.54424119668768)

+ —7.69491236009608 + 3.53291632086472
1-fe—(~8.34008116021304x—10.4285997231487) | 1 ¢ (7.13418766557493x—11.0083125489669)

+ 3.14205498842095 + 1.04196408052834
1. e—(2.07492261571949x—456180146345720) | 1 o—(—0.817341259587510x—4.90879356410201)

+ —1.61892545895628 + 5.28753700692028
11 e (—867522044525885x—10.0243195066148) | ] ¢—(—2.23065868564640x—3.01513897945583)

+ —0.793273842351156 + 0.713782054972897
1+e—(—256336088924486x-+1.74762681409507) | 11 ¢—(0.520177614554118x-0.0243667449777310)

(25)

Exact and ANN-SOS solution of the Bratu IVP are presented in
Table 2 and solutions are depicted in Fig. 3a. It is obvious that
ANN-SOS techniques is accurate and efficient. The worst, best, and
mean absolute errors in the results for Bratu IVP are presented in
Fig. 3b. Fig. 3c shows the convergence of fitness values during 100
runs. Histograms with normal distribution fittings for fitness values,
MAD, TIC and ENSE values are given in Fig. 3d,e, f and g respectively.
The figures show that most of the values are less than 10~ which
dictates the accuracy of our algorithm. The worst, best and mean
values of the performance indicators are presented in Fig. 3h. Statis-
tical analysis of absolute errors is given in Table 4. The minimum
values of absolute errors are in the range 10~% to 10~%’, mean val-
ues are in the range 10~ to 10~% and standard deviation (STD) is
about 107%. Statistical analysis of performance indicators is given
in Table 3. The fitness values range from 10~% to 10™%, MAD values
range from 10" to 107, TIC values range from 10~ to 107 and
ENSE values range from 10°% to 107%.

5.2. Problem 02: Bratu Differential Equation with Boundary Values
and =1

The Bratu BVP with 1 =1 is given as:

V') +e® =0 0<x<1,
¥(0) = y(1) =0,

The exact solution of Bratu BVP with 4 =1 is obtained using the
value of 0 =1.5172 over the interval (0,1) and a step size of
h =1/10. The ANN-SOS algorithm is used to approximate the solu-
tion y(x) of the Bratu BVP. The fitness function for the first case of
BVP is given in Eq. (28),

€

E=13

10
S G+ ) 4 2 () + 0)) (28)
m=0

Our goal is to find the weights for which the error E is miminum, i.e.

y(x) — y(x). Previous fitness values obtained by ANN using gradient
descent algorithm, L-M method and conjugate gradient method are

3.20x107%,1.39 x 10 and 3.95 x 1072 respectively while ANN-

SOS algorithm obtained solutions with error 2.2883 x 107'°.
Weights obtained by ANN-SOS algorithm for Bratu problem with
/=1 are plotted in Fig. 4 and series solution for the problem is
given in Eq. (29),

yx) =

1.24728531290468 + —7.56441140211341
1+e—(—3.06401684752794x+7.12560604918088) | 1 g—(-9.79059355122726x~10.4361025757102)

+ 9.45007659500737 + 3.51460879132383
1te-(1.03536059437449x+1.86401803944560) | 1 ¢~ (2.83342068579553x~10.4106108958789)

+ —8.19422278273552 + —3.00415724602500
1+e— (1.86044465387359x+5.30109579770407) T 1o (1.44843577295695x~2.15016843886231)

+ 1.39211861821510 + —0.936704068554820
14e—(-0.547875973317433x~4.54733797418289) | 1 ¢-(2.51380014579328x+3.18718847560574)

+ —0.570575521871031 + 4.22908685810153
1te(0.177489786814245x~1.84310289784770) | 1 ¢ (1.88631176501465x—7.56046292101172) *

(29)

Results obtained by ANN-SOS algorithm for Bratu problem with
4 =1 are compared with the exact solution and other analytical
methods like B-spline [7], ADM [9] and ANN based L-M method
[56]. Numerical solutions for Bratu BVP with 2 =1 are given in
Table 5. The graph of exact and approximate solution of the Bratu
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(a) The graph of ANN-SOS and exact solutions.
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Fig. 7. Results obtained by ANN-SOS for Bratu BVP with 4 = 2.

BVP with 1 = 1 is given in Fig. 5a which shows that our solutions are
in strong agreement with the exact solutions. The absolute errors in
the solutions at each input x are given in Table 6 and our results
show that ANN-SOS gives better results than other algorithms.
The best, mean and worst absolute errors in the solutions are plot-

2218

ted in Fig. 5b. Convergence of fitness values for all 100 runs is given
in Fig. 5c¢. Histograms with normal distribution fittings for fitness
values, TIC, MAD, ENSE values are plotted in Fig. 5d, e, f and g
respectively. Statistical analysis of absolute errors is given in Table 7.

The minimum values of absolute errors are in the range 10°” to
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Fig. 8. Weights obtained for ANN-SOS for Bratu BVP with i = 3.51.

10~%, mean values are in the range 10~ to 10~ and standard devi-
ation (STD) is about 10~%. Statistical analysis of performance indica-
tors is given in Table 8. Fitness values range from 10~% to 107'°, MAD
values range from 10°% to 107%, TIC values range from 10" to
107% and ENSE values range from 10~ to 107%,

5.3. Problem 03: Bratu Differential Equation with Boundary Values
and =2

The Bratu BVP with 1 = 2 is given as:

y'(x) + 2e™ =0,
¥(0) =y(1) =0,

The exact solution for Bratu BVP with A =2 can be obtained using
6 =2.3576 over the interval (0,1) and step size is taken as
h =1/10. We have implemented the ANN-SOS algorithm to find
the approximate solution y(x) of the Bratu BVP with 2 = 2. The fit-
ness function for the second case of BVP is given by:

0<x«<1,

1 10
11

m=

E= o> 5+ 260 40 (00 + 01)°) 32)
0

The weights obtained by ANN-SOS algorithm to minimize the fit-
ness function for the Bratu BVP with 1 = 2 are given in Fig. 6 and
series solution for the problem is given in Eq. (33). The minimum
fitness value obtained by the ANN-SOS algorithm for this case is

6.9844 x 107,

—0.0317583696308022 + 5.50642380672547
1+ e (448013903492425x+4.51356342526243) | 1| (- 1.45565879681638x+4.82204338938373)

+ 1.10844521686188 + —3.06023905770815
1+e—(—192243057005630x—8.73496512037616) | 11— (4.89882671644400x+6.02651866456611)

+ —1.82817215674307 + 2.59738183046781
1+e-(—844109852071930x~6.22450081338830) | 1 (269592019574108x+0.963688888178887)

+ —3.51468490972454 + —3.60217575258556
1+ (0.107881652053869x+5.17877699511452) | {1 ¢—(1.69570925870392x—2.43442472472352)

0.591745404895704 —0.644096886462373

y(x)

+ ‘1+€’(3 08065117618813x—-0.929126188225333) + 1+e*(70.594903863624441)(&»4 51470864034716) *

(33)

Exact and ANN-SOS results are presented in Table 9 and Fig. 7a.
Absolute errors in solutions obtained by ANN-SOS are compared
with exact and approximate results in Table 10. The table shows
that ANN-SOS gives better solution than other techniques. The
mean, best and worst absolute errors are plotted in Fig. 7b. Conver-
gence of fitness values for 100 runs is given in Fig. 7c. Histograms
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with normal distribution fitting for fitness values, MAD, TIC and
ENSE values are plotted in Fig. 7d, e, f and g respectively. The mean,
best and worst values of performance indicators are given in Fig. 7h.

Statistical analysis of absolute errors in solutions is given in
Table 11. The minimum values of absolute errors in solutions are
in the range 10°% to 10~%°, mean values are in the range 10™® to
107 and standard deviation (STD) is about 10~%. In Table 12, sta-
tistical anlysis of performance indicators is presented. Fitness val-
ues range from 10°% to 10°%, MAD values range from 10™% to
107, TIC values range from 10~ to 10~ and ENSE values range
from 10" to 10°%,

5.4. Problem 04: Bratu Differential Equation with Boundary Values
and 4 = 3.51

The Bratu BVP with /1 = 3.51 is given as:

y'(x)+3.51eW =0, 0<x<1,
¥(0) =y(1) =0,

The exact solution for Bratu BVP with / = 3.51 is obtained using
0 = 4.6678 over the interval (0,1) with a step size of h =1/10.
ANN-SOS algorithm is implemented for the approximate solution
y(x) of the Bratu BVP with 2 =3.51. The fitness function for the
third case of BVP is given by:

€

E=13

10
S 5+ 3516 2 (00 + 01)°). (36)
m=0

The minimum fitness value obtained by the ANN-SOS algorithm for

this case is 9.8730 x 10%. Weights found by the ANN-SOS algo-
rithm to minimize the fitness function are given in Fig. 8 and the
series solution of the problem is given in Eq. (37).

1.60868459603217 + —3.79334485062983
1+~ (352294222692223x-1.04346832830829) 1+e~(~1.323022079669128x-2.13500959962196)

+ 3.74597814878045 + 2.58401438587289
11e-(—3.02822468673060x+3.22703105107574) | 1 (-2.43837526010411x+3.23470235156649)

+ —8.19454097262985 + —1.30281343637084
14 e—(—1.76266092949907x—0.710663034413324) | 1 {¢—(4.50621461903119x—292157331861317)

—1.05392991013643 —4.08568323589360

y(x) =

+ 11e-(3.42137926339057x~4.65967442258375) + 11 e (-0202272526240823x+2.66054036462423)
+ 0.489637102697201 + 0.0689083029401389
1t e—(—1.16888243272632x+556029032511399) | 1 ¢—(8.00639273072346x—8.43967448823257) *

(37)

The exact and approximate solutions obtained by ANN-SOS algo-
rithm and other techniques are given in Table 13. The graphs of
exact and ANN-SOS solutions are plotted in Fig. 9a. The absolute
errors in the solution calculated by ANN-SOS are compared with
other techniques in Table 14. From Table 14, it is clear that ANN-
SOS gives better results than other techniques. The best, mean
and worst values of absolute errors in solutions obtained by ANN-
SOS are given in Fig. 9b. Convergence of the fitness values is given
in Fig. 9c. Histograms with normal distribution fitting for fitness
values, ENSE, MAD and TIC values are plotted in Fig. 9d, e, fand g
respectively. Fig. 9h shows the best, mean and worst values of fit-
ness, MAD, TIC and ENSE. Statistical analysis of absolute errors in
the solutions obtained by ANN-SOS is presented in Table 15. The
minimum values of absolute errors range from 10~ to 107, mean
values of absolute errors range from 10°% to 10~ and standard
deviation (STD) range from 10~% to 10~%, Statistical analysis of per-
formance indicators is presented in Table 16. Fitness, MAD, ENSE
and TIC values range from 107 to 10%,10™° to 107,107 to
107 and 107" to 107% respectively. We have solved bratu bound-
ary value problem for 4= 1,2 and 3.51 by training ANN using Bat
algorithm [57] and PSO [58] and obtained solutions are compared
with ANN-SOS as given in Table 18. The table also shows that
ANN-SOS given better solutions than bat algorithm and PSO. To
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Fig. 9. Results obtained by ANN-SOS for Bratu BVP with i = 3.51.

check computational efficiency, we have compared ANN-SOS with
PSO and bat algorithm as given in Table 17. Bratu problem with
A =2 is considered to check the efficiency of the algorithms. PSO
algorithm took 58.432 s and 250052 function evaluations to obtain

2220

fitness value of 1.00E-03, Bat algorithm took 45.412 s and 250050
function evaluations and reached to a fitness value of 6.11E-02
and ANN-SOS took 25.27 s and 120030 function evaluations to
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Table 2 Table 6
Exact and ANN-SOS solution for Bratu IVP. Absolute errors in the solutions for Bratu BVP with 4 = 1.
X Exact ANN-SOS Absolute errors X B-Spline [7] ADM [9] ANN [56] ANN-SOS
0.1 0.010016711246471 0.010016520285087 1.91E-07 0.1 2.98 E-06 2.68E-03 2.75E-04 1.32E-06
0.2 0.040269546104817 0.040271993476909 2.45E-06 0.15 9.26E-07
0.3 0.091383311852116 0.091386766303560 3.45E-06 0.2 5.46 E—06 2.02E-03 3.29E-04 6.33E—-07
0.4 0.164458038150111 0.164463217719673 5.18E—06 0.25 2.27E-06
0.5 0.261168480887445 0.261176727541921 8.25E-06 0.3 7.33E-06 1.52E-04 2.13E-03 3.29E-06
0.6 0.383930338838875 0.383940466945659 1.01E-05 0.35 3.43E-06
0.7 0.536171515135862 0.536183190285842 1.17E-05 0.4 8.50E—06 2.20E-03 1.32E-03 2.81E-06
0.8 0.722781493622688 0.722797433281814 1.59E-05 0.45 1.71E-06
0.9 0.950884887171629 0.950903275947703 1.84E-05 0.5 8.89E-06 3.01E-03 3.75E-04 4.75E-07
0.55 6.36E—07
0.6 8.50E—06 2.20E-03 8.63E—-04 1.48E—06
0.65 2.01E-06
Table 3 0.7 7.33E-06 1.52E—04 3.20E-03 2.31E-06
Statistical analysis of performance indicators for Bratu IVP. 0.75 2.38E-06
Fitness MAD TIC ENSE 0.8 5.46E—06 2.02E-03 1.29E-03 2.26E—06
0.85 1.80E—06
Best 1.65E-08 9.45E-06 5.64E-06 6.18E-09 09 2.98E—-06 2.68E—-03 4.66E—-06 8.62E-07
Mean 6.06E—06 1.68E—04 9.95E-05 4.46E—06
Worst 4.19E-05 8.29E—04 4.90E—04 4.77E-05
STD 8.18E—06 1.91E-04 1.10E—04 9.81E-06
Table 7
Statistical analysis of absolute errors in solutions for Bratu BVP with / = 1.
X Min Mean STD
0 1.65E—08 2.77E-06 5.40E—06
Table 4 0.1 8.53E-08 4.97E-06 6.33E-06
Statistical analysis of absolute errors in solutions for Bratu IVP. 0.2 4.21E-07 5.71E—06 5.95E—06
- 0.3 1.48E—07 6.61E-06 6.03E-06
X Min Mean STD 0.4 8.62E—08 8.30E—06 6.53E—06
0 3.13E-07 8.94E-05 1.15E-04 0.5 4.75E-07 1.00E—05 7.46E—06
0.1 1.91E-07 9.47E-05 1.20E-04 0.6 2.30E-07 1.02E-05 8.04E-06
0.2 2.20E-06 9.76E-05 1.18E-04 0.7 7.67E-07 8.57E—06 7.35E-06
0.3 2.26E-06 1.06E—04 1.27E-04 0.8 3.25E-07 6.16E—06 6.13E-06
0.4 2.61E-06 1.26E—04 1.50E—04 0.9 5.92E-08 4.51E-06 5.71E-06
0.5 8.25E—06 1.53E-04 1.76E-04 1 1.14E-08 3.22E-06 5.81E-06
0.6 9.79E-06 1.76E—04 1.97E—04
0.7 3.72E-06 1.91E-04 2.16E-04 Table 8
0.8 3.04E-06 2.19E-04 2.49E-04 Statistical analysis of performance indicators for Bratu BVP with 1 = 1.
0.9 1.72E—06 2.74E-04 3.09E-04
1 2.06E—06 3.24E-04 3.66E-04 Fitness MAD TIic ENSE
Best 2.29E-10 2.03E-06 6.21E-06 1.79E-08
Mean 1.58E—07 6.46E—06 1.96E—05 3.32E-07
Worst 1.46E—06 4.91E-05 1.32E-04 1.04E-05
Table 5 STD 2.69E-07 5.94E—-06 1.59E-05 1.11E-06
Exact and approximate solutions for Bratu BVP with 1 = 1.
X Exact B-Spline [7] ANN-S0S 5.5. Problem 05: System of Second Order Differential Equations with
0.1 0.0498490309241491 0.0498438 0.049847707280091 Boundary Values
0.15 0.0708630894990087 0.0708621629772051
00-225 0601309;799329;67]323(;7621759 0.0891845 8-?32;3322;232323 To check the efficiency of ANN-SOS for 2-dimensional differen-
03 0.1176144390042010 01176018 0.117617727302676 t}al equations, we have considered the system of differential equa-
035 0.127625305952561 0.127628739094571 tions [59,60]
0.4 0.1347963951129060 0.1347818 0.134799204678325 ”
0.45 0.139107283600459 0.139108995657110 Yitxy Xy, =2, (38)
0.5 0.1405456236637080 0.1405303 0.140546098551325
0.55 0.139107283600459 0.139106647199380 Vo + 22Xy, + 2xy; = -2, (39)
0.6 0.1347963951129060 0.1347818 0.134794918261672 . .
0.65 0.127625305952561 0.127623286987649 with boundary conditions asy; (0) = y;(1) = 0and y,(0) = y,(1) = 0.
0.7 0.1176144390042010 0.1176018 0.117612131875780 The exact solutions for the system of ODEs are y, = x> —x and
075 0.104792061208615 0.104789671322554 y, = X — x.We have solved the system using ANN-SOS and compared
0.8 0.0891939678347279 0.0891845 0.089191712093883 ] . . . i .
0.85 0.0708630894990087 0.0708612881189368 the solutions with exact solutions as given in Fig. 10. The series solu-
0.9 0.0498490309241491 0.0498438 0.049848168613843 tions for the system are given in Egs. (40) and (41). The solutions

reach a fitness value of 2.15E-05 which shows that ANN-SOS is

more efficient than PSO and bat algorithm.

2221

obtained by ANN-SOS are very close to exact solutions which shows
the efficiency of ANN-SOS algorithm.

X =

2.40442459290055
14e—(—2.57463864762536x—2.50249300012790)

+ —0.00819648681006459
1-te—(~0-893394489795902x-0.257093990212238)
+

—1.24989510656346
1-te—(~0.109465879398657x+0.228662808771426)
+
JF

__0717959958212290
11 e (496952889147777x5.67482822937167)

4+ 0905715752252863
T e (~0918245684602100x1.70722783705502)
+

3.12273410474153
1-+e—(1.84052736600937x—2.82410922658788)

e SO LI202000 95, 0.700313155192487
1te (0976589864643 T1x+0.518924754900759) 1 11— (~00266996014862956x2.09961555427663)

0.920130825935220 + —1.96649633452813
1-+e—(~2.53462882826823x—0.932717192696820) | |y ¢—(-2.08475347470779x+4.20794668462428)

(40)

+

1.73817354888999
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Table 9 Table 13
Exact and approximate solutions for Bratu BVP with 1 = 2. Exact and approximate solutions for Bratu BVP with 1 = 3.51.
X Exact B-Spline [7] ANN-SOS X Exact B-Spline [7] ANN-SOS
0.1 0.114415097549024 0.114393565 0.114409408571901 0.1 0.364334290615029 0.357388461 0.364155174602682
0.15 0.163363915345986 0.163358679573245 0.15 0.528549826192367 0.528299150929971
0.2 0.206427087404209 0.206386519 0.206420989528320 0.2 0.677866771379571 0.664283874 0.677548902494709
0.25 0.243346020110221 0.243337443427415 0.25 0.809896185176297 0.809515462399274
0.3 0.273890003266652 0.273834413 0.273878654436806 0.3 0.922210062282960 0.902930838 0.921772041022162
0.35 0.297861640828203 0.297848692592984 0.35 1.01247780658258 1.01199129078342
0.4 0.315101747408207 0.315036506 0.315088973455173 0.4 1.078629288032380 1.055419782 1.078107189940600
0.45 0.325493464733123 0.325482186260283 0.45 1.11902580574817 1.11848374007722
0.5 0.328965378836911 0.328896807 0.328955860889458 0.5 1.132612733483520 1.107989815 1.132066255650850
0.55 0.325493464733123 0.325484996904789 0.55 1.11902580574817 1.11848854695750
0.6 0.315101747408207 0.315036506 0.315093255967123 0.6 1.078629288032380 1.055419782 1.078113420482010
0.65 0.297861640828203 0.297852451135124 0.65 1.01247780658258 1.01199577329851
0.7 0.273890003266652 0.273834413 0.273880347831092 0.7 0.922210062282960 0.902930838 0.921774890602439
0.75 0.243346020110221 0.243337035757517 0.75 0.809896185176297 0.809519231500183
0.8 0.206427087404209 0.206386519 0.206420287050235 0.8 0.677866771379571 0.664283874 0.677555331138821
0.85 0.163363915345986 0.163360368424026 0.85 0.528549826192367 0.528308094732500
0.9 0.114415097549024 0.114393565 0.114414737859033 0.9 0.364334290615029 0.357388461 0.364166335701786
Table 14
Absolute errors in solution for Bratu BVP with 4 = 3.51.
X B-Spline [7] ANN [56] ANN-SOS
0.1 3.84E-02 2.98E-04 1.79E-04
Table 10 0.15 2.50E—04
Absolute errors in solution for Bratu BVP with 4 = 2. 0.2 7.48E—02 6.88E—03 3.18E—04
- 0.25 3.80E-04
X B-Spline [7] ANN [56] ANN-SOS 03 1.06E—01 2.72E-03 438E-04
0.1 1.72 E-05 2.35E-03 5.69E-06 0.35 4.86E—-04
0.15 5.23E-06 0.4 1.27E-01 1.76E-02 5.22E-04
0.2 3.26 E-05 1.56E-03 6.10E-06 0.45 5.42E-04
0.25 8.57E-06 0.5 1.35E-01 1.04E-02 5.46E-04
0.3 4.49E-05 3.52E-03 1.13E-05 0.55 5.37E-04
0.35 1.29E-05 0.6 1.27E-01 1.37E-02 5.16E-04
0.4 5.28E-05 4.95E-03 1.28E-05 0.65 4.82E-04
0.45 1.12E-05 0.7 1.06E-01 4.32E-03 4.35E-04
0.5 5.56E-05 4.09E-03 9.52E-06 0.75 3.76E-04
0.55 8.46E—-06 0.8 7.48E—02 6.68E—-03 3.11E-04
0.6 5.28E-05 5.13E-03 8.49E-06 0.85 2.41E-04
0.65 9.18E-06 0.9 3.84E-02 1.66E-03 1.68E—-04
0.7 4.49E-05 3.77E-03 9.66E—-06
0.75 8.98E-06 Table 15
08 3.26E-05 1.70E-03 6.80E-06 Statistical analysis of absolute errors in solutions for Bratu BVP with . = 3.51.
0.85 3.54E-06
0.9 1.72E-05 1.28E-03 3.60E-07 X Min Mean STD
0 9.51E-06 1.72E-03 2.33E-03
0.1 1.79E-04 1.00E—02 1.06E-02
0.2 3.17E-04 1.93E-02 1.85E-02
0.3 4.38E-04 2.65E-02 2.52E-02
Table 11 0.4 5.22E-04 3.13E-02 2.98E-02
Statistical analysis of absolute errors in solutions for Bratu BVP with 4 = 2. 0.5 5.46E—-04 3.31E-02 3.14E-02
0.6 5.15E-04 3.13E-02 2.98E-02
X Min Mean STD 0.7 435E-04 2.65E—02 2.53E-02
0 5.37E-09 1.09E-05 2.54E-05 08 3.11E-04 1.93E-02 1.85E-02
0.1 5.76E-07 1.78E-05 2.92E-05 03 1.67E-04 1.08E-02 1.OGE—02
0.2 1.08E-06 1.83E-05 2.45E-05 1 2.24E-05 1.74E-03 2.36E-03
0.3 3.29E-06 1.93E-05 2.11E-05
0.4 6.77E-07 2.43E-05 2.46E-05
0.5 4.23E-06 2.92E-05 2.97E-05 Table 16
0.6 3.22E-06 2.88E-05 3.03E-05 Statistical analysis of performance indicators for Bratu BVP with 4 = 3.51.
0.7 3.83E-06 2.32E-05 2.47E-05
0.8 6.60E—08 1.67E-05 1.57E-05 Fitness MAD TIic ENSE
09 3.87E-08 1.24E-05 1.23E-05 Best 9.87E-08 3.16E-04 1.24E-04 6.72E-06
1 6.34E-09 8.63E-06 1.31E-05 Mean 5.78E—05 1.93E-02 7.80E—-03 4.77E-02
Worst 1.07E-03 1.00E-01 4.34E-02 6.71E-01
STD 1.41E-04 1.85E-02 7.70E-03 9.51E-02
Table 12
Statistical analysis of performance indicators for Bratu BVP with 7 = 2. Table 17
Computational efficiency of algorithms.
Fitness MAD TIC ENSE
Best 6.98E-09 5.77E-06 7.52E-06 2.64E-08 PO Bat algorithm 508
Mean 1.41E-06 1.91E-05 2.41E-05 6.38E—-07 Fitness Value 1.00E-03 6.11E-02 2.15E-05
Worst 1.85E-05 1.40E-04 1.78E-04 1.56E-05 Time (seconds) 58.432 45412 25.27
STD 2.95E-06 2.11E-05 2.60E-05 1.90E-06 MFE 250051 250050 120030
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Table 18
Solutions of bratu boundary value problem for different values of /.
X =1 =2 7=3.51
Exact Bat PSO ANN-SOS Exact Bat PSO ANN-SOS Exact Bat PSO ANN-SOS
algorithm algorithm algorithm
0.1 0.0498490 0.0496347 0.0495392 0.0498477 0.1144151 0.1149388 0.1144022 0.1144094 0.3643343 0.3502382 0.3626373 0.3641552
0.2 0.0891940 0.0889685 0.0888661 0.0891946 0.2064271 0.2065309 0.2066709 0.2064210 0.6778668 0.6527166 0.6748154 0.6775489
03 0.1176144 0.1174020 0.1172367 0.1176177 0.2738900 0.2733599 0.2744122 0.2738787 0.9222101 0.8877109 0.9179894 0.9217720
04 0.1347964 0.1346911 0.1343954 0.1347992 0.3151017 0.3137300 0.3158092 0.3150890 1.0786293 1.0377094 1.0736321 1.0781072
0.5 0.1405456 0.1405570 0.1401747 0.1405461 0.3289654 0.3266813 0.3297693 0.3289559 1.1326127 1.0893993 1.1273518 1.1320663
0.6 0.1347964 0.1348358 0.1345018 0.1347949 0.3151017 0.3120234 0.3159897 0.3150933 1.0786293 1.0376901 1.0736493 1.0781134
0.7 01176144 0.1176614 0.1174147 0.1176121 0.2738900 0.2702861 0.2749084 0.2738803 0.9222101 0.8875961 0.9180212 0.9217749
0.8 0.0891940 0.0893255 0.0890739 0.0891917 0.2064271 0.2026107 0.2076089 0.2064203 0.6778668 0.6525708 0.6748449 0.6775553
0.9 0.0498490 0.0500267 0.0497734 0.0498482 0.1144151 0.1106154 0.1157219 0.1144147 0.3643343 0.3501246 0.3626863 0.3641663
03 ] ] ] ] ] ] ] | |
0.2 F -
0.1 _
===== Exact (y1)
3 SOS-ANN (y1)
Exact (y2)
S, SOS-ANN (y2) /'
\’ V2
\, ,'
-,
-0.1 B I*e\’ /;“ N
\, /'
h o’
~, ’
%<, i
Cd
02F ~ PR .
-, g
_0 3 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11
Fig. 10. Solution of the system of ODEs by ANN-SOS.
{7 (X) _ 0.890948666418945 —0.165999663029983
Table 19 Y2 1+e (242934408305951x+2.76119652877121) + 1+e (488301177052512x-0.216151040866744)
Sensitivity analysis of number of neurons in ANN. + —1.37143236035590 + 1.53436751646672
1+e—(—0 826421353507985x+1.24656446486019) 1+e—(00145214842427664}(—2.01142009223707)
x Exact ANN-SOS (3 ANN-SOS (5 ANN-SOS (10 + -9.43614706241816 L —1.38649156682681
. ]+e—(1.43616]59135335)(—3'37978778820565; 1+e—(—2v39258020099330)<—1,7939051457088]J
solution neurons) neurons) neurons)
+ ___0.392521293013865 + 0.804200664217380
O-l 0049849031 0050207593 0049794863 0049847707 1+e—(1.65267761553255x+4 79525886880030) 1+e—(3 21988604521199x+0.220411171477678)
02 0089193968 0089578970 ~  0.089149854 ~  0.089194601 T TTER A DO Ve S A TERG00ATE) + o IO IS e (4000527
03 0117614439  0.118011800 0.117582525 0.117617727
04 0134796395  0.135192175  0.134765132 0.134799205 (41)
0.5 0.140545624  0.140941817 0.140505235 0.140546099
0.6 0.134796395  0.135208751 0.134750872 0.134794918
0.7 0.117614439  0.118056090 0.117578979 0.117612132 6. Sensitivity analysis
0.8 0.089193968  0.089657566 0.089180302 0.089191712
0.9 0.049849031  0.050302643 0.049852065 0.049848169 . . . L
Sensitivity analysis of number of neurons in ANN model is given
Table 20 in Table 19. The table shows that when the number of neurons
Sensitivity analysis of ecosize in SOS algorithm. increases in ANN, the solution is getting better. The sensitivity
analysis in terms of ecosize in SOS algorithm is given in Table 20.
X Exact ANN-SOS ANN-SOS ANN-SOS . : > .
. . . . This table shows that the accuracy in the solutions obtained by
solution (ecosize = 20) (ecosize = 30) (ecosize = 50) . A
ANN-SOS increases as ecosize increases.
0.1 0.049849031  0.049868321 0.049851747 0.049847707
0.2 0.089193968 0.089200098 0.089193212 0.089194601
03 0.117614439  0.117610433 0.117609914 0.117617727 7. Conclusion
0.4 0.134796395  0.134778838 0.134789408 0.134799205
0.5 0.140545624 0.140510760 0.140537916 0.140546099 . .
06 0134796395  0.134743798  0.134787566  0.134794918 We have implemented the ANN-SOS algorithm to solve one-
0.7 0.117614439 0.117547134 0.117603494 0.117612132 dimensional Bratu initial and boundary value problems with differ-
0.8 0.089193968  0.089116286 0.089182874 0.089191712 ent values of the parameter Z. The results obtained by the ANN-SOS
0.9 0.049849031  0.049764159 0.049839463 0.049848169
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algorithm are compared with other techniques. The fitness value
obtained by ANN-SOS algorithm for Bratu’s initial value problem is
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1.6492 x 10~® and comparison of our result with the exact solution
is given in Fig. 3a. For the Bratu BVP with / = 1, the fitness value

obtained by the ANN-SOS algorithmis 2.2883 x 10~'° whichis much
better than ANN-based gradient descent algorithm, L-M method and
conjugate  gradient  algorithm  with  fitness  values

320x1073,139x10™* and 3.95x 10> respectively. Table 6
shows that the ANN-SOS algorithm successfully calculated better
results than analytical methods, the B-Spline method and ADM.
The results for Bratu BVP with 1 = 2 are given in Table 10, and it is
clear from the table that the ANN-SOS algorithm shows better
results than other methods. In Table 14, the absolute errors obtained
by B-Spline, ANN and ANN-SOS algorithm are reported. It is evident
that ANN-SOS algorithm produced accurate results. ANN-SOS algo-
rithm quickly solved the nonlinear Bratu IVP and BVPs. It can solve
higher dimensional Bratu problems and other highly nonlinear dif-
ferential equations. The ANN-SOS algorithm is efficient and robust,
which can be used to solve other real application problems.
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