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KEYWORDS Abstract The current pandemic situation caused by COVID-19 has affected human life globally at

the economic, social and mental health levels. Specifically, tension has led an increasing number of
people to the consumption of various types of tobacco. In this work, an existing tobacco smoking
model with a specific class of tobacco snuffing is converted into a fractional order as many appli-
cations of fractional derivatives to recall the past history of smokers in the present model. For this
purpose, we use fractional derivative in Caputo sense to study the model in the form of fractional
order. Then Positivity, boundness and dynamics of the proposed model are investigated. For
numerical results, the generalized ““Adams-Bashforth-Moulton Method (GABMM) and fourth-
order Runge-Kutta (RK4) method” are used to solve the proposed model and Matlab numerical

computing environment is the current software used.
© 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria
University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).
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1. Introduction especially in the infectious diseases models. Mathematicians

usually use, for simplicity, ordinary differential equations in

Mathematical models in fractional order have proven to be
useful in manifesting wide range of phenomena mathemati-
cally than integer-order models because of fractional order
reveals the past history and hereditary properties in models
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integer order. In applied sciences, mathematical modeling
has found widespread applications and in particular the frac-
tional calculus, see [1-17]. Smoking is a cause of many diseases
including many type of cancers In current pandemic of
COVID-19 virus, smokers are at more risk to be affected by
COVID-19 - because of many reasons including of smokers’
fingers are in touch with their lips regularly during smoking
and this habit leads to increase the probability of transmission
of virus from hand to mouth. Worldwide, those people who
are smoking suffered increasingly from different disease like
cancer of lungs, lips, throat. In this way the immune system
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of smokers people weakens due to which they are easily
exposed to serious disease like corona virus disease. Cigarette
smokers are 2 to 4 times more likely to get heart disease than
nonsmokers and also doubles a person’s risk for stroke and
also higher risk to caught lung cancer. To increase the life
expectancy of humans, scientists, doctors and mathematicians
have tried to control smoking through modelling that contains
media or education campaign or in the form of anti-nicotine
medicine [18-31]. Mathematicians have tried to make different
smoking models to represent cigarette smoking phenomena.
This work was initiated by Castillo-Garsow et al. [18] in their
model where they discussed the potential smokers represented
by P, smokers represented by S, and quit smokers represented
by Q. Then a modified model of smoking that contained chain
smokers class was presented by Sharami et al. [19]. Recently,
researchers have designed several smoking models under vari-
ous linear, saturated, square-root-type and harmonic-mean-
type incidence rates [22,25-27,21,29-31]. Nowadays, research-
ers attempt to bring about different fractional order epidemic
models. Due to a lot of applications, fractional calculus is
applied in different scientific fields [32-38]. This research work
demonstrates the smoking model in fractional order with
snuffing class and determine the existence of an analytical
and numerical solution of our proposed model, presented in
[30] as:

dx
dt
dH
= BXH = B H s — (p+ ) i,

dH.

TIZ:ﬂzHIHQ—(d—Q—w—i—,u)Hz, (1)
dy

EZG)H2_((X+V+,“)Y7

dz

Yy w2z

o = 1Y —uz,

under the initial conditions:

=J—-pXH —uX+aY,

X(O) =ée, H](O) = €, Hz(o) = é3, Y(O) = €4, Z(O) = €5,
2

for the parameters description see Table 1, of [30].nd

To include the past history or hereditary properties in our
model, we establish the fractional order derivatives instead
of integer order derivatives in system (1). As the term Z(¢) does
not appear in the first four equations of system (1), therefore
without loss of generality, we can take out Z(z) from system
(1). So, the following set of differential equations in fractional
order can be written as a new system:

CDIX(1) = J— B XH, — pX +aY,

o“DIH (1) = B XH, — p,H H, — (p+ p)H,,

e _ (3)
o DYHy(t) = ByH\Hy — (d+ o+ p)H,,

oDIY(t) = oHy—(a+y+p)Y.

Here, the notation Dy stands for derivative in Caputo sense
with order 0 < o < 1. The fractional order system is converted
to ordinary differential equations system when o = 1. System
(3) leads to generalization for system (1). As integer-order epi-
demic models have established fruitful understanding for bio-

logical systems, more realistic biological models memory and
after-effect properties are presented by fractional order mod-
els, especially in smoking dynamics. Therefore, the
fractional-order derivatives are applied on system (1). The sta-
bility of the system is discussed as the same as proved in [30].
For basics of fractional calculus and fractional order differen-
tial equations (FODE:s) see [39-45].

The arrangement of the rest of the paper is given in Sec-
tion 2, where the dynamics of the fractional order model is
presented. The intention of GABMM is presented in Sec-
tions 3, with a brief introduction for solution of fractional
order smoking model. Section 4 is devoted to numerical sim-
ulation results of the GABMM, where comparisons of
results obtained with GABMM and Runge-Kutta method
(RKM) taken place in Section 5. Last section is devoted
to a brief conclusion.

2. Dynamics of the fractional order model

Here, this part we derive results about positivity and bounded-
ness. We define space by

A, ={(X,H\,H>,Y)|X,H,H,, Y > 0}.

Theorem 1. Let (Xo, Hyg, Hag, Yo) € Ri is initial values and

. 4 .
(X(0), H\(1), H2(1), Y(1)) be any solution. Then, the set R is a
positively invariant. Also one has

. o taYs
limsupX (1) < Xo 1= 2=,

1—00
limsupH; (1) < Hy, = (ﬂill)’

o0 A (4)
limsupH,(t) < Hy,, = ot

1—00
limsupY(r) < Yo := (:):2@)

1—00

Proof. For the model (3), we have

OCD7X|X:O =l+aY >0,
0CD7H1|H1:0 =0,
OCD?H2|H2=0 =0,

OCD;‘ Y]y =wH, = 0.

(5)

Upon using generalized mean value theorem [46,47] together
with (5), one has X(¢), H(t), H»(t), Y(¢) = 0, for all values
of t = 0. Equation first of the system (3) yields

0 DX < A — uX + aYy.

2nd and 3rd equations of the system (3) implies that

DX+ H +Hy) </—pX+aYy —(p+H —(d+o
+ ) Ho,

which yields

lim sup[X(¢) + H, (1) + H»(1)] < Hi

1—00
and

lim sup[X(¢) + H, (1) + Hy(1)] < Ha.

1—00
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Accordingly, it follows the second and third estimate of (4).
Now by the last equation of system (3), one has

0“D*Y < wHyy — 0¥ — pY — 7Y
for large enough ¢. Which leads the fourth estimate of (4). [J

2.1. The reproduction number and equilibrium points

Solving the following algebraic equations for finding the equi-
libria of the model (3),

L= BXH) — uX +aY —o,
BiXH\ — B,HHy — (p+ p)H, =0, (6)
BH\Hy — (d+ o + pu)H, =0,
oH, — (a+7y+p)Y =0.

Two solutions to the system (6) are obtained via using some
algebraic ~ manipulations as  E; = <”,0 0, O) and
E = (X',H;,H,,Y"), where

_ BH;+(p*+)
X* = 2T7

_ (d+o+p)
Hy = B
% _ wH}
H2 - (DH»",’ju) ’
y- = et etn)fam(Ro—D)—p (drotu)]

(+1) (B o)+ (ot7+0) (B Bo (d+p)+B3 1)

The Jacobian of system (2) is

—pHy — 1 —px 0
J BiHy BX = ByHy — (p+ 1) =B, H
0 B, H, BoH, — (d+ o+ p) 0
0 0 ® —(a+7+p)

Also at free equilibrium point Ey, the Jacobian is provided as

—u # 0 o
Bt _
J(Ey) = M (p+u 0 0
0 0 —(d+w+p) 0
0 0 R PR
Considering the given matrices to compute reproductive
number
bt 0
I
F: 0 0 0 ]
0 00
(p+n) 0 0
V= 0 (d+o+p 0
0 —w (o+y+p)
The maximum eigenvalue of FV'~! is u(’; 'jﬂ), )
A
Ro= P+ )
wlo + )

is the required reproductive number.

Theorem 2. Under the condition Ry < 1, then the system (3) is
locally stable and if Ry > 1, then system (3) is unstable.

Proof. At Ej, the condition for local stability at the Jacobian
of system (3) is given by

3671
—u *ﬁvl 0 o
J(Ey) = 0 /fv —(p+n 0
0 0 —(d+ow+p) 0
0 0 ® —(+y+n)

which follows the eignvalues 4;, 1,, 43 and A4 as

/’{l: —[.l<0,
dy= —(x+y+p) <0,
= (p+m(Ro—1),

implies that 4, <0 if Ry < 1,4, =0if Ry=1 and 4, >0 if
Ry>1.0

Theorem 3. If Ry < 1, then the system (3) is globally stable.

Proof. For proof of this theorem see [30]. [

3. The generalized Adams—Bashforth—-Moulton method

Here GABMM is presented in this section [48,49]. In this algo-
rithm, the GABMM is derived for getting the numerical solu-
tion of the nonlinear FODEs. Let

Dy(1) = flt,y(1)), 0< 1< T, (®)
with
yR0) =yk k=0,1,...[o] — 1 9)

be a general problem of FODEs. We obtain the solution y(7) in
view of application of fractional integral on both sides of Eq.
®)
[e]—1 _ (k) t o—1
Yok (1=
= Al - . 1
o0 = YRt + [ e (10)

By setting /& :%,t,, =nh,n=0,1,...,m, Eq. (10) can be
described as follows for some positive integer m

[1]—1y1(§ . hat
Vitur1) = 2 o I +mf(f~+la)"h(fn+l))
h‘l n
—— 1 f 8 V(1)) 11
+ Tx+2) j:zoaj# +Lf( s Y 1)) (11)
= (n+1)"(n—a), ifj=0,
G = (n=j+2)"" =2 —j+ 1)+ (=)™, if0<<
1, ifj=n+ 1
In which the predicted value y}(#,+1) may be derived as

[o]—
y
Vi(ts1) Zk_ fot T ) watf 4, 94(1)) (12)
k=0
in which
Rl 1) = (= ))
jn+l — .

o

The estimated error is

— ()| = 0(A"),

_max |y(z;)
Jj=0,1,....m

in which p = min{1 + «,2}.
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4. Implementation of numerical simulation

Current part is related to numerical solution of the nonlinear
fractional model using the GABM method. The numerical
scheme of model (3) with the help of GABMM is given as
follows:

Xi(tur) = Xo+ 1-(2—12) [/1 (ln+]~,X1/;<[u+l)s HY(tin), Hy, (L), YZ(YHH))

+ Xn:awﬂfl (4, X (1), Hu (1)), Hon (1), Y/r(f/')):| .
=0

Hyj(tunn) = Hiot gy o (s X5 (t0s)s HY (1) Hy, (1), Y3 (011)

+ Xn:a/.n-l.fz (4, X (1), Hu (1)), Hon (1), Y/;(f/))} ,

=0
Ho(tn1) = Hao+ r(fiiz) U3 (tasts X (bt )y H (1), HS, (1) Yo (fi1))

+ Za’-”' s (4, X (1), Hu(4), Ha(1), Yh(f,‘))}

j=0
Yi(tys1) = Yo+ ﬁ m(fn+1-Hﬁ(l/m),HI]]/,(an)-,HQ,(LH), YIZ(L;H))

+ Za/./zﬂﬂt(%Xh(’/)xth(’/))HZh(t,/); Y,,(t/)):|~,

j=0
in which

n
Xi(tu) = Xo+ ﬁzbmﬂfl (4, X (1), Hun(8), Han(17), Ya(17)),
=0

HY, (i) = H +ﬁzb,-,n+1f: (15, X (1), Hun (1), Ha(17), Ya(1)),
=0
HY(ti1) = Hao +ﬁzbm+1f3 (TjaA/h(t/‘)aHllz(t/)-HZIz(t/>-, Y/,(T,)),
=0
Y’]i(tn+1> = Y +ﬁzb/.nuﬁt(%X/,(f/)sle,(l‘/),HZ/,(f/>7 Yh(t/>)',
=0

in which the quantities

(5 X0 (4), Hu(4), Hon(4), Ya (1)), o (4 X (4), Hun(8), Hoa(1), Ya(17))

S5 (4> X (4), Hun(8), Ha(4), Yo (1)) andfs (1, X (1), Hun(4), Ha(4), Ya(47))

may be calculated by using the points ¢, = jh,j =0,1,...,m as

L@ X0, Hi (1), Hy (1), Y(2)) = 2— B XH, — puX +aY,

S X(0), Hi(0), Ho(0), Y(0) = fiXHy — poHiHy — (p + p) Hy,
f(X(0), Hi(1), Ha (1), Y(2)) = ByHiHy — (d+ o+ p)H,

fo(t, X(0), H (1), Hy(2), Y(1)) = oH, — (a+7+p)Y.

In addition, the quantities
/i (ln+17Xph(fn+1)7H1}h(tn+1)7HIZ)/,(ln+|)7 YZ(thrl))v
f2 (tn+1 ’ Xph(lrz+l)7 fII]’h(t)H»l)v fIIZI/,(thrl)v YZ( ))7
f}(tn+17XZ([n+l)7IiI])h(trHl)vI_Igh(twrl)v YZ( ))7

and

tn+l
tn+l

.ﬂt(thrl,X]Z(an)y H]fh(lnﬂ), lel/,(tn+l)7 Y‘Z(thrl))v

are the required estimates at ¢,,;,n =0,1,...,m.

5. Numerical and simulation results

In this section, the GABMM with initial and parameters’ val-
ues provided in Table 2, [30] is used for finding numerical
results of fractional order system (3). This method is a very
effective tool in obtaining numerical solutions of fractional
order differential equations. In interval [0, 60], some graphical
results are presented for the numerical solutions of system (3).
The other method for the solution of system (3) which uses
o =1, is fourth-order RKM, the corresponding computed
results are compared graphically with results obtained by
GABMM. The selected step size is 7 = 0.0125. Approximate
solutions for X(¢), H,(1), H2(t), Y(¢) and Z(t) are shown in
Figs. 1-5 obtained by using GABMM and the fourth-order
RKM, when a=1 and the solutions for
X(1),H, (1), Hy(t), Y(¢) and Z(¢) are shown in Figs. 6-10, by
using GABMM for the different values of «. From the graph-
ical results in Figs. 1-5, it can be seen that the results obtained
using the proposed algorithm match the results of the RK4
method very well, which implies that the presented method

60
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30

Susceptible individuals

20

TT T T [T T T T [T T T T [T T T T [T T T T[T T TT]Q

po by b by by by ey

10 .
0 M BT S I B B
0 10 20 30 40 50 60
Time(day)
Fig. 1  X(¢) vs. time t: used solid line and dotted line for GABMM and RKM respectively.
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Fig. 2 H,(¢) vs. time t: used solid line and dotted line for GABMM and RKM respectively.
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Fig. 3 H,(?) vs. time : used solid line and dotted line for GABMM and RKM respectively.

can predict the behavior of these variables accurately in the
region under consideration. Furthermore, other figures, show
the approximate solutions for all considered classes obtained
for different values of « using the proposed algorithm. From
these graphical results, it is clear that the approximate solu-
tions depend continuously on the time-fractional derivative.

6. Conclusions

In this manuscript, we have formulated and analyzed a new
mathematical model for tobacco smoking with snuffing class.
It ought to be emphasized that the model may be a generaliza-

tion of a later published work proposed in [30]. Here, first, the
fractional order tobacco smoking model with snuffing class is
established. For a numerical solution of the proposed model,
we accomplished the generalized Adams—Bashforth—-Moulton
method which resulted in excellent compatibility with solutions
obtained with RK4 method. Also, the graphical results for the
proposed model were presented. As a future work, the results
could be expanded in this work to propose modern mathemat-
ical models for smoking with co-infections nature. Particu-
larly, successful strategies to control smoking will be
examined. It is noted here that analytical and numerical strate-
gies for FDEs models arrangements are necessary.
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Regular smokers
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Fig. 4  Y(¢) vs. time #: used solid line and dotted line for GABMM and RKM respectively.
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Fig. 5 Z(7) vs. time #: used solid line and dotted line for GABMM and RKM respectively.
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Fig. 9  Y(¢) vs. time 7 used solid line, dashed line and dot-dashed line for o« = 1.0, = 0.85 and o = 0.95 respectively.
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