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Abstract
Wheat (Triticum aestivum) yield predictions can be improved by using multispectral

remote sensing to identify different genotypes and crop growth stages. We propose an

innovative machine learning technique aimed at classifying diverse wheat crop geno-

types and providing accurate estimations of plant age. Multispectral reflectance data

was obtained from different sites where various wheat genotypes were cultivated.

This approach involved analyzing incoming radiation and canopy light reflectance

across five distinct spectral bands using a multispectral radiometer. The newly col-

lected remote sensing data was utilized as input for the machine learning algorithm.

Impressively, the random forest model achieved an accuracy rate of 98.77% in wheat

crop genotype classification. Furthermore, the proposed approach’s effectiveness was

confirmed through a 10-fold cross-validation mechanism. Moreover, a multiple lin-

ear regression model for predicting the age of wheat genotypes explained 91% of

the observed variation. These findings signify significant progress in wheat crop

genotype and age prediction, ultimately leading to enhanced wheat yield.

Abbreviations: LR, linear regression; MLR, multiple linear regression; NDVI, normalized difference vegetation index; NIR, near infrared; RF, random

forest; SVM, support vector machine; SWNIR, short-wave near infrared.
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2 JAMIL ET AL.

1 INTRODUCTION

Wheat (Triticum aestivum) grains are rich in essential nutri-

ents, establishing themselves as a valuable nutritional source

that enhances diets worldwide (Zahra et al., 2023). Wheat

consumption in Pakistan surpasses that of rice, and the per

capita consumption of wheat is 124 kg annually (Bakhsh

et al., 2003). To effectively address Pakistan’s escalating food

requirements, advanced agricultural techniques are needed

(Panhwar et al., 2021). The research findings by Khan et al.

(2015) shed light on the vulnerability of the flowering stage

to heat stress. Furthermore, Nabwire et al. (2022) empha-

sizes the pivotal role of a plant’s age in managing water

stress and temperature and sourcing essential nutrients from

various avenues.

Plant morphology can be used to compare different species,

differentiate between various types of plants, or study how

plants respond to stimuli (Wyatt, 2016). Some of the most

important morphological traits include leaf shape, size, color,

texture, angle, and volume. Within the shoot system, leaves

adapt to their environment by altering their visual properties,

making them recognizable (Yang et al., 2015). Developing

alternative phenotypic classification approaches other than

physical measurements is important for accelerating breeding,

and the prediction of food resources is critical for improving

food security.

To comprehend a nation’s food resources, it is crucial to

conduct a comprehensive assessment of potential crop har-

vests (Akhter et al., 2023). In this ever-changing landscape,

precise and meticulous crop evaluations play a vital role

in generating valuable information that informs the strate-

gic management of plant cultivation, allocation of resources,

and food security. The intricate interplay between data-driven

analysis and farming methods encapsulates the essence of

this endeavor, illuminating the path toward sustainable and

resilient agricultural systems.

Consequently, this research aims to establish an innovative

machine learning-based framework for categorizing wheat

genotypes, accompanied by the development of a precise age

prediction model for each specific genotype. Optimal yield

can be achieved through the cultivation of wheat genotypes in

harmony with their respective conducive environmental con-

ditions. The efficacy and precision of our proposed machine

learning-based model for wheat genotype classification and

age predictions are evaluated through various parameters.

Numerous scholars have contributed to the advancement

of wheat genotype classification through a diverse array of

approaches. For example, Naser et al. (2020) proposed a

model that utilizes the Normalized Difference Vegetation

Index (NDVI) to distinguish between wheat genotypes’ pro-

ductivity in dry and wet environments. Their study, conducted

in Northeastern Colorado, encompassed various climatic

conditions. Employing NDVI data acquired from a prox-

Core Ideas
∙ This research addresses a significant challenge in

wheat crop genotype and age prediction.

∙ We propose an innovative machine learning

methodology to classify different wheat crop geno-

types.

∙ We collected different wheat seed genotype sam-

ples using the multispectral radiometer.

imal sensor to gauge the greenness of wheat fields, they

also gathered data on grain yield for each wheat geno-

type. The findings demonstrated a robust correlation between

NDVI and grain yield, with higher NDVI readings associ-

ated with wheat genotypes exhibiting greater grain yields.

Notably, precise measurements of grain yield and effective

discrimination of superior wheat genotypes were achieved at

non-saturated NDVI values, particularly around the threshold

of 0.9. Additionally, they determined that the k-means clus-

tering algorithm could reliably categorize wheat genotypes

into three classes of grain yield productivity based on their

respective NDVI readings.

A remote sensing study was conducted by Han et al. (2022)

to investigate using a random forest (RF) model in moni-

toring wheat phenology. They discovered that the RF model

demonstrated high accuracy in predicting plant nitrogen accu-

mulation, nitrogen nutrition index, aboveground biomass, and

nitrogen concentration. The researchers collected multispec-

tral images and crop data at five growth stages.

The study of Raoufi et al. (2018) involved the emulation

of growth and harvest patterns of diverse wet rice genotypes

at varying seedling ages using the AquaCrop model. The

research employed version 4.0 of the AquaCrop model to

simulate rice growth. The experimentation spanned 2 years

and was carried out at the Haraz Extension and Technology

Development Center in Amol, Mazandaran Province, Iran.

The study focused on three rice genotypes—Tarom, Ghaem,

and Fajr—each exhibiting distinct growth period durations.

Raoufi et al. (2018) showed that the model could be used to

predict rice yields.

Zhang et al. (2021) used MODIS NDVI time-series satellite

data to distinguish winter wheat from other crops. The Hei-

longjiang region was chosen for winter wheat mapping over

four consecutive years (2014–2017). The model employed the

peak–slope difference index and the NDVI time-series varia-

tion coefficient for wheat crop mapping, specifically utilizing

NDVI data from the MOD13Q1 dataset (Hubert-Moy et al.,

2019). Landsat-8 multispectral images were acquired from

the U.S. Geological Survey (USGS), and sample sites were

selected using data from the USGS website, Google Earth
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JAMIL ET AL. 3

F I G U R E 1 Proposed innovative methodology workflow for the prediction of wheat crop genotype and age.

photos, and statistical information. The coefficient of vari-

ation (COV) of PSDI demonstrated high user and accuracy

rates, achieving 94.10% and 93.74%, respectively.

Das et al. (2021) proposed a methodology to assess water

conditions in wheat genotypes using thermal imaging from

unmanned aerial vehicles. This approach was valuable in

predicting yields in sodic soils. This technique effectively

classified agricultural water stress factors and provided

biomass and grain production forecasts based on crop water

stress indices. Applying classification and regression trees

yielded highly accurate predictions for grain yield, root

mean square error, and biomass. In the context of sodic soil

conditions, wheat genotypes, including Gregory, Bremer,

Mace, Lancer, and Mitch, demonstrated greater productivity

than Flanker, Gladius, Emu Rock, Scout, and Janz. This

research highlights genotype-specific productivity, offering

valuable insights for wheat cultivation.

Sandhu et al. (2021) introduced multi-trait machine learn-

ing and deep learning models to enhance wheat breeding

programs. They observed that the proposed models outper-

formed genomic best linear unbiased predictor (GBLUP). The

authors conducted their study on a dataset comprising wheat

genotypes phenotyped for grain yield and grain protein con-

tent. Furthermore, the genotypes were assessed for spectral

reflectance, which was used to train the machine learning and

deep learning models. The authors compared the performance

of four uni-trait (UT) and four multi-trait (MT) models. Their

findings indicated that the MT and deep learning models sur-

passed the UT models and the GBLUP methods. The RF

and multilayer perceptron models demonstrated the highest

performance among the models. The authors concluded that

the proposed models represent a promising tool for genomic

selection in wheat breeding programs, suggesting their poten-

tial in selecting wheat genotypes with superior grain yield and

grain protein content.

Fang et al. (2020) used Sentinel-2 imagery with winter

wheat. The research conducted in Henan Province, Cen-

tral China, involved acquiring Sentinel-2 images of winter

wheat at a specific phenological stage through Google Earth

Engine. Machine learning techniques, including RF, sup-

port vector machine (SVM), and classification and regression

tree, were employed to identify and map winter wheat

across a wide area. Five-fold cross-validation and grid

search approaches were utilized to optimize machine learning

hyperparameters. The SVM demonstrated superior perfor-

mance in classifying winter wheat, as indicated by com-

paring the three algorithms. It achieved an overall accuracy

(OA) of 0.94, user’s accuracy (UA) of 0.95, producer’s

accuracy (PA) of 0.95, and Kappa coefficient (Kappa) of

0.92. The results emphasized the SVM’s sensitivity to spe-

cific parameters (C and gamma), which led to the highest

classification accuracy when these hyperparameters were

optimized.

Due to the lack of research on genotype classification using

multispectral data in the literature, our study aims to address

this gap. The primary objective of our research is to design

a data acquisition system using multispectral MSRF5 sen-

sors. Additionally, we have developed an automated machine

learning-based technique to detect wheat growth stages.

2 METHODS AND MATERIALS

The research study was conducted in the years 2020 and

2021 under the supervision of the IUB Agriculture Research

Center. During data collection, nine plots were harvested,

focusing on three types of genotypes and three different con-

ditions of water stress. These conditions included normal

watering, a 1-week delay in watering, and a 2-week delay in

watering. No fertilization or spraying treatments were applied.

 14350645, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agj2.21595 by C

ochraneU
nitedA

rabE
m

irates, W
iley O

nline L
ibrary on [20/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 JAMIL ET AL.

In this study, the selection of wheat crop genotypes for

classification is based on diverse criteria, including genetic

variability, agronomic performance, and adaptability to spe-

cific environmental conditions. This comprehensive method-

ology allowed for a systematic and rigorous investigation

into the classification of wheat crop genotypes, providing

valuable insights into their genetic diversity and potential

agricultural applications.

Our proposed innovative research methodology (Figure 1)

involves architectural analysis. The multispectral radiometer

(MSR5)-based sensor data is collected and utilized for

building genotype classification and age prediction machine

learning models. The collected multispectral radiometer

sensor data is preprocessed and converted into five spectral

bands. The formatted dataset is then split into training and

testing portions. The 70% training portion of the dataset is

utilized for training the applied machine learning models.

The remaining 30% of the data is used for the evaluation of

the machine learning model. The machine learning model

is then used for cultivar classification. Following this, SPSS

software is employed to predict the cultivar age. Using

SPSS software, a multiple linear regression (MLR) model is

applied to the classified data for predicting the age of each

genotype.

2.1 Multispectral radiometer sensors data

The study focused on three test genotypes: Miraj, Punjnad,

and Aas, each cultivated in pairs, with one plot under water

stress. Plots with the dimensions of 3.66 by 3.66 m were

established in 2020 and 2021. Plots were planted at a rate

determined by each plot size, which measured 2.32 m2 (length

and width) on 2020 and 2021. After 2 weeks, each genotype

underwent 30 MSR5 scans by CROPSCAN, Inc. The process

yielded 90 samples at 15-day intervals over 3 months, totaling

540 samples representing six developmental stages, as shown

in Figure 2.

2.1.1 Data collection area

The data collection area chosen is within the Agricul-

tural Research Center located at the Islamia University of

Bahawalpur, situated in the dynamic city of Bahawalpur, Pun-

jab, Pakistan. The data collection locations are illustrated in

satellite as in Figure 3. This diverse study area encompasses

various agro-climates typical of Punjab, where the annual

rainfall can be as low as 2 mm (0.1 in.). Among these climates,

October records the scantiest rainfall, while July is the wettest

month, receiving 61 mm (2.4 in.) of rainfall. Bahawalpur,

known for its soaring temperatures, often grapples with water

scarcity issues that pose significant challenges.

F I G U R E 2 The photographic representation of wheat crop of six

stages: (a) stage 1, (b) stage 2, (c) stage 3, (d) stage 4, (e) stage 5, and

(f) stage 6.

2.1.2 Data collection experiment design

Observations were made between 2 and 12 weeks. This choice

was based on the fact that temperatures below 13◦C inhibit

flowering, while temperatures exceeding 14◦C after flow-

ering and fruit set have negligible effects on plant growth

(Noh et al., 2013). The wheat plants were categorized into

plants cultivated under optimal growth conditions) and plants

subjected to high-temperature stress. The selection of plants

for the stress group were randomly selected. Each group of
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JAMIL ET AL. 5

F I G U R E 3 Location of the study site using Google Earth View

with the map of Pakistan and highlighted in red color ROI at the upper

top right corner of the image.

T A B L E 1 The soil characteristics analysis during data collection.

Soil characteristics 0–15 cm 15–30 cm
Organic matter (%) 0.79 0.55

pH value 8.4 8.6

Electrical conductivity (dS/m) 250 230

Phosphorus (ppm) 7.1 5.1

Potassium (ppm) 112 114

Saturation characterizing soil

texture (%)

36 35

plants was cultivated in dedicated plots, maintaining a con-

sistent relative humidity of 70% throughout the entire growth

period. Both the standard and stressed groups adhered to dis-

tinct watering schedules, with irrigation administered every

15 days. The irrigation conditions included normal watering,

a 1-week delay in watering, and a 2-week delay in water-

ing. Wheat required a total of five irrigations. One irrigation

equals 3 ha in., so 15 ha in. was required. No fertilization

or spraying treatments were applied during data collection.

The ratio of plant population was between 1.2 and 2.0 mil-

lion seeds per ha. Soil physicochemical analysis was carried

out before sowing the crop. Soil samples were taken from

0.0 to 0.15 m and 0.15 to 0.30 m using a soil augur. Soil

characteristics (Shah et al., 2020) analysis data are given in

Table 1.

2.2 Multispectral radiometer bands
analysis

The multispectral radiometers are utilized to assess incom-

ing radiation and canopy light reflectance across five distinct

spectral bands (Qadri et al., 2019; Rehmani et al., 2015).

T A B L E 2 The wavelength and spatial resolution for the collected

crop scan MSR5 data.

Spectral band Wavelength (nm)

Spatial resolution
(area covered by the
sensor)

Band 1 Blue 450–520 1.524 m in radius

Band 2 Green 520–630 1.524 m in radius

Band 3 Red 630–690 1.524 m in radius

Band 4 SNIR 760–900 1.524 m in radius

Band 5 FNIR 1550–1750 1.524 m in radius

F I G U R E 4 The feature space analysis of extracted multispectral

bands data; most expressive feature (MEF 1, 2, and 3).

The generated output dataset contained blue (450–520 nm),

green (520–600 nm), red (630–690 nm), near-infrared (760–

900 nm), and far-infrared wavelengths (1550–1750 nm).

Within each specific spectral band, the half-peak width

varies, ranging from approximately 5 to 15 nm. This inno-

vative approach, referred to as MSR5, encapsulates an

entire scene by utilizing five distinct numerical values,

effectively representing five energy bands, as described in

Table 2.

2.3 Feature space analysis

A feature space analysis was conducted to extract the impor-

tant multispectral bands. The analysis began with the calcu-

lation of principal components for feature space analysis. We

selected the top five principal components from the band data

and illustrated them in Figure 4. This analysis reveals that over

90% of variance is captured in the multispectral bands data.

The dataset’s feature space exhibits greater linear separability

for wheat genotype classification.
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6 JAMIL ET AL.

2.4 Applied machine learning methods

2.4.1 Random forest

Random forest is a commonly used technique for the clas-

sification of multispectral data and yields enhanced results

compared to other machine learning models (Raza et al.,

2023). In the RF model, a value of 100 was utilized for the

n_estimators parameter, which specifies the number of trees

in the RF model.

The RF prediction for the wheat crop genotype can be

represented as:

𝑅𝐹 (𝑋) = 1
𝑁

𝑁∑
𝑖=1

𝑓𝑖(𝑋) (1)

where𝑁 is the number of decision trees in the forest,

𝑋 is the feature matrix with 𝑛 samples and 𝑚 features,

𝑌 is the target variable representing the wheat crop genotype,

𝑇𝑖 represents the 𝑖th decision tree in the forest, and

𝑓𝑖(𝑋) is the prediction of the 𝑖th decision tree.

2.4.2 Support vector machine

A widely used supervised machine learning technique for

classification and regression tasks is known as a SVM (Raza

et al., 2022). SVMs have a good ability to differentiate

between multiple classes or make precise predictions for con-

tinuous values. The SVM model can be represented by the

following equation:

𝑓 (𝑥) = sign

(
𝑛∑
𝑖=1

𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏

)
(2)

2.4.3 Logistic regression

Logistic regression (LR) (Raza et al., 2023) is a statisti-

cal method used to model the relationship between a binary

dependent variable and one or more independent variables.

The main objective of logistic regression is to estimate the

likelihood of a specific outcome based on distinct variables.

In contrast to linear regression, which employs a linear equa-

tion for modeling variable relationships, logistic regression

transforms independent variables into a probability range

from 0 to 1 using the logistic function, also known as the

sigmoid function. The logistic regression equation is given

by:

𝑃 (𝑌 = 1) = 1
1 + 𝑒−(𝑏0+𝑏1𝑥1+𝑏2𝑥2+⋯+𝑏𝑛𝑥𝑛)

(3)

2.4.4 Multiple linear regression

A statistical modeling method known as MLR (Sharma et al.,

2022) is employed to investigate the relationship between sev-

eral independent variables and a dependent variable. This

approach extends the principle of simple linear regression

to scenarios with multiple independent variables. The aim

of MLR is to determine the most accurate linear equa-

tion that estimates the value of the dependent variable based

on the values of the independent variables. The mathematical

equation for MLR can be written as:

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯ + 𝛽𝑛𝑋𝑛 + 𝜀 (4)

Tables 3–5 provide a comprehensive array of regression

coefficients. In the “Unstandardized coefficients” column,

“B” indicates weights. Notably, for the Miraj, Punjnad, and

Aas tables, the “B” weights are 53.347, 107.728, and 107.126,

respectively, with the “Constant” row representing the inter-

cept. The “B” weight serves as a predictor in conjunction with

the slope. A negative slope value implies a negative correla-

tion. These coefficients intricately shape the linear regression

equation, providing insight into the relationship. Significance

across these three tables is remarkably low, at 0.000, under-

scoring the influential role of independent variables on the

dependent variable.

2.5 Hyperparameter tuning

The best-fit hyperparameters of the applied machine learn-

ing methods are determined, as illustrated in Table 6. In

this research study, we employed a grid search approach to

optimize the machine learning hyperparameters (Shekar &

Dagnew, 2019). The best-fit hyperparameters help us achieve

high-performance accuracy scores.

2.6 Analysis

We used the Python programming language to conduct all

research experiments (Hao & Ho, 2019). The Scikit-learn

library in Python, version 1.0.2, was utilized to evaluate

performance metrics for wheat crop genotype classification.

The performance metrics included accuracy, recall, preci-

sion, and F1 scores. We have employed several methods

to evaluate performance scores, including comparisons of
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JAMIL ET AL. 7

T A B L E 3 The coefficient analysis of the Miraj genotype.

Model

Unstandardized coefficients
Standardized
coefficients

B Stdard error Beta Significance
Constant 53.347 6.401 0.000

Blue spectral band −3.119 0.415 −0.614 0.000

Green spectral band −6.541 1.231 −0.688 0.000

Red spectral band 15.822 0.581 2.576 0.000

Near-infrared spectral band 1.500 0.100 0.694 0.000

Far-infrared spectral band −5.334 0.301 −1.019 0.000

T A B L E 4 The coefficient analysis of the Punjnad genotype.

Model

Unstandardized coefficients
Standardized
coefficients

SignificanceB Stdard error Beta
Constant 105.728 11.277 0.000

Blue spectral band 0.692 0.759 0.170 0.364

Green spectral band −15.830 2.414 −1.947 0.000

Red spectral band 14.848 0.910 2.618 0.000

Near-infrared spectral band 0.670 0.177 0.238 0.000

Far-infrared spectral band −3.788 0.582 −0.745 0.000

T A B L E 5 The coefficient analysis of the Aas genotype.

Model

Unstandardized coefficients
Standardized
coefficients

SignificanceB Stdard error Beta
Constant 107.126 8.837 0.000

Blue spectral band −0.550 0.636 −0.117 0.389

Green spectral band −15.028 1.703 −1.749 0.000

Red spectral band 16.724 0.636 2.820 0.000

Near-infrared spectral band 0.856 0.168 0.384 0.000

Far-infrared spectral band −4.858 0.494 −0.899 0.000

T A B L E 6 The hyperparameters settings for applied machine

learning models.

Method Hyperparameter description
RF n_estimators = 100, criterion = “entropy,”

random_state=1

SVM kernel = “linear,” C = 10, random_state = 3

LR random_state = 2, max_iter=700

Abbreviations: LR, logistic regression; RF, random forest; SVM, support vector

machine.

machine learning model results. This also includes confu-

sion matrix comparisons, k-fold cross-validation, and feature

space comparisons.

The accuracy metric is calculated using the following

equation:

Accuracy =
Number of correct predictions

Total number of predictions
(5)

The recall metric is calculated using the following equation:

Recall =
True positives

True positives + False negatives
(6)

The precision metric is calculated using the following

equation:

Precision =
True positives

True positives + False positives
(7)
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8 JAMIL ET AL.

T A B L E 7 Performance analysis of applied machine learning

methods for unseen testing data.

Method Accuracy
Target
class Precision Recall F1 score

RF 0.98 Miraj 0.96 1.00 0.98

Punjnad 1.00 0.97 0.98

Aas 1.00 1.00 1.00

Average 0.99 0.99 0.99

SVM 0.90 Miraj 0.98 0.98 0.98

Punjnad 0.89 0.89 0.89

Aas 0.86 0.86 0.86

Average 0.91 0.91 0.91

LR 0.84 Miraj 0.87 0.92 0.89

Punjnad 0.87 0.84 0.85

Aas 0.80 0.78 0.79

Average 0.85 0.85 0.85

Abbreviations: LR, logistic regression; RF, random forest; SVM, support vector

machine.

The F1 metric is calculated using the following equation:

𝐹1 = 2 × Precision × Recall

Precision + Recall
(8)

3 RESULTS

3.1 Performance analysis of machine
learning methods

This analysis provides valuable insights into the performance

of various machine learning models (Table 7). The analysis

compared: accuracy, precision, recall, and F1 score. More so,

the analysis shows that only the LR model achieved moderate

performance scores of 0.84 and RF model outperformed the

other models (Figure 5).

Furthermore, the comprehensive histogram analysis,

depicted in Figure 5 showed that the RF and SVM methods

had good precision, recall, and F1 scores. On the other hand,

the LR model yielded satisfactory results, indicating its

potential for further optimization.

The columns and rows in the confusion matrix (Figure 6)

are denoted by 0, 1, and 2, eloquently representing the

Miraj, Punjnad, and Aas genotypes, respectively. The diag-

onal elements within this matrix gracefully show the adeptly

classified data, showcasing the proficiency of the RF, SVM,

and logistic regression machine learning models. The remain-

ing entries of the matrix affectingly disclose instances where

the three genotypes were unfortunately mispredicted. The RF

model has successfully classified data with 98.77% accuracy,

the SVM accuracy stands at 90.74%, and the accuracy of the

logistic regression stands at 84.57% during validation.

T A B L E 8 k-Fold-based performance validation of applied

machine learning methods.

Method Folds Accuracy Standard deviation (+/−)
RF 10 0.99 0.0119

SVM 10 0.90 0.0292

LR 10 0.84 0.0532

Abbreviations: LR, logistic regression; RF, random forest; SVM, support vector

machine.

T A B L E 9 Performance analysis of the applied multiple regression

model.

Genotype R 𝑹
𝟐 Adjusted 𝑹

𝟐 Standard error
Miraj 𝑌1 0.972 0.946 0.943 6.12

Punjnad 𝑌2 0.931 0.867 0.861 9.57

Aas 𝑌3 0.963 0.926 0.923 7.12

3.2 k-Fold cross-validation

The performance of the applied machine learning models are

rigorously validated through 10-fold cross-validation. This

approach enables a comprehensive assessment of how well

the applied models handle unseen data. The outcomes of the

cross-validation analysis, summarizing the performance of

the models across different folds, are presented in Table 8.

These findings suggest that ML can be used to predict

genotype and plant age.

3.3 Performance analysis of crop genotype
age prediction

The interplay between the coefficients of green and short-

wave near infrared (SWNIR) and the age of the wheat crop

genotype showcases an inverse correlation. In practical terms,

as the plant’s age increases, there is a gradual reduction in the

intensity of the green spectral band, along with the SWNIR

values. Conversely, the red and NIR values demonstrate a

direct proportionality with the age of the wheat genotype,

exhibiting an upward trend.

The multiple regression model summary in Table 9 depicts

the correlation coefficient (R) and the R2 statistic, indicating

the “proportionate decrease in error.” These values collec-

tively assess the model’s performance in predicting the age

of the Miraj, Punjnad, and Aas genotypes. A higher R2 value

implies a better fit. The regression models explained at least

86% of the variation, using red, green, near-infrared, and

short-wave near-infrared as predictors. The model achieves

overall accuracy of over 90%, with a standard error range of

7.1–9 had.

Depicted in the provided Figure 7 is a scatter plot show-

casing the age distribution of wheat crops. Notably, this
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F I G U R E 5 The histogram-based performance comparison of machine learning methods. LR, logistic regression; RF, random forest; SVM,

support vector machine.

F I G U R E 6 The confusion matrix-based performance validations of applied techniques: (a) random forest (RF), (b) support vector machine

(SVM), and (c) logistic regression (LR).
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F I G U R E 7 The scatter plot of age prediction of wheat genotypes.

T A B L E 1 0 The state of the art approaches comparisons.

Reference Proposed technique
Performance
acuracy

Rehmani et al. (2015) Artificial neural network

(ANN)

0.96

Qadri et al. (2016) Artificial neural network

(ANN)

0.96

Jamil et al. (2023) Artificial neural network

(ANN)

0.97

Jamil et al. (2023) Random forest (RF) 0.91

This study Random forest (RF) 0.99

visualization underscores the proficiency of the multiple

linear model in predicting the ages of the wheat crop geno-

types. The state-of-the-art comparison results are described

in Table 10.

3.4 Discussion

The inclusion of diverse wheat genotypes Miraj, Punjnad, and

Aas in our dataset ensures the generalizability of our find-

ings across varieties, making our methodology applicable to

a broader range of agricultural settings. The high accuracy

achieved by the RF model of 98.77% in wheat crop genotype

classification underscores the effectiveness of the machine

learning approach. This accuracy is particularly noteworthy as

it provides a reliable means for distinguishing between geno-

types. The successful application of diverse machine learning

models, including support vector machine and logistic regres-

sion, in comparative analyses demonstrates the robustness of

our methodology.

The implementation of k-fold cross-validation mecha-

nisms further strengthens the credibility of the results. The

validation process ensures the generalizability of the mod-

els by assessing their performance across various subsets

of the dataset. The consistency of high accuracy values

across folds substantiates the robustness and reliability of our

classification approach.

Our focus on age prediction, a critical aspect of preci-

sion agriculture, adds a dimension of practicality to our

research. The MLR model developed for age prediction

explained 91% of the variability. Such accurate age pre-

dictions can significantly contribute to timely and targeted

agricultural interventions, optimizing resource management

and improving overall crop yield.

4 CONCLUSIONS

This study demonstrated the effectiveness of multispectral

radiometry and machine learning techniques for wheat crop

genotype classification and age prediction. The data in this

research were collected using a multispectral radiometer

encompassing five bands: blue, green, red, near infrared
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(NIR), and SWNIR. Among the machine learning mod-

els (RF, SVM, and LR), RF excelled in wheat genotype

classification, achieving an accuracy rate of 98.77%. The

robustness of the classification model is validated through

k-fold cross-validation. Furthermore, the machine learning

model designed to predict additional phenotypic traits,

including crop age, exhibited exceptional performance. MLR

successfully predicted plant age based on spectral features,

achieving over 90% accuracy. Overall, this study establishes

the potential of MSR5 spectral bands for estimating the age

of wheat crop genotypes. This study can serve as a foundation

for the improvement of a real-time monitoring system for

wheat crops in high-throughput plant phenotyping facilities.

In the future, we will collect more dataset samples and

enhance the wheat genotypes. We will also develop an

advanced neural network approach for effective wheat geno-

type classification. Additionally, we will utilize other sensors

similar to MSR.
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