
https://doi.org/10.31449/inf.v48i8.5291 Informatica 48 (2024) 125–136 125

Exploring AI Innovations in Automated Software Source Code

Generation: Progress, Hurdles, and Future Paths

Ayman Odeh*, Nada Odeh

Software Engineering and Computer Science Department, College of Engineering, Al Ain University, Al Jimi, Al Ain,

UAE

E-mail: ayman.odeh@aau.ac.ae

*Corresponding author

Keywords: artificial intelligence, automated source code generation, deep learning, evolutionary algorithms, machine

learning, natural language processing

Received: October 16, 2023

In today's dynamic world of software development, the demand for efficient and rapid creation of high-

quality code has never been more pronounced. Automated software source code generation (ASSCG)

emerges as a compelling solution to meet this demand, offering significant advantages in terms of

speed, accuracy, and scalability. This paper aims to explore the critical role of automated software

source code generation and its profound significance in modern software development practices. By

navigating through the intersection of ASSCG, AI innovations, and the challenges therein, this paper

endeavors to provide a comprehensive understanding of this transformative field and pave the way for

informed decision-making and advancements in software development practices. This paper delves into

the critical role of ASSCG and its transformative impact on modern software development. In this

work, we endeavor to delve into the multifaceted landscape of automated code generation, assessing its

significance, the transformative potential of AI innovations, and the challenges and objectives inherent

in this evolving domain.

Povzetek: Prispevek raziskuje vloge in izzive avtomatizirane generacije programske kode z uporabo

umetne inteligence. Poudarek je na inovacijah z uporabo globokega učenja in evolucijskih algoritmov,

ki izboljšujejo hitrost in natančnost kodiranja. Študija identificira ključne ovire in prihodnje smeri

razvoja.

1 Introduction

In the realm of modern software development, the

quest for efficiency and agility has led to a burgeoning

interest in automated software source code generation.

This introduction sets the stage for a comprehensive

exploration of the topic within the context of AI

innovations. ASSCG stands as a cornerstone of modern

software development methodologies, offering the

promise of accelerated development cycles, enhanced

productivity, and improved code quality. These

technologies speed up creativity and product delivery by

automating time-consuming, repetitive chores like

boilerplate generation and code scaffolding. In this case

developers can now focus on more complex design and

problem-solving.

Central to the advancements in automated code

generation is the integration of AI technologies, which

have ushered in a new era of possibilities in software

engineering. From machine learning algorithms capable

of predicting code patterns to natural language

processing techniques facilitating code synthesis from

human-readable specifications, AI innovations are

reshaping the way software is abstracted, developed, and

implemented. This overview sets the stage for a deeper

exploration of the transformative potential of AI in

revolutionizing the software engineering landscape [1].

However, amidst the optimism surrounding AI-driven

automated code generation, several challenges and

complexities arise, necessitating a nuanced understanding

of the underlying issues. The statement of the problem in

this paper revolves around identifying these hurdles,

including issues related to algorithmic biases, code

quality assurance, and the ethical implications of AI-

generated code. With these challenges in mind, the

objectives of this paper are twofold: to critically assess

the current state of AI innovations in ASSCG and to

chart a path forward that addresses these challenges

while maximizing the potential benefits of AI-driven

development tools.

1.1 ASSCG significance in software

development

Automated code generation acts as a supercharger

for software development, offering a multitude of

benefits. From rapid development through automatic

code creation to improved quality via consistent style and

reduced errors, it frees developers for complex tasks.

Furthermore, it simplifies maintenance, fosters

collaboration through clear interfaces, and reduces

overall costs. By enabling faster prototyping and

knowledge transfer through standardized code,

https://doi.org/10.31449/inf.v48i8.5
mailto:ayman.odeh@aau.ac.ae

126 Informatica 48 (2024) 125–136 A. Odeh et al.

automated code generation empowers developers to

adapt to changing project requirements and validate ideas

quicker.

1.2 The problem statement

In this context revolves around understanding the

nuances of ASSCG, including its limitations, potential

biases, and implications for software quality and

maintainability. Furthermore, this paper aims to delineate

clear objectives aimed at addressing these challenges and

harnessing the full potential of automated code

generation tools in practical software engineering

scenarios.

1.3 Objectives

By embarking on this exploration, the paper aims to

provide valuable insights into the evolving landscape of

automated code generation, offering guidance to

researchers, practitioners, and stakeholders navigating

the intersection of AI and software engineering. Through

a balanced examination of progress, hurdles, and future

paths, this paper seeks to contribute to the advancement

of ASSCG and its integration into mainstream software

development practices.

1.4 The paper structure

Section 4 provides Overview of AI Innovations in

ASSCG, in section 4, we provide identification and

analysis of challenges faced in AI-driven ASSCG,

section 5 presents several case studies, in Section 6, we

provide Future Paths and Research Opportunities, and

finally, the conclusion was provided in section 7.

2 Literature review

This section will give a summary of the conventional

approaches to software source code generation (SSCG), a

review of the literature on AI advances applied to

ASSCG, and a quick analysis of the effects of AI on

ASSCG.

2.1 Traditional methods of (SSCG).

Traditional methods of software source code

generation have been foundational to the evolution of

software engineering practices. These methods typically

involve manual coding by developers using text editors

or integrated development environments (IDEs). For

example, Hand Coding requires deep knowledge of both

the chosen programming language (C, Java, Python, etc.)

and the specific problem they were solving. This

approach, while foundational, can be time-consuming

and error-prone. Copy-Pasting: In situations where

similar functionality is required in multiple parts of a

project, developers may resort to copy-pasting existing

code snippets and making necessary modifications.

While this approach can save time, it often leads to code

redundancy and maintenance issues. Code Templates

[2]: Another traditional method involves the use of code

templates or boilerplate code provided by IDEs or

libraries. Developers can use these templates as a starting

point and customize them according to their

requirements. However, this method still requires manual

intervention for adaptation and customization. Code

Generators: Some traditional software development

environments include code generators that automate the

generation of repetitive or boilerplate code. These

generators may be built into the IDE or provided as

separate tools. They typically operate based on

predefined templates or rules provided by the developer

[3][4]. Scripting: In certain cases, developers may

employ scripting languages or scripting tools to automate

specific tasks within the software development process.

These scripts can automate repetitive tasks, such as file

manipulation, data processing, or code generation based

on certain criteria. Manual Refactoring [5]: When

existing code needs to be optimized or modified to

improve readability, performance, or maintainability,

developers may engage in manual refactoring. This

involves restructuring existing code without changing its

external behavior, often to make it more efficient or

easier to understand.

While these traditional methods have been

instrumental in software development for decades, they

are often labor-intensive, error-prone, and time-

consuming. With the emergence of ASSCG techniques,

there has been a shift towards leveraging AI and machine

learning to streamline and enhance the code generation

process, leading to increased efficiency and productivity

in software development.

2.2 Related works

A range of AI techniques have been applied to

ASSCG, each with its own strengths and

weaknesses. Yen [6] proposed the use of AI planning

techniques to synthesize glue code and automate testing,

while Cruz-Benito [7] compared the performance of

different deep learning architectures in generating

code. Danilchenko [8] introduced a system that combined

Case-Based Reasoning, Routine Design, and Template-

Based Programming [8] for ASSCG, and Dehaerne[5]

provided a systematic review of studies using machine

learning for code generation, highlighting the use of

recurrent neural networks, transformers, and

convolutional neural networks. These studies collectively

demonstrate the potential of AI in code generation, with

each approach offering unique contributions and

considerations. While rule-based methods like Koziolek

et al.'s [9] in industrial automation shine in reliability and

predictability, their rigidity can pose challenges for

handling complex, non-standardized tasks. Meanwhile,

natural language processing (NLP) integration, as

highlighted by Zhu and Shen's [10] work on natural

language to code generation, unlocks exciting

possibilities but necessitates models attuned to the

intricate context of software development language.

Finally, evolutionary algorithms, exemplified by

Mironovich et al.'s [11]work on function block

applications, offer a unique approach to optimizing code

but face scalability concerns and limitations in real-time

scenarios. Recent research has focused on the use of deep

Exploring AI Innovations in Automated Software Source Code… Informatica 48 (2024) 125–136 127

learning in programming language models, particularly

for tasks such as auto-completion and code

generation. Cruz-Benito (2020) [8] compares different

neural network architectures, including AWD-LSTMs,

AWD-QRNNs, and Transformer, for building language

models using a Python dataset. The study highlights the

strengths and weaknesses of each approach and identifies

gaps in evaluating and applying these models in a real

programming context. Le[12] offers a thorough analysis

of the deep learning techniques currently in use for

generating and modeling source code, categorizing

program learning tasks and discussing the challenges and

recommendations for practitioners and researchers. These

studies collectively underscore the potential of deep

learning in software engineering and the need for further

research in this area. Another area of focus is the

automatic generation of source code comments, with a

survey of algorithms and techniques [13]. Finally, a

component-based approach has been proposed for the

systematic generation of correct, compatible, and

efficient database structures and manipulation function

modules [14].

In Table1, we provide the key findings from the

surveyed literature, focusing on evaluation metrics such

as accuracy, efficiency, scalability, generalization. Where

these metrics values are: High: (H), Limited (Lm), Low

(Lo), Moderate (M), and Conceptual: (Co).

Table 1: ASSCG Evaluation Metrics Summary Table

N
o

M
o
d

el
 /

T
ec

h
n
iq

u
e

A
cc

u
ra

cy

E
ff

ic
ie

n
cy

S
ca

la
b
il

it
y

G
en

er
al

iz
ab

il
it

y

C
o

rr
ec

tn
es

s

1 Machine Learning Survey - - - - - Analyzed strengths & weaknesses of various ML approaches.
- Highlighted ML techniques for code analysis, including generation.

2 Deep Learning Survey - - - - Explored deep learning models & challenges in code

modeling/generation.

3 Rule-based (CAYENNE) H - - Lm Focused on industrial automation code generation.

4 Code2Image (Computer Vision) - - - - Promising for vulnerability prediction; limited code generation

capabilities.

5 Random Code Generation (Syntax

Tree)

Lo H - - Fast generation, but often syntactically incorrect or nonsensical.

6 AI in Software Development - - - - Conceptual overview; no empirical evaluation.

7 Goal-based Code Generation - - - - Focused on self-adaptive systems; limited evaluation details.

8 Expert Rule-based & Frames - - - - Knowledge-intensive; unclear generalizability or correctness.

9 Prolog for Rule-based Generation - - - - Primarily focused on logic programming; limited empirical data.

10 Machine Learning for Big Code &
Naturalness

- - - - Surveyed existing ML approaches for code generation.

11 Amazon CodeWhisperer - - - - Proprietary ML-powered coding assistant; limited public evaluation.

12 Deep Learning from Natural

Language Descriptions

M - - - Promising results, but requires large datasets and careful training.

13 Lexical & Grammatical
Processing for Code from NL

M - - - Improved accuracy by focusing on language aspects, but still
challenging.

14 Pre-training with External

Knowledge for NL2Code

H - - Lm Demonstrated improved accuracy with external knowledge

integration.

15 Context-aware Deep Learning
with GRU (CodeGRU)

H - - Lm Achieved high accuracy on specific tasks, but generalizability
unclear.

16 Deep Transfer Learning for Code

Modeling

H M - Lm Effective for code similarity tasks, but generation capabilities not

explored.

17 Character-based Recurrent Neural

Networks

M M - Lm Can generate code snippets, but often lacks context and coherence.

18 GPT-3 for Content Generation and

Transformation

- - - - Demonstrated potential for code generation, but limited technical

details.

19 Improved ChatGPT Prompts for

Code Generation

M - - Lm Showed promising results with fine-tuned prompts, but further

research needed.

20 BERTGen: Multi-task Generation

through BERT

H - - Lm Achieved state-of-the-art accuracy on specific benchmarks, but

generalizability unknown.

21 Evolutionary Algorithms for

Function Block Applications

M M - Lm Explored automatic generation of code blocks, but scalability and

correctness not thoroughly evaluated.

22 Automatic Code Generator for

Parallel Evolutionary Algorithms

M M Lm Lm Demonstrated speedup and reduced programming effort, but code

quality and generalizability unclear.

23 Artificial Agents (AG) software

generated [15]

Co - - - suggested an independent development approach but lacked specific

execution and assessment.

24 AI Planning Techniques for

Automated Code Synthesis &
Testing

Lo - - Lm Pioneered the use of AI planning for code generation, but accuracy

and efficiency were low.

25 Deep Learning for auto-g & Auto-

completion

M M - Lm Compared and discussed deep learning approaches, but lacked in-

depth evaluation of specific models.

26 Case-based Reasoning, Routine M M Lm Lm Combined different techniques for code generation, but scalability

128 Informatica 48 (2024) 125–136 A. Odeh et al.

Design, & Template-based
Programming[16]

and correctness not extensively studied.

2.2 Current State-of-the-Art (SOTA)

techniques

This paper explores the SOTA in AI-driven

Automatic Software Source Code Generation (ASSCG),

examining promising techniques like Deep Learning

(LSTMs and Transformers for natural language to code

translation), Rule-based Methods (CAYENNE for

predictable code in industrial automation), Evolutionary

Algorithms (optimizing code for specific goals), and AI

Planning Techniques (frameworks like STRIPS for

autonomous code generation). However, limitations like

limited domain specificity, accuracy, and bias, alongside

interpretability challenges, remain. By analyzing a list of

these techniques, and providing future research

directions, this paper aims to address these limitations

and promote responsible development of ASSCG,

ultimately unlocking its full potential for software

development.

3 AI Innovations for ASSCG

ASSCG has experienced remarkable advancements

fueled by various AI innovations. Let's explore each of

these innovations in detail:

Rule-based Systems (RBS): These systems create

code from high-level specifications using predetermined

rules and patterns. Frequently utilized in specialized

fields and industrial automation, RBS provide control and

interpretability over the code that is created. [9] [17].

Machine Learning (ML) Approaches: ML tools,

including transformers, RNNs, and statistical language

models, are trained on large code repositories to identify

patterns and correlations, which allows them to produce

code based on learned information.[5] [18][19]. Natural

Language Processing (NLP) Techniques: NLP enables

code generation from natural language descriptions via

the use of describing, neural language models, and

StoSMs. Code creation skills are improved by NLP-based

techniques by incorporating external knowledge sources.

[10] [18] [20]. Deep Learning (DL) Models: DL models,

including RNNs, transformers like GPT and BERT, and

GNNs, excel in modeling and generating source code.

Transformers are particularly useful due to their context-

awareness, attending to relevant code contexts during

generation [10][18][21][22][23][24]. Evolutionary

Algorithms (EAs): EAs offer an alternative approach by

iteratively mutating and evolving existing code to

generate new solutions. They have been utilized to

produce efficient, maintainable code across different

programming languages, platforms, and applications [25]

[26]. Autonomous Method (AM) [14] [27] [28]:

Autonomous code generation is a fascinating area of

research and development that uses artificial intelligence

(AI) techniques to automatically write software code. It

has the potential to revolutionize software development

by speeding up development processes, reducing errors,

and increasing productivity.

The explanation of how each innovation works and

its application in generating software source code will be

provided in Table 2, and some examples of applications

of AI innovation in ASSCG will be listed in Table 3:

Table 2: Overview of ai innovations in automated software source code generation

Innovation How it Works Application

Rule-based Systems

(RBS)

Relies on predefined rules and patterns to transform high-

level requirements into executable code.

Commonly used in industrial automation and specific

application domains with well-defined processes.

Machine Learning

(ML)

Using large scale code repositories in training process to

learn patterns and relationships, generating code based on

the learned knowledge.

Versatile and can be applied to various code generation

tasks, such as auto-completion and summarization.

Natural Language
Processing (NLP)

Analyzes linguistic structure of natural language
descriptions and translates them into executable code.

Facilitates code generation from natural language
specifications, allowing for more intuitive expression of

requirements.

Deep Learning (DL) Learns complex relationships and patterns in code data,
generating code snippets or complete functions based on

the learned knowledge.

Effective for tasks like code summarization, auto-
completion, and generation from natural language

descriptions.

Evolutionary

Algorithms (EAs)

Iteratively mutates and evolves existing code to generate

new solutions, starting with a population of randomly
generated code.

Useful for generating efficient, maintainable code across

different programming languages and platforms.

Autonomous

Method (AM)

Autonomous code generation (ACG) leverages artificial

intelligence (AI) to automatically write software code,
presenting a paradigm shift in software development. Its

potential to boost efficiency, reduce errors, and enhance

productivity makes it a hot topic in research and
development.

Simple function generation: Tools like DeepCode and

Github Copilot utilize large language models (LLMs) to
generate basic functions based on natural language

descriptions or code snippets.

Code completion: Frameworks like Tabnine and Kite
recommend relevant code based on context and developer

intent, streamlining coding workflows.

Automated bug fixes: Systems like DeepFix rely on deep
learning to detect and propose fixes for common

programming errors.

Exploring AI Innovations in Automated Software Source Code… Informatica 48 (2024) 125–136 129

Table 3: Applications of AI innovations in ASSCG

Application Innovation(s) Involved

Industrial automation RBS

Auto-completion and code summarization ML, DL, AM

Code generation from natural language descriptions NLP, DL

Optimization of existing code ML, EAs

Generating efficient and maintainable code RBS, EAs

Specific application domains with well-defined processes RBS

4 Challenges and limitations

4.1 Challenges

AI-driven ASSCG faces several challenges related to

data quality, complexity, ambiguity, context awareness,

ethical considerations, and performance. Addressing

these challenges requires interdisciplinary efforts,

including advancements in AI research, data

management, software engineering practices, and

regulatory frameworks. By addressing these challenges,

developers can harness the full potential of AI-driven

code generation to enhance productivity, code quality,

and innovation in software development. Table 4

provides a concise overview of the challenges faced in

AI-driven ASSCG, along with their identification and

analysis. Addressing these challenges is crucial for

maximizing the effectiveness and reliability of AI-driven

code generation systems.

Table 4: Summary of identification and analysis of AI ASSCG challenges

Challenges Identification Analysis

Data Quality and

Quantity [19] [5] [4]

AI models require large, high-

quality training data.

Limited availability of diverse, well-annotated code datasets can

hinder model performance and lead to biased or inaccurate code

generation.

Complexity and

Maintainability [29]

Generated code may be overly

complex or difficult to maintain.

Complexity in generated code can impede collaboration, increase the

risk of errors during maintenance, and hinder scalability of the

codebase.

Ambiguity and Natural
Language Understanding

[30]

Extracting precise requirements
from natural language can be

challenging.

Natural language inputs may contain ambiguity, context-dependency,
and linguistic nuances, leading to inaccuracies or misinterpretations in

code generation.

Lack of Context

Awareness

AI models may lack contextual

understanding of code semantics
and constraints.

Contextually inappropriate code generation can result in

inefficiencies, inconsistencies, and compatibility issues in the
generated codebase.

Ethical and Legal

Considerations [31][3]

AI-driven code generation raises

concerns regarding intellectual
property and ethics.

Developers must navigate ethical and legal considerations

surrounding ownership, licensing, and misuse of AI-generated code.

Performance and

Scalability[23][32]

AI models may exhibit

performance bottlenecks or

scalability limitations.

Optimizing efficiency and scalability of AI-driven code generation

systems is crucial for timely and cost-effective development.

4.2 Limitations

While AI-driven ASSCG offers significant benefits in

terms of efficiency, productivity, and innovation, it also

faces limitations related to scalability, interpretability,

and handling of complex software requirements as shown

in Table 5. Overcoming these l

limitations requires interdisciplinary efforts, including

advancements in AI research, software engineering

practices, and collaboration between developers and AI

systems. By addressing these limitations, developers can

harness the full potential of AI-driven code generation to

accelerate software development and enhance code

quality and reliability.

Table 5: Limitations of ASSCG

Limitation Description Analysis

Scalability [33] While AI models may perform well on

small-scale projects or specific tasks,

they may encounter challenges when
applied to large-scale software

development projects or complex

codebases.

Scaling AI code generation for large projects is difficult.

It requires a lot of computing power and storage to

handle the complex interactions between different code
parts as the project grows. This complexity makes it hard

for AI models to maintain good performance and

generate accurate code.

Interpretability[34] AI-generated code is like a magic trick -
it works, but you don't know how. This

lack of understanding makes it hard for

developers to trust the code and fix issues
if they arise

AI-generated code is like a black box - developers can't
understand how it works. This makes it hard to trust the

code, fix problems, and collaborate on projects using the

code.

Handling of Complex

Software
Requirements [35]

AI for code generation isn't great with

complex projects. It struggles to
understand the specific rules (business

Current AI models for automated code generation

exhibit limitations when applied to complex software
development. The intricate decision-making processes

130 Informatica 48 (2024) 125–136 A. Odeh et al.

logic) and specialized knowledge needed
for those projects. Additionally, it has

trouble with requirements that focus on

things other than the code itself (non-
functional requirements).

and interwoven functionalities inherent in such projects
pose challenges for AI to capture effectively. This can

result in incomplete or suboptimal code generation.

Furthermore, the prevalence of edge cases and
unexpected scenarios in complex software creates

additional hurdles for AI to navigate.

5 Case studies and impact on

software practices

To illustrate the potential of ASSCG, this section

presents several case studies gleaned from the reviewed

literature. We will also explore the impact of ASSCG on

software development practices.

5.1 Case Studies

1) Industrial Automation with CAYENNE [9] (Rule-

based):

Project provide by Koziolek et al. (2020) used

CAYENNE [9], a rule-based system, to generate

code for industrial automation tasks in four large-

scale case studies.

Results: CAYENNE achieved high accuracy and

reduced development time by up to 50%. However, it

required significant upfront investment in rule

creation and was limited to specific domains.

Key takeaway: Rule-based approaches can be

effective for generating code in specific domains

when accuracy and maintainability are crucial.

2) Code2Image [36] for Vulnerability Prediction

(Computer Vision):

Project: Bilgin (2021) explored using Code2Image, a

computer vision technique, to analyze code and

predict vulnerabilities.

Results: Code2Image showed promise in identifying

potential vulnerabilities, but its code generation

capabilities were limited.

Key takeaway: Combining different AI techniques

like computer vision and ML can offer new insights

into code analysis and vulnerability detection.

3) Amazon CodeWhisperer [3] (Proprietary ML-

powered Coding Assistant):

Project: Desai and Atul (2022)[3] introduced

Amazon CodeWhisperer, a proprietary ML-powered

coding assistant that suggests code completions and

snippets.

Results: While details are limited, CodeWhisperer

reportedly improves developer productivity and

reduces coding errors.

Key takeaway: Proprietary AI-powered tools are

emerging to aid developers, but their inner workings

and long-term impact remain to be seen.

4) GPT-3 [23] for Content Generation and

Transformation (Fine-tuning Prompts):

Project: Liu et al. (2023) [22] investigated fine-

tuning prompts for GPT-3, a powerful language

model, to improve its code generation capabilities.

Results: Fine-tuned prompts yielded moderate

improvements in code accuracy and fluency

compared to generic prompts.

Key takeaway: Fine-tuning large language models

like GPT-3 shows promise for code generation but

requires careful prompt design and further research.

5) GitHub Copilot: GitHub Copilot is a tool that uses

artificial intelligence to help developers write code. It

can suggest code completions, generate entire

functions, and even write entire programs [37].

6) Google Cloud AutoML Code: It can be used to

generate code for a variety of PLs and platforms[38]

using ML.

These are just a few examples. The field of code

generation is rapidly evolving, with new techniques and

applications emerging all the time. As AI research

progresses, we can expect to see even more sophisticated

and efficient code generation tools in the future.

5.2 Impact on software practices

The impact of AI in ASSCG extends beyond mere

automation of coding tasks. It has fundamentally altered

software engineering practices by:

1) Accelerating Development Cycles [39]: AI-driven

code generation tools enable rapid prototyping and

iteration, reducing time-to-market for software

products.

2) Improving Code Quality [4]: By analyzing vast

amounts of code data, AI systems can identify best

practices, detect errors, and suggest improvements,

leading to higher-quality code.

3) Enhancing Developer Productivity [3]: Developers

can concentrate on higher-level design and problem-

solving when repetitive coding chores are automated,

which encourages creativity and innovation.

4) Facilitating Collaboration [40][41][42]: AI-driven

code generation tools promote collaboration between

developers, domain experts, and stakeholders by

providing a common platform for expressing

requirements and generating executable code.

6 Future paths and research

opportunities

6.1 Emerging trends and future paths in AI

innovations for ASSCG

The emerging trends and future paths in AI

innovations for ASSCG hold promise for advancing the

state-of-the-art in automated code generation, enhancing

productivity, quality, and innovation in software

engineering practices. By leveraging cutting-edge AI

techniques, fostering ethical and responsible AI practices,

and promoting collaboration and knowledge sharing,

Exploring AI Innovations in Automated Software Source Code… Informatica 48 (2024) 125–136 131

ASSCG can continue to evolve and address the complex

challenges of modern software development can be

concluded in the Table 6:

Table 6: Emerging trends and future paths in AI innovations for ASSCG

No Trend Description Implications

1
Advancements in Neural Architecture
Search (NAS) [43] [44] NAS techniques automate the design of

neural network architectures,

potentially revolutionizing AI-driven
code generation by enabling the

creation of more efficient and effective

models tailored to specific tasks

NAS can lead to the development of
specialized neural architectures optimized

for code generation, enhancing
performance, scalability, and adaptability to

diverse software engineering tasks.

2
Integration of Reinforcement Learning
(RL)[45] RL algorithms enable AI systems to

learn optimal decision-making

strategies through trial and error,

offering promising avenues for
improving code generation by

incorporating feedback mechanisms

and adaptive learning.

Integrating RL into ASSCG can enhance the
ability of AI models to generate code that

meets evolving requirements, adapts to

changing contexts, and optimizes for
various quality metrics, such as readability,

efficiency, and maintainability.

3
Hybrid Approaches Combining Symbolic

and Sub symbolic AI [46] Hybrid AI models combine symbolic

reasoning with sub symbolic learning,

leveraging the strengths of both
approaches to enhance code generation

capabilities, such as semantic

understanding, context awareness, and
logical inference

Integrating symbolic and sub symbolic AI

techniques in ASSCG can enable more

robust and interpretable code generation,
addressing limitations associated with

purely data-driven or rule-based approaches

and supporting complex software
engineering tasks.

4
Continual Learning and Lifelong

Adaptation [47] Continual learning frameworks enable

AI systems to acquire and integrate new

knowledge over time, facilitating
lifelong adaptation to changing

environments, requirements, and user

feedback

Implementing continual learning

mechanisms in ASSCG can enable AI

models to continuously improve their code
generation capabilities, learn from new

codebases or programming paradigms, and

adapt to emerging trends and technologies
in software development.

5
Ethical and Responsible AI Practices [48]

With the increasing deployment of AI

in code generation, there is a growing
emphasis on ethical and responsible AI

practices to address concerns related to

bias, fairness, transparency, privacy,
and accountability.

Building ethical considerations into ASSCG

from the start is crucial for creating code
that meets legal and social standards, avoids

bias, and promotes responsible software

development.

Collaborative AI Development

Environments [49] Collaborative AI development

environments leverage AI technologies
to facilitate collaboration, code review,

knowledge sharing, and collective

intelligence among developers,
enhancing productivity and innovation

in software engineering.

Creating collaborative AI development

environments tailored for ASSCG can foster
interdisciplinary collaboration between AI

researchers, software engineers, domain

experts, and end-users, enabling the co-
creation of AI models and tools that address

real-world software development

challenges.

6.2 Integration of AI with other software

engineering methodologies

Combining AI with established methodologies like

Agile, DevOps, Lean, and MDD holds immense promise

for boosting software development. This integration can

lead to more efficient, effective, and high-quality

software. However, to fully unlock this potential, we need

to address challenges like integrating the tools

seamlessly, ensuring reliable and secure AI outputs, and

adapting these practices to different development

cultures.

1) Agile development [50]:

• Description: Agile methodologies emphasize

iterative and collaborative development, focusing on

delivering working software in short iterations.

Integrating AI with Agile practices can enhance the

efficiency and effectiveness of development

processes by automating repetitive tasks, such as

code generation, testing, and deployment.

• Benefits: AI-powered tools can automate manual

tasks, provide predictive analytics for sprint

planning, and optimize resource allocation based on

historical data. Additionally, AI can facilitate

continuous integration and delivery (CI/CD)

pipelines by identifying potential bottlenecks and

suggesting optimizations.

• Challenges: Ensuring seamless integration of AI

tools with existing Agile workflows requires careful

consideration of team dynamics, tool compatibility,

and change management processes. Moreover,

maintaining transparency and accountability in AI-

132 Informatica 48 (2024) 125–136 A. Odeh et al.

driven decision-making is essential to preserve the

core principles of Agile development.

2) DevOps [50] [51]:

• description: DevOps emphasizes collaboration and

automation between development and operations

teams to accelerate software delivery and improve

deployment frequency. Integrating AI with DevOps

practices can streamline continuous integration,

delivery, and deployment processes by automating

code analysis, testing, and deployment tasks.

• Benefits: AI-powered tools can identify and

prioritize software defects, optimize infrastructure

provisioning, and predict system failures before they

occur. Additionally, AI can analyze deployment

metrics and user feedback to improve the quality and

reliability of software releases.

• Challenges: Ensuring the reliability and security of

AI-driven automation in DevOps pipelines is crucial

to prevent unintended consequences and mitigate

risks. Moreover, integrating AI tools with existing

DevOps toolchains requires careful planning and

coordination to minimize disruptions and ensure

compatibility.

3) Lean software development [50]:

• Description: Lean principles focus on maximizing

customer value while minimizing waste through

continuous improvement and iterative delivery.

Integrating AI with Lean practices can enhance

software development processes by automating

repetitive tasks, optimizing resource allocation, and

identifying opportunities for process improvement.

• Benefits: AI-powered tools can analyze historical

data to identify bottlenecks, predict future resource

requirements, and optimize workflow efficiency.

Additionally, AI can facilitate rapid prototyping and

experimentation by generating code snippets or

design alternatives based on user input and feedback.

• Challenges: Ensuring alignment between AI-driven

optimizations and Lean principles, such as customer

focus, waste reduction, and continuous learning, is

essential to avoid conflicts and maintain the integrity

of Lean practices. Moreover, fostering a culture of

experimentation and continuous improvement is

crucial to leverage AI effectively in Lean

environments.

4) Model-Driven development (MDD) [52] [53]:

• Description: MDD emphasizes the use of high-level

models to describe software systems, which are then

automatically transformed into executable code.

Integrating AI with MDD can enhance the

expressiveness and flexibility of modeling languages,

automate model transformation tasks, and improve

the accuracy of code generation.

• Benefits: AI-powered tools can analyze natural

language requirements, extract domain concepts, and

automatically generate corresponding model

elements. Additionally, AI can assist in model

validation and verification by identifying

inconsistencies, ambiguities, and missing

requirements.

• Challenges: Ensuring the correctness and

completeness of AI-generated models and code is

crucial to prevent logic errors and maintain system

reliability. Moreover, integrating AI tools with

existing MDD tools and workflows requires

standardization and interoperability to ensure

seamless collaboration and compatibility.

Table 7: Integration of AI with other software engineering methodologies

Software

engineering

methodology

Description Integration with AI

DevOps [50] [51] DevOps focuses on collaboration and

automation between software development and
IT operations teams throughout the software

development lifecycle.

AI can be integrated into DevOps practices for automated

testing, continuous integration and deployment, infrastructure
management, and monitoring, enhancing efficiency and

reliability.

Agile [50] Agile emphasizes iterative and incremental

development, customer collaboration, and
responding to change.

AI techniques can support Agile methodologies by

automating repetitive tasks, analyzing user feedback,
predicting project timelines and resource allocation, and

optimizing sprint planning and backlog management.

Waterfall [54] Waterfall is a sequential software development
model with distinct phases such as

requirements, design, implementation, testing,

and maintenance.

AI can be integrated into Waterfall methodologies to
automate documentation generation, requirements analysis,

code generation, and testing, improving productivity and

reducing manual effort.

Lean Software

Development [50]

Lean focuses on minimizing waste, maximizing

value, and continuously improving processes

through feedback and adaptation.

AI can support Lean principles by analyzing process data,

identifying bottlenecks, optimizing resource allocation,

predicting project risks, and facilitating continuous

improvement initiatives.

Spiral Model [54] The Spiral model combines elements of both

iterative and sequential development, with

cycles of risk analysis, development, and
evaluation.

AI can enhance the Spiral model by automating risk analysis,

predicting project outcomes, recommending iterative

refinements, and optimizing resource allocation based on
evolving project requirements.

Extreme

Programming

(XP) [50]

XP emphasizes short development cycles,

continuous testing, simplicity, and customer
involvement.

AI techniques can complement XP by automating test case

generation, identifying code smells and refactoring
opportunities, analyzing customer feedback, and facilitating

pair programming and code reviews.

Rational Unified

Process (RUP)

RUP is a customizable software development

process framework that provides guidelines,
templates, and best practices for iterative

AI can integrate with RUP by providing decision support for

process tailoring, analyzing project metrics, predicting
project risks, and recommending iterative refinements based

Exploring AI Innovations in Automated Software Source Code… Informatica 48 (2024) 125–136 133

development. on historical data and feedback.

7 Conclusion

AI is shaking up how we write software! Developers

can now automate tedious tasks, speed up development,

and even improve code quality with the help of AI-

powered tools. However, there are still hurdles to

overcome, like making AI's decisions easier to

understand, preventing bias in the code, and making these

tools work well for large projects. The future of AI code

generation is bright! Imagine software being built faster,

with fewer bugs, and even by people who aren't

professional programmers. To get there, we need to keep

improving AI and figure out how to use it effectively.

This will change how software is written forever, making

the industry more productive, reliable, and accessible. In

short, AI is bringing a new age of software development

– one that's faster, smarter, and more open to everyone.

By embracing AI tools, developers can solve complex

coding problems and deliver top-notch software that

meets the needs of today's digital world.

References
[1] Z. Bahroun, C. Anane, V. Ahmed, and A. Zacca,

“Transforming Education: A Comprehensive

Review of Generative Artificial Intelligence in

Educational Settings through Bibliometric and

Content Analysis,” Sustain., vol. 15, no. 17, 2023,

doi: 10.3390/su151712983.

[2] F. Pinto-Santos, Z. Alizadeh-Sani, D. Alonso-Moro,

A. González-Briones, P. Chamoso, and J. M.

Corchado, “A Template-Based Approach to Code

Generation Within an Agent Paradigm,” Commun.

Comput. Inf. Sci., vol. 1472 CCIS, pp. 296–307,

2021, doi: 10.1007/978-3-030-85710-3_25/COVER.

[3] Ankur Desai and D. Atul, “Introducing Amazon

CodeWhisperer, the ML-powered coding

companion | AWS Machine Learning Blog,” 2022.

https://aws.amazon.com/blogs/machine-

learning/introducing-amazon-codewhisperer-the-ml-

powered-coding-companion/.

[4] J. Cruz-Benito, S. Vishwakarma, F. Martin-

Fernandez, and I. Faro, “Automated Source Code

Generation and Auto-Completion Using Deep

Learning: Comparing and Discussing Current

Language Model-Related Approaches,” AI 2021,

Vol. 2, Pages 1-16, vol. 2, no. 1, pp. 1–16, Jan.

2021, doi: 10.3390/AI2010001.

[5] E. Dehaerne, B. Dey, S. Halder, S. De Gendt, and

W. Meert, “Code Generation Using Machine

Learning: A Systematic Review,” IEEE Access, vol.

10, pp. 82434–82455, 2022, doi:

10.1109/ACCESS.2022.3196347.

[6] I. L. Yen, F. B. Bastani, F. Mohamed, H. Ma, and J.

Linn, “Application of AI planning techniques to

automated code synthesis and testing,” 14th IEEE

Int. Conf. Tools with Artif. Intell. 2002. (ICTAI

2002). Proceedings., pp. 131–137, 2002, doi:

10.1109/TAI.2002.1180797.

[7] J. Cruz-Benito, S. Vishwakarma, F. Martín-

Fernández, I. F. I. Quantum, Electrical, and C. E. C.

M. University, “Automated Source Code Generation

and Auto-completion Using Deep Learning:

Comparing and Discussing Current Language-

Model-Related Approaches,” Appl. Informatics, vol.

2, no. 1, pp. 1–16, Mar. 2020, doi:

10.3390/AI2010001.

[8] Y. Danilchenko and R. Fox, “Automated code

generation using case-based reasoning, routine

design and template-based programming,” in CEUR

Workshop Proceedings, 2012, vol. 841, pp. 119–

125.

[9] H. Koziolek et al., “Rule-based code generation in

industrial automation: Four large-scale case studies

applying the CAYENNE method,” Proc. - Int. Conf.

Softw. Eng., pp. 152–161, Jun. 2020, doi:

10.1145/3377813.3381354.

[10] J. Zhu and M. Shen, “Research on Deep Learning

Based Code Generation from Natural Language

Description,” 2020 IEEE 5th Int. Conf. Cloud

Comput. Big Data Anal. ICCCBDA 2020, pp. 188–

193, Apr. 2020, doi:

10.1109/ICCCBDA49378.2020.9095560.

[11] O. A. C. Cortes, E. Sá, J. A. da Silva, and A. Rau-

Chaplin, “An Automatic Code Generator for

Parallel Evolutionary Algorithms : Achieving

Speedup and Reducing the Programming Efforts,”

in Conference: The Ninth International Conference

on Advanced Engineering Computing and

Applications in Sciences, 2015, no. c, pp. 39–44.

[12] T. H. M. Le, H. Chen, and M. A. Babar, “Deep

Learning for Source Code Modeling and

Generation: Models, Applications, and Challenges,”

ACM Comput. Surv., vol. 53, no. 3, Jun. 2020, doi:

10.1145/3383458.

[13] X. Song, H. Sun, X. Wang, and J. Yan, “A Survey

of Automatic Generation of Source Code

Comments: Algorithms and Techniques,” IEEE

Access, vol. 7, pp. 111411–111428, 2019, doi:

10.1109/ACCESS.2019.2931579.

[14] H. Liao, J. Jiang, and Y. Zhang, “A Study of

Automatic Code Generation,” Int. Conf. Commun.

Inf. Syst., pp. 689–691, 2010, doi:

10.1109/ICCIS.2010.171.

[15] V. J. Bhagyashree W. Sorte, P. P. Joshi, “Use of

Artificial Intelligence in Software Development Life

Cycle,” J. Innov. Comput. Emerg. Technol., vol. 2,

no. 1, 2021, doi: 10.56536/jicet.v2i1.25.

[16] E. Syriani, L. Luhunu, and H. Sahraoui, “Systematic

mapping study of template-based code generation,”

Comput. Lang. Syst. Struct., vol. 52, pp. 43–62,

2018, doi: 10.1016/j.cl.2017.11.003.

[17] A. T. Imam, T. Rousan, and S. Aljawarneh, “An

expert code generator using rule-based and frames

knowledge representation techniques,” 2014 5th Int.

Conf. Inf. Commun. Syst. ICICS 2014, 2014, doi:

10.1109/IACS.2014.6841951.

[18] T. Sharma et al., “A Survey on Machine Learning

Techniques for Source Code Analysis,” Oct. 2021,

doi: 10.1145/nnnnnnn.nnnnnnn.

134 Informatica 48 (2024) 125–136 A. Odeh et al.

[19] M. Allamanis, E. T. Barr, P. Devanbu, and C.

Sutton, “A Survey of Machine Learning for Big

Code and Naturalness,” ACM Comput. Surv., vol.

51, no. 4, Sep. 2017, doi: 10.1145/3212695.

[20] N. Beau and B. Crabbé, “The impact of lexical and

grammatical processing on generating code from

natural language,” Proc. Annu. Meet. Assoc.

Comput. Linguist., pp. 2204–2214, 2022, doi:

10.18653/V1/2022.FINDINGS-ACL.173.

[21] Y. Hussain, Z. Huang, Y. Zhou, and S. Wang,

“Deep Transfer Learning for Source Code

Modeling,”

https://doi.org/10.1142/S0218194020500230, vol.

30, no. 5, pp. 649–668, Jun. 2020, doi:

10.1142/S0218194020500230.

[22] C. Liu et al., “Improving ChatGPT Prompt for Code

Generation,” arXiv:2305.08360, May 2023,

Accessed: Jun. 18, 2023. [Online]. Available:

http://arxiv.org/abs/2305.08360.

[23] S. Saravanan and K. Sudha, “GPT-3 Powered

System for Content Generation and

Transformation,” Proc. - 2022 5th Int. Conf.

Comput. Intell. Commun. Technol. CCICT 2022, pp.

514–519, 2022, doi:

10.1109/CCICT56684.2022.00096.

[24] J. Zhou et al., “Graph neural networks: A review of

methods and applications,” AI Open, vol. 1, pp. 57–

81, Jan. 2020, doi: 10.1016/J.AIOPEN.2021.01.001.

[25] V. Mironovich, M. Buzdalov, and V. Vyatkin,

“Automatic generation of function block

applications using evolutionary algorithms: Initial

explorations,” Proc. - 2017 IEEE 15th Int. Conf.

Ind. Informatics, INDIN 2017, pp. 700–705, Nov.

2017, doi: 10.1109/INDIN.2017.8104858.

[26] C. C. Insaurralde, “Software programmed by

artificial agents toward an autonomous development

process for code generation,” Proc. - 2013 IEEE Int.

Conf. Syst. Man, Cybern. SMC 2013, pp. 3294–

3299, 2013, doi: 10.1109/SMC.2013.561.

[27] J. P. A. Hoyos and F. Restrepo-Calle, “Automatic

source code generation forweb-based process-

oriented information systems,” in ENASE 2017 -

Proceedings of the 12th International Conference

on Evaluation of Novel Approaches to Software

Engineering, 2017, pp. 103–113, doi:

10.5220/0006333901030113.

[28] D. Radošević, T. Orehovački, and I. Magdalenić,

“Towards the Software Autogeneration,” SSRN

Electron. J., Oct. 2014, doi:

10.2139/SSRN.2505658.

[29] M. Dorin and S. Montenegro, “Metrics to

understand future maintenance effort required of a

complicated source code,” Actas del Congr. Int. Ing.

Sist., pp. 171–183, 2019, doi:

10.26439/CIIS2019.5510.

[30] P. Jackson, “Understanding understanding and

ambiguity in natural language,” Procedia Comput.

Sci., vol. 169, pp. 209–225, Jan. 2020, doi:

10.1016/j.procs.2020.02.138.

[31] V. Saideep, “Automating Software Development

using Artificial Intelligence[1] V. Saideep,

‘Automating Software Development using Artificial

Intelligence,’ p. 6, Apr. 2020, doi:

10.36227/TECHRXIV.12089139.V1.,” p. 6, Apr.

2020, doi: 10.36227/TECHRXIV.12089139.V1.

[32] C. Yang, Y. Liu, and C. Yin, “Recent Advances in

Intelligent Source Code Generation: A Survey on

Natural Language Based Studies,” Entropy (Basel).,

vol. 23, no. 9, Sep. 2021, doi: 10.3390/E23091174.

[33] D. Baulé, C. G. von Wangenheim, A. von

Wangenheim, J. C. R. Hauck, and E. C. V. Júnior,

“Automatic code generation from sketches of

mobile applications in end-user development using

Deep Learning,” arxiv.org:2103.05704, Mar. 2021,

Accessed: Jun. 03, 2023. [Online]. Available:

http://arxiv.org/abs/2103.05704.

[34] D. De Souza Baule, C. G. Von Wangenheim, A.

Von Wangenheim, and J. C. R. Hauck, “Recent

Progress in Automated Code Generation from GUI

Images Using Machine Learning Techniques,”

JUCS - J. Univers. Comput. Sci. 26(9) 1095-1127,

vol. 26, no. 9, pp. 1095–1127, 2020, doi:

10.3897/JUCS.2020.058.

[35] J. Arogundade, O.T., Onilede, O., Misra, S.,

Abayomi-Alli, O.O., Odusami, M.O., & Oluranti,

“From Modeling to Code Generation: An Enhanced

and Integrated Approach,” 2021.

[36] Z. Bilgin, “Code2Image: Intelligent Code Analysis

by Computer Vision Techniques and Application to

Vulnerability Prediction,” ArXiv, abs/2105.03131.,

May 2021, Accessed: Jun. 02, 2023. [Online].

Available: http://arxiv.org/abs/2105.03131.

[37] B. Yetistiren, I. Ozsoy, and E. Tuzun, “Assessing

the quality of GitHub copilot’s code generation,”

PROMISE 2022 - Proc. 18th Int. Conf. Predict.

Model. Data Anal. Softw. Eng. co-located with

ESEC/FSE 2022, vol. 10, no. 22, pp. 62–71, Nov.

2022, doi: 10.1145/3558489.3559072.

[38] “Google Cloud AutoML - Train models without ML

expertise.” https://cloud.google.com/automl/

(accessed Jun. 18, 2023).

[39] J. G. Villalba, B. Uyanık, and A. Sayar,

“Developing Web-Based Process Management with

Automatic Code Generation,” Appl. Sci. 2023, Vol.

13, Page 11737, vol. 13, no. 21, p. 11737, Oct.

2023, doi: 10.3390/APP132111737.

[40] Y. Dong, X. Jiang, Z. Jin, and G. Li, “Self-

collaboration Code Generation via ChatGPT,” ACM

Trans. Softw. Eng. Methodol, vol. 1, p. 38, Apr.

2023, Accessed: May 21, 2024. [Online]. Available:

https://arxiv.org/abs/2304.07590v3.

[41] F. Wang et al., “Slide4N: Creating Presentation

Slides from Computational Notebooks with Human-

AI Collaboration,” Conf. Hum. Factors Comput.

Syst. - Proc., p. 2023, Jan. 364AD, doi:

10.1145/3544548.3580753.

[42] H. Strobelt, J. Kinley, R. Krueger, J. Beyer, H.

Pfister, and A. M. Rush, “GenNI: Human-AI

Collaboration for Data-Backed Text Generation,”

Vol. 28, Issue 1, Pages 1106 - 1116, vol. 28, no. 1,

pp. 1106–1116, Jan. 2022, doi:

10.1109/TVCG.2021.3114845.

Exploring AI Innovations in Automated Software Source Code… Informatica 48 (2024) 125–136 135

[43] K. T. Chitty-Venkata and A. K. Somani, “Neural

Architecture Search Survey: A Hardware

Perspective,” ACM Comput. Surv., vol. 55, no. 4,

Nov. 2022, doi: 10.1145/3524500.

[44] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang,

“Efficient Architecture Search by Network

Transformation,” Proc. AAAI Conf. Artif. Intell.,

vol. 32, no. 1, pp. 2787–2794, Apr. 2018, doi:

10.1609/AAAI.V32I1.11709.

[45] M. Jones and F. Cañas, “Integrating Reinforcement

Learning with Models of Representation Learning,”

Proceedings of the 32nd Annual Conference of the

Cognitive Science Society, 2010.

http://palm.mindmodeling.org/cogsci2010/papers/03

57/paper0357.pdf (accessed Feb. 19, 2024).

[46] A. Himmelhuber, S. Grimm, M. Joblin, S. Zillner,

and T. Runkler, “Combining sub-symbolic and

symbolic methods for explainability,” in Frontiers

in Artificial Intelligence and Applications, vol. 369,

IOS Press BV, 2023, pp. 559–576.

[47] B. Irfan, A. Ramachandran, M. Staffa, and H.

Gunes, “Lifelong Learning and Personalization in

Long-Term Human-Robot Interaction (LEAP-HRI):

Adaptivity for All,” ACM/IEEE Int. Conf. Human-

Robot Interact., pp. 929–931, Mar. 2023, doi:

10.1145/3568294.3579956.

[48] A. Y. A. Bani Ahmad, “Ethical implications of

artificial intelligence in accounting: A framework

for responsible ai adoption in multinational

corporations in Jordan,” Int. J. Data Netw. Sci., vol.

8, no. 1, pp. 401–414, Jan. 2024, doi:

10.5267/j.ijdns.2023.9.014.

[49] R. Bharadwaj and I. Parker, “Double-edged sword

of large language models: mitigating security risks

of AI-generated code,” in The International Society

for Optical Engineering, 2023, p. 18, doi:

10.1117/12.2664116.

[50] A. Poth, C. Heimann, D. Eißfeldt, and S. Waschk,

“Sustainable IT in an Agile DevOps Setup Leads to

a Shift Left in Sustainability Engineering,” in 24th

International Conferences on Agile Software

Development, XP 2023, 2022, pp. 21–28, doi:

0.1007/978-3-031-48550-3_3.

[51] P. Narang and P. Mittal, “Continuous Assessment

and Improvement of Software Quality with

DevOps-Based Hybrid Model of Automation

Tools,” J. Comput. Syst. Sci. Int., vol. 62, no. 2,

2023, doi: 10.1134/S1064230723020144.

[52] G. Giachetti, J. L. de la Vara, and B. Marín,

“Mastering Agile Practice Adoption through a

Model-Driven Approach for the Combination of

Development Methods,” Vol. 65, Issue 2, Pages 103

- 125, vol. 65, no. 2, pp. 103–125, Apr. 2023, doi:

10.1007/s12599-022-00785-5.

[53] J. Chueca, J. I. Trasobares, Á. Domingo, L. Arcega,

C. Cetina, and J. Font, “Comparing software

product lines and Clone and Own for game software

engineering under two paradigms: Model-driven

development and code-driven development,” Vol.

205, vol. 205, Jan. 19248BC, doi:

10.1016/j.jss.2023.111824.

[54] I. Lishner and A. Shtub, “Enhancing Strategic

Planning of Projects: Selecting the Right Product

Development Methodology,” Inf., vol. 14, no. 12,

2023, doi: 10.3390/info14120632.

136 Informatica 48 (2024) 125–136 A. Odeh et al.

