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Abstract
Numerous strategies have been proposed for the detection and prevention of non‐technical
electricity losses due to fraudulent activities. Among these, machine learning algorithms and
data‐driven techniques have gained prominence over traditional methodologies due to their
superior performance, leading to a trend of increasing adoption in recent years. A novel two‐
step process is presented for detecting fraudulent Non‐technical losses (NTLs) in smart
grids. The first step involves transforming the time‐series data with additional extracted
features derived from the publicly available State Grid Corporation of China (SGCC)
dataset. The features are extracted after identifying abrupt changes in electricity con-
sumption patterns using the sum of finite differences, the Auto‐Regressive Integrated
Moving Average model, and the Holt‐Winters model. Following this, five distinct classifi-
cationmodels are used to train and evaluate a fraud detectionmodel using the SGCCdataset.
The evaluation results indicate that the most effective model among the five is the Gradient
Boosting Machine. This two‐step approach enables the classification models to surpass
previously reported high‐performing methods in terms of accuracy, F1‐score, and other
relevant metrics for non‐technical loss detection.

KEYWORD S
artificial intelligence, data analytics and machine learning, data structures, power metres, power system security,
smart cities, smart power grids

1 | INTRODUCTION

Smart cities are contemporary urban settings that employ state‐
of‐the‐art technologies and data‐centric approaches to foster
sustainability, optimise the distribution of resources, and

improve the overall well‐being of inhabitants. A pivotal
component of this paradigm shift is the smart grid, which is an
innovative electrical distribution system that serves as the
foundation for the energy infrastructure of the municipality. By
means of integrating renewable energy sources, improving
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efficiency, and promoting environmental sustainability, the
smart grid reorients energy management. Smart meters are of
paramount importance in this ecosystem as they enable the
accumulation of data in real‐time, thereby providing residents
with the ability to oversee and regulate their electricity usage.
Furthermore, these metres provide utilities with the ability to
promptly identify and resolve concerns such as energy theft,
power disruptions, and other sources of energy loss, thereby
ensuring a dependable and secure energy provision.

Two distinct types of electrical power losses are technical
loss and non‐technical loss (NTL) [1]. Arising during energy
transmission from power generation facilities to end‐users,
technical losses can be transformed into various energy forms,
including heat, within power lines and transformers [2]. A
decrease in technical losses may be made possible by changing
and redesigning the grid's elements [3]. A NTL involves
distributed energy that may not be billed due to energy theft or
fraud. In the majority of nations, the primary causes of NTLs
are the manipulation of smart meters and unauthorised
changes to their recorded data [4]. As such, utility companies
devote substantial resources and exert significant effort to
detect fraudsters and protect power infrastructures from
unauthorised access.

It is possible to successfully minimise NTLs by employing
a variety of techniques to generate results that reveal analysable
information when detecting malicious users. It is also believed
that focusing on NTLs minimisation before addressing tech-
nical losses is more useful [5]. Commonly, researchers divide
NTLs into two different groups: 1) tampering with the metre's
readings to inflate reported usage or bypassing the metre
altogether for technical official testing, and 2) NTLs resulting
from personal manipulations, which involves promoting
fraudulent and dishonest behaviour among the power utility or
company staff [4]. Following this, NTL detection techniques
can be categorised into two groups: hardware‐based methods
and alternative (non‐hardware) approaches. To identify fraud-
sters, hardware‐based methods utilise intelligent equipment
deployed at specific locations within the electrical systems.
Alternative approaches to hardware‐based methods include
network‐based methods, data‐based methods, or a mixture of
the two, which are all presented in the existing research
framework. These approaches have emerged alongside the
development of digital technology, enabling the collection of
diverse data regarding user consumption habits.

This work studies data‐based techniques using machine
learning (ML) algorithms, an increasingly trending area in NTL
detection research primarily due to the advantages demon-
strated over conventional hardware‐based methods [6]. The
following supervised ML algorithms were tested: Gradient
Boosting Machine (GBM), Generalised Linear Model (GLM),
Deep Learning (DL), and Naive Bayes (NB). The tests were
conducted in a two‐step analysis of the dataset provided by the
State Grid Corporation of China (SGCC). In the first step,
abrupt and anomalous changes in the consumer's typical usage
are detected. This is done by statistically examining fluctuations
in consumption patterns relative to the evolving measurement
of the midpoint of a sliding timeframe. The time series analysis

method known as Auto‐regressive Integrated Moving Average
(ARIMA) anticipates a consumer's upcoming consumption
behaviours through an assessment of past usage patterns [7].
Building upon the results from the first step, a novel attribute
collection is curated for the aforementioned algorithms. The
second step involves using the aforementioned ML algorithms
to determine whether the activities of the consumer under
consideration are deceitful. The main contributions and goals
of this work are as follows:

1. The introduction of a novel technique for transforming
data from smart meter readings that integrates the sum of
finite differences to model the sudden jump in electricity
usage, ARIMA, and Holt‐Winters approaches to extract
statistical characteristics to detect NTLs. The suggested
dataset transformation improves the fraud detection effi-
cacy of the tested ML algorithms mentioned above.

2. One main advantage of the proposed solution is the ability
to extract the finite differences as features in the trans-
formed dataset and the power of the GBM algorithm in
detecting NTL fraud cases.

3. The evaluation of the proposed strategy and comparing it
to current methods in the literature that also utilise the
SGCC dataset. The experimental findings indicate that the
suggested technique outperforms the state‐of‐the‐art
methods in terms of accuracy, precision, recall, and F1
score.

The rest of the paper is organised into six further sections.
Section 2 reviews recent academic publications that have pre-
dominantly employed supervised machine‐learning algorithms
on the SGCC dataset. The selected analysis outcomes, classi-
fication methodologies, and characteristics are also mentioned.
Section 3 provides details of the technique proposed in this
paper, along with the materials and methods used. Section 4
outlines the steps of dataset preparation and the definitions of
the performance measures used to test the performance of
each algorithm. Section 5 presents the results of the tests.
Section 6 discusses the results. Finally, section 7 concludes this
study.

2 | LITERATURE REVIEW

The techniques used to detect and recognise cases of NTLs by
fraudulent customers on victimised consumers are divided into
two categories: hardware‐based and non‐hardware‐based
techniques. The electricity supplier or utility company can
identify potentially fraudulent customer conduct [8, 9] by
simply setting up metres, which forms the foundation for the
hardware of the detection system. There are three categories of
NTL identification techniques that are alternatives to
hardware‐based methods: 1) approaches based on data 2)
techniques utilising networks and 3) methods that may be
mixtures of the previous two [6, 10, 11]. Methods that use
networks collect information gathered by the networks via
observer metres, smart meters, and sensors strategically located
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in the grid. Various review articles and related literature [6, 12]
have exhaustively investigated and documented these tech-
niques. The existing literature classifies network‐based tech-
niques into four different groups:

1. Load Flow Approach [13, 14]: the electrical power usage by
customers is monitored by setting an observer metre in a
designated grid spot. The result of this analysis is then
contrasted with the readings from customers' smart meters,
allowing for the identification of fraudulent activities.

2. Condition Prediction Methodology [9, 15]: the grid is
tracked using information from smart meters.

3. Sensing Network Methodology [16, 17]: specialised sensors
are implemented at specific grid spots to monitor usage.

Data‐driven approaches utilise the information gathered
from smart meters for a certain observation period and employ
a variety of ML algorithms for obtaining individual behavioural
insights. Machine learning techniques offer several advantages,
such as higher accuracy, enhanced effectiveness, decreased time
consumption, and decreased labour demands [6]. Detection
methods using ML are classified as being either supervised or
unsupervised [18, 19]. Unsupervised methods for NTL
detection utilise unannotated customer data. On the other
hand, supervised techniques use data that is assigned labels,
such as “Fraud” or “Non‐fraud”. Artificial Neural Networks
(ANN), Support Vector Machines (SVM), Convolutional
Neural Networks (CNN), Optimum Path Forest, Decision
Trees (DT), as well as various Ensemble Learning methods
such as AdaBoost, XGBoost, and Random Forest (RF),
represent some of the most extensively evaluated supervised
techniques in the current body of literature.

SVMs are commonly used as the primary technique for
NTL detection [14, 20]. While they excel with small datasets,
their efficacy decreases with large, unbalanced datasets [21]. In
some investigations, the SVM accuracy varied between 86%
and 98% [22, 23]. A Multilayer Perceptron is also a prominent
and frequently applied technique for NTL detection [2]. It has
been used in [24, 25] where characteristics based on statistics
and spectral analysis of the time‐series dataset were employed,
yielding accuracy ratings that vary from 54.61% to 87.11%.

In their study [26], Hussain et al. presented CatBoost, an
innovative method to identify NTLs based on supervised ML.
The researchers used it to analyse the SGCC dataset. The
SGCC dataset is an authentic dataset made publicly available by
the SGCC and includes the electricity consumption data of
42,372 customers over a duration of 1035 days. Moreover, the
Feature Extraction and Scalable Hypothesis algorithm was
employed for the purpose of collecting and selecting the most
optimal and pertinent temporal, statistical, and spectral fea-
tures. The method achieved an accuracy and precision of
93.4% and 95%, respectively. When the investigation was
repeated with RF, the accuracy achieved was 87%, in contrast
to other supervised techniques like extreme gradient boosting,
DT classification, light gradient boosting, and AdaBoost.
These methods all yield accuracy results between 81% and
91%. In the beginning phase, the authors utilised data class

balancing techniques to enhance the dependability of their
results. However, it did not have a substantial impact on ac-
curacy, recall, or precision.

Hussain et al. have also introduced a sophisticated
machine‐learning framework dubbed NGBoost for NTL
detection in [27]. A time‐series feature‐capturing tool known as
Time Series Feature Extraction Library and the whale opti-
misation technique were used to produce statistical, temporal,
and spectral attributes. In the aspect of effectiveness, the
NGBoost technique accurately categorised consumers into
either “Healthy” or “Theft” groups, surpassing the classifica-
tion performance of RF, CATBoost classifier, AdaBoost clas-
sifier, DT classifier, and gradient boosting classifiers.

Khan I. et al. [28] classified individuals within the SGCC
dataset as either “truthful” or “deceptive” using Bayesian SVM.
Using a Bayesian optimisation algorithm, the classification
model obtains a 94.1% level of accuracy, outperforming RF,
Logistic Regression (LR) and SVM algorithms while also
enhancing hyper‐parameter tuning and the accuracy of the
learning process. In [29], a comparison was made between
different supervised ML algorithms, including DT, ANN,
Deep Neural Networks (DNN), and Adaboost, using the
SGCC dataset. The DNN algorithm stood out among the
competing algorithms by demonstrating exceptional perfor-
mance, achieving an accuracy rate of 93.04%. Nevertheless, the
outcomes obtained need more reliability due to the inadequate
performance observed in the recall and F1‐score measure-
ments. In [21], a different approach utilising a technique known
as Extra Gradient Boosting (FA‐XGBoost) was introduced and
implemented on the SGCC dataset. A tool called the Visual
Geometry Group was employed for characteristic retrieval,
although the study did not emphasise its extra load [30].
Advanced techniques such as SVM, CNN, and LR were also
evaluated to conduct a comparative analysis. The implemented
system achieved a remarkable accuracy of 95%. For the pur-
pose of grouping, the author's methodology introduces an
approach that relies on a supervised ML algorithm referred to
as Distributed Random Forest (DRF).

3 | METHODS AND MATERIALS

The presented technique (Figure 1) involves a two‐stage pro-
cess for extracting features. The first stage is characterised by
data analysis, pre‐processing, and feature extraction from the
SGCC dataset. The analysis of the data is based on the idea
that anomalous surges in the mean power consumption of
consumers are probably associated with fraudulent activity. For
example, Figure 2 illustrates that the recorded smart meter
readings immediately transition to lower usage readings after a
certain observed pattern. Similarly, if the disparity in usage is
computed relative to an adjacent metre, a sudden upsurge in
the neighbouring smart meter's readings becomes evident
(Figure 3). In this stage, the dataset undergoes pre‐processing
to derive a collection of features from every smart meter
reading. These features are derived by analysing a 2‐month data
window: a month preceding (lag) and a month following (lead)
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each reading. The finite delta differences are calculated using
these readings, comprising the initial set of features. Next, an
examination of the patterns evident in the moving mean of
smart meter readings is performed, employing optimised
moving mean methodology, including seasonality analysis,

Holt‐Winters, ARIMA, and usage trend. This analysis results in
the generation of the second set of features.

3.1 | Feature engineering

First, a new set of features was engineered using the features
obtained from a sliding window of leading and lagging readings
of a normalised SGCC dataset with the related statistical fea-
tures. The dataset was normalised by applying the min‐max
normalisation Equation (1) within the range of [0,1]. The
building of the new feature sets and the statistical character-
istics are outlined in the coming sections.

Norm¼
z − minðzÞ

maxðzÞ − minðzÞ
ð1Þ

where z represents the initial feature value, Norm denotes the
standardised value,max(z) is themaximumvalue of z, andmin(z)
is minimum value of z.

3.1.1 | The identification of abrupt surges in
smart meter consumption

To identify probable fraud, the proposed approach detects
sudden changes in behaviour by generating a dataset
comprising the attributes for each of the 61‐m readings in a
sliding window. This dataset, illustrated in Figures 2 and 3,
encompasses a collection of derived features that characterise
the temporal pattern surrounding each reading. These features
include metrics like the pre‐point and post‐point means, the
pre‐point and post‐point medians, the pre‐point and post‐
point variances encompassing a range of 32 readings before
and after, and thus the sum of finite differences (2).

max

 
XN

i¼1

ðδðiÞÞ

!

¼max

0

@
XN

j¼1

�
Leadj − Lagj

�
1

A ð2Þ

Where N is half the window size, Lagj is the jth Lag reading,
and Leadj is the jth Lead reading.

F I GURE 1 Illustration of the suggested non‐technical loss (NTL)
fraud detection approach.

F I GURE 2 The attacker metre experienced an unexpected decrease in
median consumption, indicating a significant drop in the readings of the
smart meter. Blue is the used amount of smart meters. During the
fraudulent moment, there is a spike (in orange) in the average value for the
lagging metre measurements and the average for the leading metre
measurements.

F I GURE 3 The recognition of an unexpected rise in the average usage
of the compromised smart meter. The amount of usage recorded by the
smart meter is represented by the blue line and the average of the lagging
and leading smart meter readings is depicted in orange.
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3.1.2 | Retrieval of characteristics from smart
meter data

After determining unanticipated jumps, an additional batch of
statistical characteristics is added to the time series data
collection. Table 1 sums up and illustrates these statistical
characteristics. Upon transforming the smart data into a series
of fixed values (constant average and standard deviation),
characteristics such as ARIMA, Holt‐Winters, we can examine
many characteristics, such as ARIMA, Holt‐winters, trend, and
seasonality. The ARIMA model is typically favoured for
enhancing prediction accuracy, as it leverages time series data
to forecast future trends based on historical values.

3.2 | Feature selection

Quite popular for feature selection, the Boruta algorithm uses
random variables to determine which features consistently
outperform random permutations of the original data.
Gradient Boosting Machine is somewhat resistant to random
features because it is an iterative algorithm that repeatedly re‐
scores the same data points, especially when used with row
sampling. Later iterations can rectify a bad split‐second deci-
sion. Observing the behaviour or random variables prevents
poor divisions on other features.

3.3 | Classifications

As stated previously, four distinct methods, RF, GBM, and DL,
are used in this study. The ML algorithms are employed on the
SGCC dataset to classify smart meter results as either fraud-
ulent or non‐fraudulent. The results were compared to the
results of various methods reported in literature.

3.3.1 | Generalised Linear Model

One popular ML algorithm used in detecting fraudulent
smart meters is GLM. It is a flexible and highly useful sta-
tistical model‐building method, with demonstrated effective-
ness in identifying fraudulent activity by recording
complicated connections among explanatory variables and the
probability of fraud occurrence. Generalised Linear Model
also provides extensive functionality with configurable
hyperparameters, including selecting a type of distribution
(Gaussian, Poisson, Binomial), the choice of link function
(identity, log, logit, inverse), methods for regularisation (alpha
and lambda parameters), and the treatment of missing values
[31]. By leveraging the adaptability and capability of GLMs
and optimising these hyperparameters, this research aims to
identify deception in smart electricity metres efficiently,
ensuring accurate analysis and maintaining the integrity of
energy consumption data.

3.3.2 | Gradient Boosting Machine

The GBM is an effective and commonly utilised ML algorithm
that is known for its capacity to manage complicated datasets
and provide high predictive accuracy. It sequentially integrates
an ensemble of weak prediction models, typically DT [32].
Each successive model in the group concentrates on correcting
the mistakes of its predecessors, thereby enhancing the per-
formance of the ensemble as a whole. Due to its ability to
identify complex patterns and relationships within the data,
GBM has been effectively applied to a variety of domains,
including fraud detection.

Gradient Boosting Machine is one of the ML approaches
evaluated in this study. We can optimise the effectiveness of the
GBM model by adjusting its hyper‐parameters, including its
learning rate, tree count, and maximal tree depth. The learning
rate dictates the role of each tree in the ensemble, whereas the
number of trees and maximal tree depth govern the complexity
and robustness of the model [33]. Through the assessment of
GBM and its hyperparameters, we hope to determine its ac-
curacy in identifying instances of fraudulent activity in elec-
tricity consumption data, thereby contributing to the
development of strong fraud detection systems in smart meter
networks.

The GBM model underwent testing twice with two
different numbers of trees. Initially, the testing was done with
the standard configuration, which employs 50 trees. The test
was repeated with an increased number of 500 trees (Table 2).
Additionally, stopping parameters were introduced to prevent
overfitting when implementing early stopping settings. Three
hyperparameters were defined as follows: stopping metric was
used as the stopping criterion and was set to Area Under
Curve (AUC), score tree interval represented the frequency at
which the model's performance was assessed every five trees,
and stopping rounds terminated the training after completing
three rounds.

TABLE 1 A collection of attributes specifically crafted for the
purpose of detecting fraudulent activities.

Generated feature Definition

Smart meter value
moving window

Smart meter time series data reading values (32
leading þ current þ 32 lagging)

General statistic features Sum, average, median, Variance, M

δ1 to δ32 seasonality,
randomness, trend

δ(i) = Lead(i) – lag(i) results of seasonal trend‐
decomposition.

Sum of finite differences Delta(i) sum for current value neighbouring time
series data

Holt‐winters Exponential averaging technique with

the capacity to disregard unrelated readings

ARIMA Autoregressive integrated moving

Average

Label 1 for fraud or 0 for non‐fraud label
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3.3.3 | Deep Learning

A sub‐field of ML, DL involves training ANN to learn
hierarchical data representations automatically [34–37]. This
enables DL models to capture intricate patterns and inter‐
dependencies within big datasets. In the context of recog-
nising fraud in digital electricity metres, DL offers a number
of advantages. It can manage high‐dimensional and
nonlinear data, making it suitable for analysing a variety of
energy consumption patterns and characteristics. Moreover,
DL algorithms have remarkable generalisation capabilities,
allowing them to adapt to different fraud patterns and detect
anomalies that may elude traditional rule‐based or statistical
methods.

As it is one of the ML methods often considered in liter-
ature, DL is also investigated in this study. Deep Learning is a
powerful method known to employ neural networks via
numerous layers in order to gather complicated patterns as well
as characteristics from data. The investigation has examined
DL's potential in fraud detection by capitalising on its capacity
to manage high‐dimensional and nonlinear data. The structure
of the neural network, including its total amount of layers that
are concealed as well as the amount of nodes inside every layer,
can also be taken into account as hyperparameters. Moreover,
hyperparameters associated with regularisation, including
dropout rate and weight decay, could further be studied to
increase the model's ability to generalise and avoid overfitting.

The DL machine was tested three times with two different
sets of epoch numbers. Firstly, it was evaluated with the initial
default settings of “10” epochs and since the early stopping
parameter is enabled by default, the default stopping parame-
ters were used to perform early stopping. The experiment was
then repeated with the epoch number set to "20". For com-
parison, early stopping was disabled by setting stopping rounds
to "0". For the third experiment, we used the same model
parameters as dl fit2 but early stopping was enabled and the
stopping criteria were specified. We also passed a validation set,
as it is recommended for early stopping and is valid only if
stopping rounds is greater than "0". The hyperparameters for
dl fit2 are given in Table 3, and the hyperparameters for dl fit3
are given in Table 4. Moreover, it is feasible to enhance the
model's performance by increasing the number of epochs in a
deep neural network. Once the optimal parameter values were

obtained, the model was trained and evaluated using the DL
algorithm over the SGCC time‐series data.

3.3.4 | Naive Bayes

Naive Bayes is a classification algorithm that is usually used as
an alternative to DT. It is characterised by applying Bayes
Theorem while strongly assuming independence of covariates.
Explicitly, the algorithm assumes that predictor variables are
independent of each other given the response. Furthermore,
this method assumes that the numeric predictors adhere to a
Gaussian distribution, with their standard deviations and
means obtained by statistical computations involving the
training dataset. During the construction of a NB classifier, a
row that contains at least one missing value in the training
dataset is entirely excluded. In the event of a test dataset with
missing values, those particular predictors will be omitted from
the probability calculation during the prediction process.

TheNB classifier algorithm is one of theML algorithms that
is investigated in this study. As with the other algorithms,
hyperparameters can be configured to give different operating
conditions for themodels. Hypothetically, thismay give different
results. One of the configurable hyperparameters is the amount
of Laplace smoothing. Due to the fundamental nature of theNB
algorithm, it may not perform well in real‐world scenarios by
default. Laplace smoothing is a solution employed as a
smoothing technique to tackle the issue of zero probability.

The NB algorithm was tested two times with the main dif-
ference between the two experiments being the amount of
Laplace smoothing. By default, the NB model does not use any
Laplace smoothing. First, a NB model was trained using default
parameters. For the second experiment, another NB model was
trained using Laplace smoothing, using the parameter laplace set
to “6”. After the parameters were set and training done, the
models were evaluated using the SGCC dataset.

TABLE 2 Gradient Boosting Machine (GBM) hyperparameters.

Hyper‐parameter Values

Number of trees 500

Batch size 25

Stopping rounds 3

Score tree interval 5

Stopping tolerance 0.0005

Stopping metric AUC

TABLE 3 Deep Learning (DL) hyperparameter (dl fit2).

Hyper‐parameter Values

Epochs 20

Hidden C (10,10)

Stopping rounds 0

TABLE 4 Deep Learning (DL) hyperparameter (dl fit3).

Hyper‐parameter Values

Epochs 20

Hidden C (10,10)

Score interval 1

Stopping_rounds 3

Stopping_metric AUC

Stopping_tolerance 0.0005
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 26317680, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sm

c2.12078 by C
ochraneU

nitedA
rabE

m
irates, W

iley O
nline L

ibrary on [09/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 | EXPERIMENTAL EVALUATION

4.1 | Dataset preparation

The introduced model ability to detect theft and fraud from
electricity smart meters readings is verified over the SGCC
dataset [2]. The SGCC dataset comprises electrical energy
smart meter readings for over 32,000 users during a 1035‐day
time frame. This dataset undergoes a two‐stage categorisation
procedure. A subset of 7000 entries is used for the investiga-
tion, of which 520 are identified as fraudulent users and 6480
as legitimate users. The 7000 m (520 fraudulent vs. 6480 non
fraudulent), each with 1035 readings, have been transformed
into a total of 7,245,000 records in the transformed features.
Out of these, 538,200 records are fraudulent and 6,706,800 are
non‐fraudulent. Further details are discussed in section 6.3.

4.2 | Performance measures

The performance of the ML algorithms was evaluated using
the performance measures detailed in Table 5. In the equations
defining some of the performance measures, FP, TP, FN, and
TN represent False Positive, True Positive, False Negative, and
True Negative, respectively. Also, AUC stands for Area Under
the Curve, MSE is the Mean Square Error, RMSE represents
the Root Mean Square Error, and y signifies the mean of y
values or the expected value of y.

5 | RESULTS

In this work, we divided the engineered dataset into two
subsets for training and validation (or testing) purposes. We
implemented four ML algorithms using the programming
language R. For processing and transforming the dataset, we
used the ‘dplyr’ library. Statistical feature calculation was done

using the ‘matrixStats’ library. Auto‐Regressive Integrated
Moving Average feature extraction was performed using the
‘Forecast’ library, and for ML algorithms and data visualisation,
we relied on ‘tidyverse’, ‘H2O’ [38], and ‘ggplot2’. The ML
models were trained on a system with a core‐i7 processor,
32 GB RAM, and a 12 GB NVIDIA GTX graphics card.
Detailed results of each ML algorithm are presented in the
following subsections.

5.1 | Generalised Linear Model results

The results of the two experiments with the GLM algorithm
show that it achieves a sensitivity (recall) score of 1.0 for both
the experiments. In the first experiment, the accuracy achieved
was 0.999,782, both the specificity and precision scores were
0.999,995, the obtained F1‐score was 0.999,783, and the ob-
tained AUC was 0.9999995. Similarly, the second experiment
gave an accuracy score of 0.999,801, while it achieved speci-
ficity and precision scores of 1.0, an F1‐score of 0.999,801, and
an AUC that was 0.9999989. A summary of the results of the
experiments with GLM is shown in Tables 6 and 7. The
graphical representation of the results in those tables can be
seen in Figure 4.

5.2 | Gradient Boosting Machine results

The two experiments with GBM have shown interesting re-
sults. The GBM models in the experiments performed
amicably and gave scores of 1.0 for all performance measures
(Acc, Sn, Sp, Pr, F1, AUC). There were few variations in the
model losses and R2 values; however, the values are consistent
with the overall performance of the models. In the first
experiment, the MSE was 0.000,010,569, the RMSE was
0.003,251,006, the Logloss was 0.00,325,624, and the R2 value
was 0.9999577. The model loss scores in the second

TABLE 5 Metrics used to evaluate the performance of the various employed machine learning (ML) methods.

Performance measure Definition Formula

Accuracy (Acc) Measure of how frequently both fraudulent and non‐fraudulent instances are correctly
identified.

Acc¼ ðTPþTNÞ
ðTPþFPþFNþTNÞ

Recall or sensitivity (Sn) Determines the method's accuracy when identifying fraud. Sensitivity¼ TP
ðTPþFNÞ

Specificity (Sp) Determines the method's accuracy when identifying non‐fraud. Specif icity¼ TN
ðTNþFPÞ

AUC Area under the curve. AUC ¼ RankiepositiveClss−
Mð1þMÞ

2
M∗N

Precision (Pr) Evaluates the classifier's ability to accurately distinguish instances of fraud from cases of actual
fraud.

Pr¼ TP
ðTPþFPÞ

F1‐score Recall and precision are harmonically averaged to give the F1 score. F1score ¼ 2 � ðPr�SPÞ
ððPrþSpÞ

MSE The average square of the discrepancy between the estimated & actual values MSE¼ 1
n
Pn

1

�
yi − yi

�2

RMSE The square root of MSE RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

1ðyi−yiÞ
2

n

r

Logloss The cross‐entropy loss LogLoss¼ − 1
N
PN

i¼1
PM

j¼1xij log
�
pij
�

R2 The measure of the proportion of the variance in a dependent variable explained by an
independent variable in regression analysis

R2 ¼ 1 −
Pn

1ðyi−yiÞ
2

Pn

1ðyi−yÞ
2
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experiment were 0.0 and the R2 obtained was 1.0, indicating a
higher performance than in experiment 1 and a better‐
performing model overall. The model losses are organised in
Table 8. The graphical illustrations of the same results are
shown in Figure 5.

5.3 | Deep Learning results

There were three experiments conducted using DL. For
experiment 1, the model performed well with an accuracy of
0.999,283, a sensitivity score of 1.0, specificity and precision
scores of 0.999,937, an obtained F1‐score of 0.999,286, and
0.9,998,998837 as the AUC. The model losses were as follows:
MSE ‐ 0.000,685,124, RMSE ‐ 0.02,617,488, and logloss ‐
0.005,926,242.

In the second experiment, the model performed similar to,
if not better than experiment 1 in many measures. The accu-
racy obtained was 0.999,844, sensitivity was 1.0, the specificity
was 0.999,912, this was close to the precision which was
0.999,913, the obtained F1‐score was 0.999,845, and the AUC

obtained was 0.9999303. In terms of model losses, the model
gave comparatively lower values of each error measure. The
MSE was scored at 0.000,154,854, the RMSE at 0.01,244,404,
and the logloss at 0.002,856,985.

It could be argued that the model in the third experiment
performed less effectively compared to the previous two ex-
periments. The overall performance results are high nonethe-
less. The accuracy obtained in this trial was 0.999,395, while the
sensitivity was 1.0 again, the specificity and precision scores
were 0.999,486. An F1‐score of 0.999,398 was obtained, and an
AUC of 0.9,997,067 was observed. The model losses were as
follows: MSE ‐ 0.000,952,688, RMSE ‐ 0.03,086,564, logloss ‐
0.008,014,885. It is worth noting that the R2 values could not
be obtained in the experiments with DL. Tables 9 and 10 of
results for the three experiments. Figure 6 illustrates those
results graphically.

5.4 | Naive Bayes results

The last ML algorithm tested was the NB classifier. The results
for the two experiments conducted using this algorithm are
identical. This indicates that the parameters set for the models

TABLE 6 Generalised Linear Model (GLM) performance results.

Exp Acc Sn Sp Pr F1 AUC

GLM 1 0.999,782 1.0 0.999,995 0.999,995 0.999,783 1.0

GLM 2 0.999,801 1.0 1.0 1.0 0.999,801 1.0

TABLE 7 Generalised Linear Model (GLM) model losses.

Exp MSE RMSE Logloss R2

GLM 1 0.004,925,593 0.070,182,570 0.021,145,890 0.989,297,300

GLM 2 0.004,900,019 0.070,000,130 0.021,066,740 0.980,399,600

F I GURE 4 Results of Generalised Linear Model (GLM) experiments.
The top sub‐figure shows the performance measures and the bottom shows
the model losses.

TABLE 8 Gradient Boosting Machine (GBM) model losses.

Exp MSE RMSE Logloss R2

GBM 1 0.000010569 0.003,251,006 0.003,256,240 0.999,957,700

GBM 2 0.000000000 0.000000000 0.000000000 1.000000000

GBM 3 0.000578,289 0.024,047,640 0.024,341,050 0.997,686,800

F I GURE 5 Results of Gradient Boosting Machine (GBM)
experiments. Performance measures are shown in the top sub‐figure and
the model losses are shown in the bottom sub‐figure.

8 - BADAWI ET AL.
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have no effect on the algorithm's performance. In both cases,
the classifier scored 0.52 in terms of accuracy. The achieved
scores for sensitivity, specificity, and precision were 1.0,
0.986,105, and 0.796,137, respectively. An F1‐score of
0.668,538 was obtained, while the AUC was 0.5,219,506. The
recorded MSE was 0.4,811,734, the RMSE was 0.6,936,667,
and the logloss was rather high at 16.55,273. The scores of the
performance measures are shown in Table 11. Table 12 shows
the model losses. Figure 7 shows the graph of the results.

6 | Discussion of results

The objective of the experiments was to determine the best‐
performing ML algorithm with the SGCC dataset. This falls
in line with the expected outcomes, as mentioned in Section 1,

and the goal of introducing a full‐fledged, high‐performing
NTL fraud detection solution. Four ML algorithms were
evaluated: GLM, GBM, DL, and NB classifiers. As mentioned
in the previous section, the dataset was divided into two sets
for training and evaluation. Experiments were done using the
R programming language with the libraries and settings
mentioned previously. Figures 8 and 9 show the graphical
comparison of all the models tested in terms of each perfor-
mance and model loss measure. The results show that the
highest‐performing ML algorithm on the SGCC dataset is
GBM. In particular, the second GBM experiment yielded the
highest scores for the performance measures in conjunction
with being the lowest‐scoring trial in terms of model losses.
Therefore, we propose the GBM model as an effective and
accurate classifier for the purposes of electricity and NTL
fraud detection.

The results also show that all the models tested, except the
NB classifier, performed amicably in many areas. The two ex-
periments with the NB classifier yielded identical results. This

TABLE 9 Deep Learning (DL) performance results.

Exp Acc Sn Sp Pr F1 AUC

DL 1 0.999,283 1.0 0.999,937 0.999,937 0.999,286 0.999,884

DL 2 0.999,844 1.0 0.999,912 0.999,913 0.999,845 0.999,930

DL 3 0.999,395 1.0 0.999,486 0.999,486 0.999,398 0.999,707

TABLE 10 Deep Learning (DL) model losses.

Exp MSE RMSE Logloss

DL 1 0.000685,124 0.026,174,880 0.005,926,242

DL 2 0.000154,854 0.012,444,040 0.002,856,985

DL 3 0.000952,688 0.030,865,640 0.008,014,885

F I GURE 6 Results of Deep Learning (DL) experiments. Performance
measures are shown at the top, followed by the model losses.

TABLE 11 Naive Bayes (NB) performance results.

Exp Acc Sn Sp Pr F1 AUC

NB 1 0.52 1.00 0.986,105 0.796,137 0.6,685,380 0.5,219,506

NB 2 0.52 1.00 0.986,105 0.796,137 0.6,685,380 0.5,219,506

TABLE 12 Naive Bayes (NB) model losses.

Exp MSE RMSE Logloss

NB 1 0.481,173,400 0.693,666,700 16.552,730,000

NB 2 0.481,173,400 0.693,666,700 16.552,730,000

F I GURE 7 Results of Naive Bayes (NB) experiments with
performance measures (top) and model losses (bottom).
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clearly shows that the parameters set for the two experiments do
not affect the performance of the algorithm with this dataset.
One of the few tuneablemodel parameters for theNB algorithm

is the amount of Laplace smoothing. By default, the ‘H2O’ NB
models do not use any Laplace smoothing. In experiment 1,
default settings were used, while the model was trained with
Laplace smoothing in the second experiment. It follows, there-
fore, that Laplace smoothing does not influence the perfor-
mance of the NB classifier with the dataset used. In both
experiments, the algorithm scored 0.5,200,000 in terms of ac-
curacy, a 1.0 for sensitivity, 0.9,861,050 for specificity,
0.7,961,370 for precision, 0.6,685,380 as the F1‐score, and
0.5,219,506 as the AUC. These scores are lower than the per-
formance scores of the other algorithms tested. The algorithm
also gave higher model losses than the other algorithms, as can
be seen in Figure 9. This leads to the conclusion that, overall, the
NB algorithm does not perform well with the used dataset. In
this section, a discussion follows on the performance of the
proposed ML algorithm in terms of the evaluation criteria, or
metrics mentioned (performance measures and model losses).
Additionally, the results are analysed to infer a comparison be-
tween the training and validation of the proposedmodel, thereby
illustrating how well the model fits the SGCC dataset.

6.1 | Gradient Boosting Machine algorithm
advantages

One main advantage of the proposed solution is the ability to
extract the finite differences as features in the transformed
dataset and the power the GBM algorithm has in detecting the
finite differences gathered in the pre‐processing stage. The
results of the GBM experiments are consistent with the ex-
pected performance of the algorithm. It is often considered a
type of gradient descent algorithm. As such, there are
numerous advantages and disadvantages to the GBM algo-
rithm. The first of the many advantages is that high accuracy in
predictions is more easily attainable with GBM. Secondly,
adjusting and optimising hyperparameters for various loss
functions makes the fit of the function more adaptable.
Moreover, GBM performs admirably with numerical and cat-
egorical values without requiring pre‐processing. Lastly,
missing data can be accounted for without involving imputa-
tion. At the other end of the spectrum, enhanced GBM con-
tinues to minimise errors, leading to overemphasising and
overfitting outliers. To neutralise this, cross‐validation is
required. Furthermore, GBM models require a significant
number of trees, which can be memory‐ and time‐intensive.
Lastly, numerous variables (iterations, regularisation parame-
ters, tree depth, and so forth) influence the behaviour of the
approach owing to its adaptability. This requires an extensive
grid search when tuning. While less interpretable, LIME, par-
tial dependency graphs, variable worth, and similar tools may
be of assistance.

One advantage of GBM is its ability to tune hyper-
parameters. Perhaps the only drawback to this is that tuning is
time‐intensive. The most commonly tuned hyperparameters
include the number of trees, depth of trees, learning rate, and
subsampling. In this study, the number of trees was tuned, and
the rest of the hyperparameters were left unchanged.

F I GURE 8 Comparison of results of the performance metrics:
Accuracy (blue), Sensitivity (orange), Specificity (grey), Precision (amber),
F1‐score (light blue), Area Under Curve (AUC) (green).

F I GURE 9 The sub‐figures show the R2, Logloss, MSE, and RMSE
scores of all the tested algorithms. The higher the R2 the better, and the
lower the values of Logloss, MSE, and RMSE the better.
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6.2 | Best number of trees

It is worth noting that the number of DT affect the perfor-
mance of the GBM algorithm. In the first GBM experiment,
default parameters were used and, hence, the model was
trained using 50 trees, which is the default number. In the
second experiment, the number of trees was increased to five
hundred. However, no early stopping parameters were set in
these two experiments. To avoid overfitting due to the large
number of trees, early stopping was enabled, and the related
parameters were set in the third experiment, keeping the same
number of trees as the previous trial. Another important point
to note is that early stopping is not enabled by default for the
GBM algorithm. Only DL, out of the four tested ML algo-
rithms, has early stopping available by default.

Since the GBM algorithm scored perfect scores for the
performance measures in all the three experiments, the model
losses must be compared to evaluate the overall effectiveness
of the models. Despite the fact that the losses are very minimal,
there is a variation in the values for the three experiments
owing to the different parameters, namely the number of trees
and early stopping parameters. From the results in Table 8 and
Figure 5, it can be easily inferred that the model parameters of
the second experiment give the best overall results as there are
no model losses and the R2 value is 1.0. The second best re-
sults are those of experiment 1, followed by those of the third
experiment.

The reason that experiment 3 had the highest model losses
out of the three experiments, despite having the number of
trees set to ‘500’ like experiment 2, is the effect of early
stopping on the training. The three parameters used to control
early stopping are ‘stopping rounds’, ‘stopping metric’, and
‘stopping tolerance’. Another parameter which is used, but
does not influence early stopping, is ‘score tree interval’. The
‘stopping rounds’ parameter determines the number of itera-
tions that must be completed until the ‘stopping tolerance’ of
the ‘stopping metric’ is crossed. Setting a ‘score tree interval’
scores the model for that many number of intervals.

The ‘stopping metric’ is the metric by which performance
can be measured; it was set to AUC. The ‘stopping rounds’
parameter was set to 3, the ‘stopping tolerance’ to 0.0005, and the
‘score tree interval’ to 5. These hyperparameters are given in
Table 2.

As a result of the early stopping conditions, the model only
trained with 30 trees, since a perfect 1.0 score for the AUC had
been achieved and, therefore, it remained unchanged for 3
rounds. This was enough for the set conditions to be met.
Moreover, the number of trees ultimately used is less than the
default 50 trees used in experiment 1, hence the trend in the
model losses between the experiments. It must be noted that
the effect is minimal, and the model losses in Experiment 3 are
not much greater than those in Experiment 1. Despite the
difference in model losses between the three experiments,
experiment 3 was trained much faster than the other two. This
is an advantage, as the higher number of trees in experiment 2
increases the computational burden and, hence, the training
time of the model. Thus, there is a trade‐off between reducing
the losses and training time. Therefore, the conclusion that can
be appropriately drawn is that increasing the number of DT
decreases the model losses (Figure 10), at the expense of
increased computational burden and longer training time.
Figure 11 illustrates the scoring history of the second GBM
experiment and clearly shows that the model losses decrease as
the number of trees increases. It can be observed that the
model was perfectly trained, and there are no errors as the
training and validation curves overlap. Figure 12 shows the
same results for the DL experiments for comparison.

6.3 | Class imbalance handling

Although the used dataset has a class imbalance issue, the re-
ported results have handled the class imbalance in all the ex-
periments as follows: When ‘balance classes’ is enabled, H2O
may undersample the majority or oversample the minority
classes. Enabling the balance class option increased the data
frame size. It provided the parameter ‘max after balance size’
that managed to reduce the data frame size. This specifies the
maximum relative size of the input dataset after balancing class
counts and defaults to 5.0.

The under‐sampling technique is applied to mitigate the
issue of class imbalance. In the third GBM experiment
(Table 13), for example, undersampling is implemented by
selecting 160,302 records as undersampled features from the
given dataset. Out of these, 79,813 records are classified as
fraud and 80,489 records are classified as non‐fraud. The
confusion matrices (Tables 13–16) for the methods clearly
show that the work has employed the undersampling or
weighting methods to address class imbalance and assure the
reliability of the results. The confusion matrix for the third
GBM experiment shows that the ratio of class 0 over class 1 is
1:1, which means the class imbalance is handled by under-
sampling the majority class to be balanced with the minority
class.

F I GURE 1 0 The increase in the number of trees minimises the
training and evaluation model loss.
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6.4 | Ensemble learning

GBMs are members of the family of ensemble learning tech-
niques. This work shows the high performance of the GBM
model in six performance measures and the adaptability of the
proposed powerful NTL fraud detection model. Since it is an
ensemble method, three more experiments were performed
using DRF on the transformed SGCC dataset with different
parameters. In the first experiment, default parameters are set.
In the default configuration, the algorithm utilises 50 trees. In
the second experiment, the number of trees was increased to
100. Usually, increasing the number of trees increases

performance as well. It is also considered that RF algorithms
are fairly resistant to overfitting. Table 17 shows a comparison
of the model losses from GBM and RF experiments.

F I GURE 1 2 The vertically arranged sub‐figures show the AUC,
PR_AUC, R2, and RMSE results for the Deep Learning (DL) training and
validation models with respect to Epoch number.

F I GURE 1 1 The vertically arranged sub‐figures show the AUC,
PR_AUC, Logloss, and RMSE results for the Gradient Boosting Machine
(GBM) training and validation models with respect to the number of trees.

12 - BADAWI ET AL.
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Comparing the results presented in Table 17, we notice that
R2 values from the GBM experiments are higher than those
from the DRF experiments. This indicates that the GBM
model is more capable of representing the fraud behaviour. A
higher R2 value indicates how strong the model is in repre-
senting the studied phenomena.

6.5 | Comparison with other methods

Existing literature encompasses various methods and ML al-
gorithms employed for the detection of electricity fraud and
NTLs. When compared to other state‐of‐the‐art methods, the
proposed approach exhibits superior performance across all six
tested performance measures. The six performance measures
give a good indication of which algorithm performs better with
a given dataset, especially for NTL detection.

Accuracy measures all the correctly classified instances
overall. Recall measures how many cases are correctly classified
as “true positive” (TP). Likewise, specificity measures how
many cases were correctly classified as “true negative” (TN).
Precision is the ratio of correctly classified TP cases to the
actual number of TP cases. The F1‐score is usually a measure
of the balance between recall and specificity. Lastly, the AUC is
a measure that is high if both recall and specificity are high.

Table 18 quantitatively compares the GBM algorithm and
the state‐of‐the‐art methods referenced in the literature. The
results indicate that the proposed model outperforms the
compared models across all performance measures, thereby
demonstrating its efficacy in the detection of electricity fraud
and NTLs. Figure 13 depicts the performance of the proposed
method (shown in blue) and the other reported approaches,
using the AUC benchmark. The proposed GBM model
exhibited the largest AUC in both the Receiver Operating
Characteristic AUC, which assesses the trade‐off between
sensitivity and specificity, and the area under the curve for
precision and sensitivity (PR‐AUC).

6.6 | Future work

This study was conducted on 4 ML models, with a total of 10
experiments (two to three experiments in each model), and
involved the testing of 72 columns for feature selection (using
the Boruta Algorithm). The goal was to select the best‐
contributing columns and drop the bad and constant col-
umns, which ultimately resulted in a promising two‐stage
method for identifying NTLs in smart meters caused by
electricity theft and fraud.

Further research work is planned in the future to, firstly,
evaluate the model on a wider range of smart‐grid datasets to
demonstrate that the technique is effective for various smart‐
grid consumption data and to reduce its reliance on a specific
dataset; secondly, to conduct ablation tests to measure the in-
fluence of the feature engineering phase and the selection of ML
methods. In summary, this study presents a pragmatic and pre-
cise two‐step approach to address this significant issue by using
both feature engineering and advancements in the field of ML.

7 | CONCLUSION

Non‐technical losses may arise from electricity fraud and are
causing significant financial losses for utility companies,
amounting to millions of dollars. This study introduces an

TABLE 13 Gradient Boosting Machine (GBM) 3 confusion matrix
(vertical: actual; across: predicted).

0 1 Error Rate

0 79,813 0 0 0/79,813

1 0 80,489 0 0/80,489

Totals 79,813 80,489 0 0/160,302

TABLE 14 Generalised Linear Model (GLM) 2 confusion matrix
(vertical: actual; across: predicted).

0 1 Error Rate

0 79,907 15 0.000188 15/79,922

1 17 80,573 0.000211 17/80,590

Totals 79,924 80,588 0.000199 32/160,512

TABLE 15 Deep Learning (DL) 2 confusion matrix (vertical: actual;
across: predicted).

0 1 Error Rate

0 79,806 7 0.000088 7/79,813

1 18 80,471 0.000224 18/80,489

Totals 79,824 80,478 0.000156 25/160,302

TABLE 16 Naive Bayes (NB) 2 confusion matrix (vertical: actual;
across: predicted).

0 1 Error Rate

0 0 79,813 1.000000 79,813/79,813

1 0 80,489 0.000000 0/80,489

Totals 0 160,302 0.497,891 79,813/160,302

TABLE 17 Comparison of model losses in Distributed Random
Forest (DRF) and Gradient Boosting Machine (GBM) models.

Exp MSE RMSE Logloss R2

DRF 1 0.001,350,698 0.03,675,185 0.03,127,834 0.9,945,971

DRF 2 0.001,648,786 0.04,060,525 0.03,570,996 0.9,934,047

GBM 1 0.000010569 0.003,251,006 0.00325,624 0.9,999,577

GBM 2 0.0 0.0 0.0 1.0

GBM 3 0.000578,289 0.02,404,764 0.02,434,105 0.9,976,868
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innovative and pragmatic approach for identifying NTLs and
electricity fraud in smart grids. The suggested GBM model
exhibits a noteworthy characteristic in its ability to achieve
performance metric scores of over 0.99, indicating its reliability
and consistency. This approach involves the creation of several
trees, each of which is trained and fitted differently. The de-
cisions made are subsequently aggregated to get accurate re-
sults. The proposed methodology involves a two‐step process.
First, sudden jumps or abrupt changes are detected using the
sum of finite differences around a specific point, and the
process is enhanced through the use of ARIMA and Holt‐
Winters models. Following this, features are extracted from
the smart meter readings in the SGCC dataset. The trans-
formed data is fed to an ML algorithm, which classifies the
metre as either fraudulent or non‐fraudulent. The use of finite
differences enables ML algorithms to detect sudden jumps or
abrupt changes, and time series feature extraction transforms
the dataset for better ML performance. The efficacy of the

method that has been proposed can be seen in the experiments
that were conducted. The findings of this innovative approach
demonstrate its increased effectiveness compared to existing
approaches in terms of precision, accuracy, AUC, specificity,
recall, and F1 score.
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