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A B S T R A C T

In recent years, facial recognition technology has become increasingly integrated into society, making privacy
protection crucial. Previous techniques offered minimal secrecy safeguards through simple obscuration meth-
ods. This paper addresses the strict privacy requirements of face image data by developing a novel framework
that synergistically integrates Generative Adversarial Networks (GANs), clustering algorithms, and Blockchain
technology. The methodology proposes a cutting-edge Privacy-Preserving Self-Attention GAN (PPSA-GAN) to
generate realistic synthetic facial imagery. An integrated mini-batch K-means clustering algorithm anonymizes
these images into distinct groupings, maximizing privacy preservation. Blockchain integration complements
the system by fortifying trust through decentralized ledgers for transparent yet secure data storage and
auditing. Rigorous benchmarking on the CelebA dataset confirms the PPSA-GAN architecture’s state-of-the-art
performance, attaining an impressive Inception Score of 13.99 and a Fréchet Inception Distance of 35.50.
The mini-batch clustering forms 125 distinct clusters, effectively anonymizing facial attributes within the
synthetic images. Blockchain integration further bolsters privacy assurances via tamper-proof historical records,
showcasing precision, recall, F1-score, and accuracy values of 0.948, 0.938, 0.943, and 0.947, respectively. This
multifunctional framework represents a novel contribution, fostering an ethical technological ecosystem that
balances progress and privacy. Prospective deployment horizons encompass identity verification, surveillance
infrastructure, and augmentation of medical image repositories, seeding an enlightening future for facial
recognition domains.
. Introduction

The development of artificial intelligence (AI) models is a result of
he notable advancements in AI technologies, particularly in machine
earning and deep learning (Liu et al., 2023). These models are useful in
any image processing and data analysis applications; one of its most

emarkable features is that they may provide realistic and captivating
amples without requiring complex structural characteristics (Wang
t al., 2021; Taha et al., 2023). Because AI frameworks can use gener-
tive models, there has been a lot of interest in their use. These models
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generate samples with properties present in the training data that are
similar to the sample distributions they are taught (Makhzani et al.,
2015). Data privacy seems to be a major issue when sharing data from
human wearable devices in emerging computing domains like federated
learning, edge computing, and adversarial machine learning (Liu et al.,
2021b). The acquisition of multimedia data, especially images and
movies, has been considerably enhanced by recent developments in
multimedia devices, including phones, cameras, and sensors.

A significant number of images are being used widely by individual
users on social networks, governments, and corporations as a result of
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the development of the Internet of Things (IoT) and the Internet of
Multimedia Things (IoMT). The most prevalent sort of data is image
data, which has the potential to reveal private information if it contains
sensitive information (Yu et al., 2020). Weak security mechanisms
on Internet of Things (IoT) devices are linked to multiple privacy
risks, including automatic data exchange and the sharing of indirect
identifiers through connected devices. The public has recently become
more aware of the serious worry of privacy leaks caused by data mining
assaults on photographs.

In recent years, there has been a growing emphasis on data integrity
and validation, with Generative Adversarial Networks (GANs) emerging
as a viable method for distinguishing between legitimate and faked
data due to their adversarial training mechanisms (Goodfellow et al.,
2014). Aleroud et al. (2023) have focused primarily on strengthening
privacy and anonymity for Internet of Things (IoT) users through the
use of GANs and micro aggregation, lowering dataset size while main-
taining data accuracy. This situation highlights the critical necessity for
strengthening privacy protections as emerging technologies continue
spreading. Despite rapid advances in facial recognition capabilities,
lingering worries over data security remain unresolved (Saabia et al.,
2019; Mahmoud et al., 2011). Contemporary investigations exploring
advanced obfuscation techniques for safeguarding sensitive visual data
indicate that adaptive protections still lag behind needs (Yu et al., 2020;
Abd El-Hafeez, 2010).

To balance expanding facial analytics utilities while still respecting
user privacy, active efforts have focused on methodologies encom-
passing scrambling personal identification markers and pinpointing
sensitive content. However, originally promoted strategies like image
blurring often critically degrade accuracy and usability. Tackling such
limitations necessitates sophisticated frameworks united innovations in
adversarial learning and tamper-resistant historical records (Yu et al.,
2016; Ullah et al., 2018).

This research puts forward a novel consolidation embedding
privacy-focused enhancements within adversarial learning architec-
tures, markedly amplifying output quality. By concentrating the model
focus on salient inputs, these enhancements significantly boost realism
and noise reduction. Extensive benchmarks against state-of-the-art
methodologies exhibit the proposed mechanism’s unmatched capabili-
ties in delivering privacy-preserving synthetic facial imagery without
compromising on quality or versatility Ongoing initiatives seek to
extend this approach across affiliated application terrains, including
biometrics, surveillance, and other fields where user privacy and data
security are paramount (Feuerpfeil et al., 2020; Eman et al., 2023). This
research fills a knowledge gap by incorporating GANs for data genera-
tion and clustering for image anonymization, as well as Blockchain for
data integrity and authenticity preservation, addressing the challenges
of securely storing generated images and data annotation in today’s
data-rich environment.

By fusing GANs and Blockchain, this study seeks a novel solution
that enhances the AI’s generative models while reinforcing generated
content’s storage and traceability to ensure resilience against tampering
and unauthorized alterations. The proposed innovation lies in harness-
ing the power of GANs alongside the security features of Blockchain to
create a new paradigm where generated images are realistic, traceable,
and verifiable. Although both technologies have been extensively stud-
ied in isolation, their integrated application remains relatively new. The
recognition of a substantial technological gap in data integrity, as evi-
denced in academic literature and practical applications, has motivated
us to explore this issue further. Here are the principal contributions of
this study:

• Develop a robust GAN-based framework augmented with a
privacy-preserving self-attention (PPSA) mechanism to generate
synthetic facial images that exhibit high realism, closely resem-
bling real faces, while maintaining stringent privacy safeguards.
2

• Integrate Blockchain technology with the PPSA GANs framework
to establish an immutable ledger for securely storing and auditing
facial recognition transactions.

• Implement mini-batch clustering algorithms as part of the privacy
preservation strategy, augmented by the self-attention mecha-
nism, to further enhance data anonymization and fortify user
privacy.

• Evaluate the performance and practical applicability of the inte-
grated system in real-world scenarios, such as identity verification
and access control.

The rest of the paper is structured as follows: In Section 2, a thor-
ough assessment of the literature is presented, including earlier studies
on GANs, clustering strategies, and Blockchain technology concerning
the creation of face images and privacy protection. The suggested
research framework is described in depth in Section 3, along with
the PPSA-GAN model’s architecture, the addition of mini-batch clus-
tering, and the use of Blockchain for data security. Section 4 presents
the experimental results, which serve to validate and benchmark the
proposed framework using both quantitative metrics and qualitative
evaluations. A comprehensive analysis is provided in Section 5, which
discusses the limitations, and time computation, compares various
methods, and discusses the ramifications of the results. The ablation
study is discussed in Section 6. The main contributions and future
directions are outlined in Section 7 Conclusion, which also emphasizes
the research’s importance in creating morally sound facial recognition
technologies.

2. Related work

This section overviews the most recent literature on image pri-
vacy protection, deep learning for object identification in images, and
multi-task learning. Generative Adversarial Networks (GAN) for data
creation and perturbation are among the deep learning approaches that
have been the subject of the majority of recent investigations (Chen
et al., 2019). It is now known that while GAN is a privacy-enhancing
technique, there is a chance that the training sample privacy informa-
tion may be unintentionally disclosed. The distribution is concentrated
around training samples as a result of the adversarial training tech-
niques and the deep neural network’s high model complexity (Xie
et al., 2018). Bonneau et al. (2009) proposed ‘‘privacy suites’’ that
provide users with a set of privacy options specified by ‘‘expert’’ users
or trustworthy persons. This method allows frequent users to utilize a
preset configuration or modify it modestly.

Using their exact location and time of day, Ravichandran et al.
(2009) investigated how to predict a user’s privacy preferences with re-
lation to location-based data. A privacy wizard was developed by Fang
and LeFevre (2010) to enable users to share login credentials with
their peers. Initially, this wizard asks users to grant privacy labels to
individual friends. Subsequently, it utilizes this data to construct a
classifier that use friend profile classification to automatically assign
privacy labels to friends without labels.

Recent research has focused on enhancing GAN training efficiency
and performance, including the application GAN (Goodfellow et al.,
2014), including applying batch normalization, input normalization,
and various activation functions that can be deployed (Ali et al.,
2019b). For example, Wasserstein distance has been introduced as a
new objective, with non-zero gradients anywhere in the Wasserstein
GAN (WGAN) work (Karras et al., 2017). Its implementation was
simple: removing the objective’s sigmoid function and adding weight
clipping to the discriminator network. It is shown that WGAN is free of
many of the issues with the original GAN, including unstable training
procedures and mode collapse. The Loss-Sensitive GAN is a related
project to the WGAN, with the aim of maximizing loss for bogus data

and minimizing loss for real data. The objective functions used in this
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Fig. 1. Architecture diagram of methodological structure where interconnected modules depict the sequential data flow.
work have non-vanishing gradients, which is a common feature of Least
Square GAN, WGAN, and Loss-Sensitive GAN.

Klemperer et al. (2012) explored the value of user-provided key-
words and descriptions when tagging images to help users create and
manage access-control rules more intuitively. Moreover, virtual batch
normalization (VBN) has improved neural network performance, par-
ticularly in enhancing the performance of Deep Convolutional GANs
(DCGAN). VBN normalizes individual samples based on statistics de-
rived from a predetermined reference batch, though it is computa-
tionally intensive, requiring concurrent forward propagation of two
mini-batches (Karras et al., 2017).

With the help of Generative Adversarial Networks (Yan and Miko-
lajczyk, 2015) there were able to produce 64 × 64 resolution images
from textual descriptions. Qi et al. (2021) Presented StackGAN, a
two-phase method to improve the generative process: the first stage
produces images with minimal visual content in low resolution, and
the second stage refines them to produce images with more detailed
visual information in high resolution. By simultaneously approximating
multiple distributions, the authors of the StackGAN method were able
to stabilize GAN training and handle both conditional and uncondi-
tional generative tasks. Utilizing a text-conditioned auxiliary classifier
to diversify artificial images and enhance their structural coherence,
TAC-GAN (Yan and Mikolajczyk, 2015) was created to integrate class
information from text descriptions. In their work paper, Feuerpfeil et al.
(2020) used a deep convolutional generative adversarial network (DC-
GAN), mainly applied to the well-known CelebFaces qualities Dataset
(CelebA), to integrate specified qualities or circumstances to generate
facial images. CDCGAN was used to describe this unique architectural
design. The dependent network was developed to investigate the cur-
rent state of the generative adversarial learning field. The three features
(classes for glasses, pink cheeks, and goatees) were used to successfully
produce fresh face images based on a portion of the original dataset.

The pursuit of enhancing Blockchain technology by leveraging in-
novative approaches to address its inherent challenges has led to the
exploration of various solutions. Zheng et al. (2020) proposed a secret-
sharing technology built upon GANs. This approach seeks to tackle
three critical issues in the Blockchain ecosystem: low security, difficult
recovery of lost keys, and inefficient communication. Corresponding to
this, Heidari et al. (2023) introduced an instruction detection system
(IDS) platform to enable secure data transfer over the Internet of
Drones. Ensuring decentralization and privacy preservation, this system
leverages Blockchain and zero-knowledge proof techniques to improve
the registration and verification processes. Blockchain was used by the
authors (Hu et al., 2019) to store detection results. But they created
a Blockchain-driven reward system for their multi-microgrid (MMG)
Collaborative Intrusion Detection (CID) system. A reduction in the false
3

negative rate (FNR) is achieved with this cooperative approach. Single
points of failure (SPoF) in data storage are eliminated.

To enhance the security and stability of the Intrusion Detection Sys-
tem (IDS) model training during the Federated Learning (FL) process,
several studies (Liu et al., 2021a; Ali et al., 2019a) have integrated
Blockchain technology. To improve the security and integrity of the
IDS models, He et al. (2022) created a FL-based CID framework for
UAV networks that uses Blockchain to store and distribute training
models. The integration of federated learning and blockchain tech-
nologies can enable the development of secure and privacy-preserving
generative adversarial networks (GANs) for advanced face recognition
applications in high-performance computing (HPC) systems, where fed-
erated learning can significantly improve the performance of anomaly
detection models while reducing the required training data by up to
15x (Farooq and Borghesi, 2023). As noted by He et al. (2022), Ullah
et al. (2022), the aggregation process is still centralized even with
the use of Blockchain in training. By using consensus methods based
on Blockchain technology, the research by El Koshiry et al. (2023),
in contrast of decentralizes the aggregation process. The process of
aggregating local gradient updates into a global model is handled by
multiple consensus nodes, such as miners, as opposed to a single central
server. This ensures that the global model is properly aggregated even
when individual hosts are attacking or malicious.

The existing literature has identified specific gaps that the pro-
posed research aims to solve, particularly in achieving more efficient
and secure data generation and preservation, especially in contexts
where privacy and data integrity are critical. Existing frameworks often
lack holistic integration of enhanced privacy defenses alongside high-
fidelity synthetic data generation and resilient storage protocols. This
research pioneeringly addresses these unmet needs through a consoli-
dated framework synergizing generative adversarial networks (GANs)
for quality image synthesis, clustering algorithms for anonymization,
and blockchain’s tamper-proof ledgers to enable trusted traceability.
This unified amalgamation of state-of-the-art techniques creates an
enhanced architecture harnessing complementary strengths to tackle
pressing data privacy, integrity, and efficiency challenges pervasive in
modern digital ecosystems.

3. Proposed research framework

To validate the comprehensive solution, rigorous experimentation
was undertaken on the CelebA benchmark dataset encompassing over
202,599 facial images with 40 attribute annotations per celebrity im-
age. A multi-faceted approach was pursued, fusing a privacy-preserving
self-attention GAN architecture (PPSA-GAN) with mini-batch clustering
flows for anonymity alongside blockchain integration to supply reliable
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and immutable audit trails. The framework’s methodological intercon-
nectivity and sequential data processing workflows are visualized in
Fig. 1 to emphasize the synergistic convergence of GANs, clustering
procedures, and blockchain security protocols. The methodological
structure is that, first of all dataset is uploaded and becomes the main
source for the data processing pipeline. Preprocessing methods, such
as normalization scaling, are used after dataset gathering to guarantee
data quality and feature compatibility. Normalization promotes optimal
performance in following algorithms by standardizing feature scales
without altering underlying data distributions. Next, using the learned
patterns from the preprocessed data, a Generative Adversarial Network
(GAN) Face Generator is utilized to produce realistic face images. By
adding synthetic cases, this stage enriches the dataset, increasing its
diversity and enabling more thorough evaluations. After processing,
the data is connected by clustering to find underlying patterns or
groups in the dataset. Effective cluster analysis is carried out using
the Mini Batch K-Means technique, yielding information about the
distribution and separation of data points among clusters. Blockchain
connectivity is incorporated into the pipeline after clustering to provide
secureand open data management and storage. By utilizing Blockchain
technology, tamper resistance, immutability, and decentralization are
used to maintain data integrity and trustworthiness. Last but not least,
data storage is made secureby Blockchain applications that use hash
technology to create distinct cryptographic hashes that reflect the
integrity of data blocks. These hashes are safely kept on the Blockchain,
guaranteeing the legitimacy of the data and enabling quick retrieval
and validation. All things considered, this sophisticated data process-
ing approach integrates cutting-edge methods, from pretreatment to
Blockchain integration, to promote reliable analyses and securedata
management procedures.

3.1. Privacy-preserving self-attention GAN architecture (PPSA-GAN)

Specifically, the PPSA-GAN architecture seeks to amplify GAN mod-
els with embedded privacy enhancement modules that preserve sensi-
tive information during synthetic facial image generation. Beyond facil-
itating high-fidelity outputs, privacy-preservation is imperative for eth-
ical deployment. The integration of a self-attention mechanism mark-
ably augments the generator’s capabilities by enabling focused con-
centration on salient inputs. This allows for the accurate capture of
long-range dependencies within facial datasets to produce synthetic
images exhibiting greater coherence and contextual relevance. By em-
phasizing meaningful facets in the input while disregarding noisy or
irrelevant features, self-attention significantly enhances result quality.
Such adaptive feature extraction contributes to the generator’s ca-
pability to generate high-quality, diverse, and contextually relevant
outputs across diverse domains. Algorithm 1 presents the PPSA-GAN
privacy-focused GAN that generates secure data using self-attention.
Integrating privacy mechanisms with generative models produces high-
fidelity, privacy-preserving synthetic data. The PPSA-GAN algorithm
is a Generative Adversarial Network architecture designed for image
generation and facial expression recognition tasks. It consists of a
Generator, Discriminator, and Classifier. The Generator generates syn-
thetic images, while the Discriminator distinguishes between real and
fake images. The Classifier performs facial expression recognition on
the generated images. The algorithm alternates between updating the
Discriminator and Generator weights based on their respective loss
functions. It incorporates a self-attention mechanism to capture long-
range dependencies in the input data. The Discriminator maximizes
its output for real images and minimizes it for generated images. The
Classifier is trained on features extracted from the Generator to perform
expression recognition. The algorithm monitors training progress and
stops when the GAN reaches equilibrium. Overall, PPSA-GAN integrates
GANs, self-attention, and a Classifier for image generation and facial
expression recognition.
4

Algorithm 1 PPSA-GAN Architecture
1: Initialize Generator 𝐺 and Discriminator 𝐷 with weights 𝜃𝐺 and 𝜃𝐷
2: Initialize Adam Optimizer for 𝐺 and 𝐷 with learning rate 𝜂
3: for epoch = 1 to 30 do
4: for real_images in 𝐷preprocessed do
5: real_labels = 1 − 0.1 × random()
6: fake_labels = 0.1 × random()
7: noise_vector = sample_noise_batch()
8: generated_images = 𝐺(noise_vector)
9: loss_D = −mean(log(𝐷(real_images))) − mean(log(1 −

𝐷(generated_images)))
10: 𝜃𝐷 = 𝜃𝐷 − 𝜂 × ∇𝜃𝐷 loss_D
11: // Generator Training
12: noise_vector = sample_noise_batch()
13: generated_images = 𝐺(noise_vector)
14: loss_G = −mean(log(1 −𝐷(generated_images)))
15: 𝜃𝐺 = 𝜃𝐺 − 𝜂 × ∇𝜃𝐺 loss_G ⊳ Update Generator Parameters
16: end for
17: end for
18: if GAN_reached_equilibrium() then
19: print("GAN training reached equilibrium.")
20: end if
21: // Self-Attention Mechanism
22: 𝑄 = 𝑋 ×𝑊𝑞
23: 𝐾 = 𝑋 ×𝑊𝑘
24: 𝑉 = 𝑋 ×𝑊𝑣

25: 𝑆 = softmax
(

𝑄𝐾𝑇
√

𝑑𝑘

)

26: 𝑂 = 𝑆𝑉
27: // Discriminator Architecture
28: loss_D = max(𝐷(𝑞)) − log(𝐷(𝑞)) + log(1 −𝐷(𝐺(𝑟)))
29: 𝜃𝐷 = 𝜃𝐷 − 𝜂 × ∇𝜃𝐷 loss_D ⊳ Update Discriminator Parameters
30: // Classification Loss for Facial Expression Recognition
31: features = 𝐺𝑓 (𝜉, 𝜃𝑓 )
32: predictions = 𝐺𝑐 (features, 𝜃𝑐 )
33: Loss_c =

∑

𝐿𝑐 (predictions, 𝑦𝑖)
34: 𝜃𝑓 = 𝜃𝑓 − 𝜂 × ∇𝜃𝑓 Loss_c ⊳ Update Classifier Parameters
35: 𝜃𝑐 = 𝜃𝑐 − 𝜂 × ∇𝜃𝑐 Loss_c ⊳ Update Classifier Parameters
36: // Equilibrium Check (Optional)
37: if GAN_reached_equilibrium() then
38: print("GAN training reached equilibrium.")
39: end if

Fig. 2. Overview of the GAN working structure to present generator and discriminator.

3.1.1. Generator architecture
Within this GANs architecture, meticulous attention was directed

towards the construction of the generator. The generator network,
denoted as G, aims to generate synthetic data instances that can effec-
tively deceive the discriminator, as shown in Fig. 2. Where the Genera-
tor creates synthetic images to deceive the Discriminator in adversarial
training. This competition strengthens both networks, enhancing the
generator’s ability to produce realistic data.

Employing transposed convolutions (deconvolutions), here adeptly
composed the transformation of the noise vector, effectually yielding a
synthetic image. The objective was to formulate a generator endowed
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with the capacity to generate synthetic images; discerning them from
authentic data became a formidable task. The loss function for the
generator is defined as in Eq. (1):

GNLF = min(GN)
∑

[

𝐸[𝑝inf(𝑞)] ⋅ log(1 − DN(𝑞))
]

(1)

In this equation, ‘E’ represents the expectation value, ‘p_inf(q)’
signifies the probability distribution of ‘q’ belonging to the original
information, ‘DN’ denotes the discriminator network, and ‘q’ represents
the initial image. ‘GN’ means the generator network responsible for
producing the secret key.

3.1.2. Self-attention mechanism
In this research integrated a self-attention mechanism to improve

the generator’s ability to produce realistic data. This pivotal addition
allows the generator to capture long-range dependencies and produce
more coherent images. The self-attention mechanism, represented by
a self-attention layer, operates on intermediate feature maps, enabling
the Generator better to understand global dependencies during the im-
age generation process. This added capability dramatically contributes
to the quality of the synthetic data produced. The input sequence X has
a 𝑇 length and a d dimension. The number of attention heads is H. We
begin by projecting the input sequence X into queries (Q), keys (K), and
values (V) using learned projection matrices.

(1) Query, Key, and Value Projection:

𝑄 = 𝑋𝑊𝑞

𝐾 = 𝑋𝑊𝑘

𝑉 = 𝑋𝑊𝑣

(2) Self-Attention Scores:

𝑆 = softmax
(

𝑄𝐾𝑇
√

𝑑𝑘

)

(3) Output of Self-Attention:

𝑂 = 𝑆𝑉

In these equations, 𝑄, 𝐾, and 𝑉 are obtained by projecting the input
feature maps 𝑋 using learnable weight matrices 𝑊𝑞 , 𝑊𝑘, and 𝑊𝑣. The
self-attention scores 𝑆 are computed by applying the softmax function
to the scaled dot product of 𝑄 and 𝐾, where

√

𝑑𝑘 is a scaling factor.
Finally, the output 𝑂 is calculated as the weighted sum of the values 𝑉
based on the self-attention scores 𝑆.

3.1.3. Discriminator architecture
In parallel, the discriminator was intricately devised, replete with

convolutional layers geared towards the processing and assessing of
images, differentiating between genuine and counterfeit instances. The
discriminator network, denoted as D, is designed to distinguish between
real and synthetic data instances. Its pivotal role lay in its adversarial
confrontation with the generator. By categorizing images as real or
spurious, the discriminator assumed the mantle of the generator’s
adversary. This adversarial interplay compelled the generator to con-
tinually refine its creative process, aiming to deceive the discriminator
adeptly. This dynamic interplay facilitated the evolution of increasingly
realistic images over time. The loss function for the discriminator is
defined as in Eq. (2):

DNLF = max(DN)
∑

[𝐸[𝑝inf(𝑞)] ⋅ log(DN(𝑞))]

+ 𝐸[𝑝inf(𝑞)] ⋅ log(1 − DN(GN(𝑟)))
(2)

In this equation, ‘DN’ represents the discriminator network respon-
sible for distinguishing real and fake data, ‘q’ denotes the original
image, ‘GN’ signifies the generator network, and ‘r’ represents the data
retrieved from the transformation domain. The DNLF loss function
serves to enhance the discriminator’s classification accuracy. Given
that the generated key should closely resemble the data in the trans-
formed domain, the Discriminator Network faces a challenging task
5

Fig. 3. GAN Intricate architectures empower generator and discriminator.

Table 1
GAN architecture, Multiple convolutional and deconvolutional layers systematically
transform latent vectors into realistic synthetic images.

Layer Kernel Neurons Activation

Fully connected 4 × 4 8192(4 × 4 × 512) –
Convolutional 4 × 4 256 ReLU
Convolutional 4 × 4 128 ReLU
Convolutional 4 × 4 3 Tanh

in differentiating between them. Intricate Generator and Discriminator
architectures enable high-quality image generation and discerning real
from synthetic in Fig. 3. Complex neural networks empower GAN
models to create realistic, nuanced data.

We consistently utilized the Binary Cross-Entropy Loss function to
evaluate this model’s performance throughout the training phase. This
pivotal loss function served as a critical metric, effectively quantify-
ing the discriminator’s ability to distinguish between authentic and
synthetic images while assessing the generator’s capability to produce
images that effectively deceived the discriminator.

The PPSA-GAN model comprises a generator and a discriminator,
both integral to the generation and evaluation of synthetic images.
The generator, composed of multiple layers, transforms latent vectors
of random noise into realistic images. Starting with a fully connected
(linear) layer, it progressively upsamples the latent vector into larger
images through a sequence of transposed convolutional layers en-
hanced with batch normalization. The initial deconvolutional layer
transforms the latent vector into a (4 × 4 × N) tensor, where ‘N’
represents the depth of the first deconvolution layer (conv-dim). Subse-
quent layers employ transposed convolutions with varying kernel sizes,
strides, and padding to produce images of increasing resolution. The
final deconvolutional layer upscales the tensor to 32 × 32 × 3, rep-
resenting RGB images, ensuring compatibility with the input dataset.
The first deconvolutional layer performs transposed convolution with
a kernel size of 4, a stride of 1, and zero padding. The second decon-
volutional layer continues to upsample the previous output, utilizing
a transposed convolution with a kernel size of 4, a stride of 2, and
padding of 1. Finally, the third deconvolutional layer further upsamples
the tensor to 32 × 32 × 3, representing the RGB image, as shown
in Table 1. The discriminator, pivotal in discerning real images from
synthetic ones, comprises three convolutional layers with leaky ReLU
activation functions. These layers process RGB images, progressively
learning to distinguish between genuine and generated images. Table 2
presents the properties of the first convolutional layer, which processes
RGB images with three input channels and applies a kernel size of 4,
a stride of 2, and a padding of 1. Subsequently, this model employs a
second convolutional layer with identical parameters. The third convo-
lutional layer, which further increases the depth to ‘conv-dim’, uses the
same kernel size, stride, and padding as the previous layers.

3.1.4. Training process
During the training process, carefully considered the extensive scale

of dataset, leading us to conduct training throughout 30 epochs. This
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Table 2
Discriminator architecture successive convolutional layers filter inputs to classify images

Layer Kernel Neurons Activation

Convolutional 4 × 4 32 LReLU
Convolutional 4 × 4 64 LReLU
Convolutional 4 × 4 128 LReLU
Fully connected – 1 –

choice was driven by the substantial temporal and computational re-
sources required for an extended training duration, potentially extend-
ing to hours or even days. This approach allowed us to strike a delicate
balance between achieving satisfactory results regarding the generated
images and conserving computational resources. The GAN operates
through a dynamic interplay between the generator and discriminator
during training. This training process functions competitively, where
the generator strives to generate data that can effectively deceive
the discriminator. Conversely, the discriminator aims to improve its
proficiency in distinguishing real data from synthetic data.

3.1.5. Equilibrium
Ideally, during GAN training, the process reaches an equilibrium

where the generator generates data almost indistinguishable from real
data. The discriminator becomes uncertain about whether the encoun-
tered data is real or fake, with a size of 1. After that, there is ReLU and
batch normalization. Subsequently, four modules undergo convolution
operation, in turn. Next comes convolution, followed by the average
pooling operation with a 2 × 2 window size. Following the average
ooling process, dropout is employed. Two fully connected layers and
ne Softmax layer receive the extracted features as input at the end.
here are seven different categories for the 512-dimensional feature
ector, and the classification yields the facial expression recognition
utcomes. The classification loss Ec of the classifier is defined as
n Eq. (3):

𝑐 (𝜃𝑓 , 𝜃𝑐 ) =
𝑁
∑

𝑖=1
𝐿𝑐

(

𝐺𝑐
(

𝐺𝑓 (𝑥𝑖; 𝜃𝑓 ); 𝜃𝑐
)

, 𝑦𝑖
)

(3)

where 𝑥𝑖 represents the original input image, 𝜃𝑓 denotes the feature
extractor’s parameter (𝐺𝑓 ), 𝜃𝑐 represents the classifier’s parameter (𝐺𝑐),
𝑦𝑖 stands for the actual label, and 𝐿𝑐 signifies the classification loss.
Achieving equilibrium involved meticulous minimization of the loss
function. To optimize the model, we employed the Adam Optimizer
— a widely adopted choice within the GAN framework for its proven
efficacy and adaptability. Skillful use of the Adam optimizer dynam-
ically adjusted weights for both the discriminator and the generator,
expediting the convergence process and fostering a more stable training
trajectory. This calibrated approach led the proposed GAN model to
converge towards an optimal equilibrium. In this state, the Generator
flawlessly produced synthetic data of a highly authentic nature, while
the Discriminator adeptly distinguished between real and counterfeit
images. The success of this convergence owes much to the judicious
selection of the Adam Optimizer. This choice accelerated convergence
dynamics and substantially contributed to the model’s enhanced per-
formance. The optimization of the generator’s parameters 𝜃𝐺 aimed to
produce synthetic images that deceive the discriminator is defined as
in Eq. (4):

𝜃𝐺 ← 𝜃𝐺 − 𝜂 ⋅ ∇𝜃𝐺𝐿𝐺 (4)

Similarly, aiming to enhance the discriminator’s ability to distin-
guish between real and generated images, the discriminator’s param-
eters 𝜃𝐷 are updated using gradient descent is defined as in Eq. (5):

𝜃𝐷 ← 𝜃𝐷 − 𝜂 ⋅ ∇𝜃𝐷𝐿𝐷 (5)

The iterative training process spans multiple epochs, with each
6

epoch encompassing the sequential training of the discriminator and
generator networks on real and synthetic image batches. In each epoch,
the discriminator’s parameters are updated by minimizing its adver-
sarial loss, guided by the divergence between its predictions for real
images and synthetic images generated by the generator. Concurrently,
the generator’s parameters

3.2. Integrating mini-batch K-means clustering

Clustering is a machine learning and data analysis technique that
involves grouping data points based on their similarity or inherent pat-
terns to uncover hidden structures or relationships, enabling compre-
hensive analysis and insights extraction. This work employs effective
divided k-means clustering methods that can reveal latent patterns in
large-scale facial image datasets to strengthen anonymity barriers. In
contrast to standard clustering techniques, divided k-means does not
require entire dataset ingestion; instead, it processes random data par-
titions at random times in each cycle. This guided stochastic sampling
significantly lowers memory requirements and processing overhead,
allowing for quick analysis of large quantities. The sensitivity to initial
centering circumstances caused by gradient descent traps is reduced
by random batching. The resulting cluster centroids clearly show up as
distinct clusters, confirming the technique’s usefulness for extracting
significant facial attributes to improve privacy. While accelerating con-
vergence and bolstering result robustness, it critically retains clustering
precision compared to established non-mini-batch methodologies. This
optimal balance between expedited clustering and accurate partition
fidelity powered by selective batch sampling aptly supplements ex-
isting GAN-driven facial image syntheses and privacy enhancement
modules. These centroids are plotted alongside data points and color-
coded differently for clarity and ease of interpretation. Algorithm 2
presents Privacy-Preserving Self-Attention GAN (PPSA-GAN) architec-
ture, clustering using Mini-Batch K-Means. Integration Merging GANs
and clustering strengthens privacy protections for images. Integrat-
ing state-of-the-art techniques creates an enhanced system harnessing
complementary strengths. First, it initializes the Generator and Discrim-
inator weights and optimizers, then trains them alternately using the
previous algorithm’s procedure. After training, it randomly initializes
K centroids and assigns data points to clusters based on proximity. It
then iteratively refines the clustering by processing mini-batches: sam-
pling a mini-batch, assigning its points to clusters, updating centroids
based on assignments, and updating global assignments. This iterative
process continues until reaching the maximum iterations, outputting
the trained PPSA-GAN model, final cluster assignments, and centroids.
Incorporating clustering aims to group similar data points, potentially
improving the Generator’s performance by leveraging these clusters
during training.

3.3. Blockchain for secure data storage

To ensure the security and integrity of data throughout the en-
tire process, leveraged Blockchain technology. Blockchain provides an
immutable and tamper-proof ledger for storing critical information,
such as metadata, data provenance, and access control rules. As each
stage of data processing pipeline progresses, relevant information is
recorded on the Blockchain, creating a transparent and traceable record
of data transformations and operations. To achieve this, we have de-
vised a BlockData class. This container holds the essential information
required to create individual blocks within the Blockchain. Integrating
mini-batch k-means with a Blockchain offers a robust solution for
clustering and securely storing representative synthetic images. This
fusion integrates the efficiency of mini-batch k-means, well-suited for
large datasets, with Blockchain’s security and immutability attributes.
A mining block is used to create a new block. First, it calculates a nonce
value such that the hash of the block data starts with a certain number

of leading zeros. This is a primary proof-of-work mechanism, similar to
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Algorithm 2 PPSA-GAN Architecture with Mini-Batch K-Means
Require: 𝐷preprocessed, 𝐾, 𝐵, max_iter
Ensure: Trained PPSA-GAN model (𝐺,𝐷), Final cluster assignments 𝐶,

Final centroids 𝜇
1: Initialize 𝐺 and 𝐷 with weights 𝜃𝐺 and 𝜃𝐷
2: Initialize Adam Optimizer for 𝐺 and 𝐷
3: for epoch in range(1, 31) do
4: for real_images in 𝐷preprocessed do
5: # Discriminator Training (as in previous algorithm)
6: # Generator Training (as in previous algorithm)
7: end for
8: end for
9: 𝜇 = randomly_initialize_centroids(𝐷preprocessed, 𝐾)

10: 𝐶 = assign_to_clusters(𝐷preprocessed, 𝜇)
11: iter_count = 0
12: while iter_count < max_iter do
13: mini_batch = random_sample(𝐷preprocessed, 𝐵)
14: 𝐶mini_batch = assign_to_clusters(mini_batch, 𝜇)
15: 𝜇 = update_centroids(mini_batch, 𝐶mini_batch, 𝐾)
16: 𝐶 = update_global_assignments(𝐶,𝐶mini_batch)
17: iter_count+ = 1
18: end while

Output: Trained PPSA-GAN model (𝐺,𝐷), Final cluster assignments
𝐶, Final centroids 𝜇

what is used in many Blockchain systems. Each block within Blockchain
comprises several crucial components:

Index: This serves as a unique identifier for every block.
A timestamp:: This record the time at which the block is added to

the Blockchain.
Image data:: This represents the actual content of the image that

intend to store within the block.
A nonce:: This is a random number that comes into play during the

mining process, as explained below.
Now, the mining process involves a simulation where actively

search for the appropriate nonce. When integrated with the block’s
data, this nonce generates a hash with a specified number of leading
zeros. The number of leading zeros required determines the complexity
of the mining process. More leading zeros indicate a higher level
of complexity, which, in turn, requires more computational effort to
identify the correct nonce. This deliberate increase in computational
power enhances the security of Blockchain, making it resistant to
fraudulent interference.

As new blocks are mined, they seamlessly integrate into the existing
Blockchain structure, effectively extending it. This continuous network
of interconnected blocks ensures the continuity and integrity of the
data, serving as a robust safeguard against tampering and data alter-
ations. To facilitate the visualization of Blockchain and its associated
data and compare it to its corresponding block index and hash value.
This comparison aids in evaluating how well the image data fits into
the overarching Blockchain structure.

This proposed system capitalizes on Blockchain principles, including
the mining process, cryptographic hashing, and the preservation of
immutable data. In computing the process, it provides a secure storage
solution and authorized verification for a specific image data set. This
approach enhances accountability and integrity within the Blockchain
ecosystem have established. Algorithm 3 presents Blockchain Inte-
gration with Mini-Batch K-Means Clustering. Blockchain integration
secures storage for synthetic image data. Decentralized ledgers pro-
tect sensitive generated content through cryptographic assurances en-
abling trusted record-keeping. This algorithm integrates the results of
the PPSA-GAN architecture and Mini-Batch K-Means clustering into a
blockchain structure. It initializes an empty blockchain list and defines
a BlockData class to store block information. The mine block function
7

performs proof-of-work mining to create new blocks. For each image
in the dataset, the algorithm retrieves the image data and its cluster
assignment, obtains a timestamp and block index, and mines a new
block containing this information along with the previous block’s hash.
The newly mined block is then appended to the blockchain. This pro-
cess continues for all images, creating an immutable and decentralized
ledger that stores the image data, cluster assignments, and timestamps
securely. The output is the updated blockchain, providing transparency
and data integrity for the PPSA-GAN model’s outputs and clustering
results.
Algorithm 3 Blockchain Integration with Mini-Batch K-Means Cluster-
ing
Require: 𝐶, 𝜇, 𝐷image
Ensure: Updated Blockchain
1: Blockchain = []
2: procedure BlockData(index, timestamp, image_data, nonce)
3: def __init__(self, index, timestamp, image_data, nonce):
4: self.index = index
5: self.timestamp = timestamp
6: self.image_data = image_data
7: self.nonce = nonce
8: end procedure
9: procedure mine_block(index, timestamp, image_data,

previous_block_hash, leading_zeros = 4)
10: nonce = 0
11: while True do
12: block_data = 𝑓 "indextimestampimage_datanonce"
13: block_hash = hash_function(block_data)
14: if block_hash[∶ leading_zeros] == "0" ∗ leading_zeros then
15: return BlockData(index, timestamp, image_data, nonce),

block_hash
16: else
17: nonce+ = 1
18: end if
19: end while
20: end procedure
21: for 𝑖 ← 0 to len(𝐷image) − 1 do
22: image_data ← 𝐷image[𝑖]
23: cluster_assignment ← 𝐶[𝑖]
24: timestamp = get_current_timestamp()
25: index = 𝑖 + 1
26: previous_block_hash = Blockchain[−1].hash if Blockchain else

"0" * 64
27: data_to_hash = 𝑓εimage_datacluster_assignment"
28: new_block_data,new_block_hash =

mine_block(index, timestamp,data_to_hash,
29: Blockchain.append(new_block_data)
30: end for

Output: Updated Blockchain

3.4. Evaluation metric

To comprehensively evaluate the performance of our proposed
PPSA-GAN model, we have calculated various widely-adopted metrics
in addition to the previously reported Inception Score (IS) and Fréchet
Inception Distance (FID). Properly evaluating GAN performance re-
quires human judgment to assess the visual fidelity of generated im-
age samples. However, we employ the automated inception score
(IS) (Barratt and Sharma, 2018) to quantify sample quality is defined
as in Eq. (6):

𝐼 = exp
(

E𝐺∼𝑃gen(𝐺) KL (𝑃 (𝑦|𝐺) ∥ 𝑃 (𝑦))
)

(6)

where 𝐺 represents the generated samples, 𝑃gen(𝐺) refers to the gen-
erated samples, 𝑃 (𝑦|𝐺) is the conditional class distribution given a
sample, and 𝑃 (𝑦) is the marginal class distribution over all samples.
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Higher IS indicates greater divergence, implying high image quality and
diversity. Additionally, we utilize the widely adopted Fréchet Incep-
tion Distance (FID) (Obukhov and Krasnyanskiy, 2020). FID compares
feature distributions of real and generated images using a pretrained
Inception network. It computes distance between multivariate Gaus-
sians fitted to feature representations of real and generated data. Lower
FID signifies greater similarity between their underlying distributions,
indicating the model’s effectiveness is defined as in Eq. (7):

FID = ‖𝜇real − 𝜇gen‖2 + Tr(𝛴real + 𝛴gen − 2
√

𝛴real𝛴gen) (7)

𝜇real represents the mean of the embeddings of the real data.
𝜇gen represents the mean of the embeddings of generated data.
𝛴real represents the covariance matrix of the embeddings of the real

data.
𝛴gen represents the covariance matrix of the embeddings of gener-

ated data.
Together, IS and FID offer reliable quantitative indicators for bench-

marking image generation performance using established statistical
measures to corroborate quality and realism.

We have also computed the precision, recall, F1-score, and accuracy
to assess the performance of the proposed model. These metrics offer
a well-rounded perspective on the model’s capabilities in generating
high-quality, realistic synthetic facial images while preserving privacy.

Precision measures the proportion of correctly identified synthetic
images among all images classified as synthetic by the model, calcu-
lated as per the following Eq. (8).

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(8)

Recall quantifies the proportion of synthetic images that the model
correctly identified as such, calculated as per Eq. (9).

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(9)

The F1-score is the harmonic mean of precision and recall, providing
a balanced measure of the model’s performance, computed as per
Eq. (10).

F1-score =
2 × (Precision × Recall)

Precision + Recall (10)

Accuracy represents the overall correctness of the model’s predic-
tions, calculated as per Eq. (11).

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

(11)

4. Experimental results

The extensive experimentation yields quantifiable validation of
the proposed framework’s capabilities in generating synthetic facial
imagery with heightened realism while preserving privacy. Rigor-
ous experimentation and industry-standard benchmarks quantify key
improvements by the presented model over existing methods.

4.1. Dataset and preprocessing

The CelebA dataset1 (Tang et al., 2021) served as the major dataset
in this inquiry, containing a comprehensive compilation of face charac-
teristics comprised of over 202,599 images of celebrities, each coupled
with 40 attribute annotations. During the training phase, all images
were used with a batch size of 128 per epoch to instantiate the proposed
model. Prior to training, a preprocessing step was conducted that
included scaling images to 32 × 32 pixel size. Additionally, pixel values
were normalized to a range of −1 to 1, as part of a deliberate plan to im-
prove training efficiency. This large dataset and preprocessing method

1 https://www.kaggle.com/datasets/jessicali9530/celeba-dataset.
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Fig. 4. Visualization of normalized training images from the CelebA dataset.

provide a solid platform for further model training and assessment
operations.

A preprocessing step is applied before using image data in a Gen-
erative Adversarial Network (GAN) for training. This preprocessing
involves two major components.

4.1.1. Image resizing
Initially, all images undergo resizing to a specified image size utiliz-

ing the transforms. Resize (image_size) operation. In this context, the
image_size parameter is set to 32 × 32 pixels. This resizing operation
ensures uniform image dimensions, a practical neural network training
prerequisite.

4.1.2. Scaling the pixel values
Following resizing, the pixel values of the images are scaled to

a specific range, commonly set to (−1, 1). This scaling process is
accomplished using the scale function, which takes the images as input
and performs the scaling operation. This scaling ensures pixel values
fall within a designated range conducive to neural network training.
Scaling to (−1, 1) is a widely adopted practice in GANs as it aids in
more efficient network convergence.

4.2. Privacy-preserving self-attention GAN network (PPSA-GAN) training
convergence

The PPSA-GAN employs a generator for latent vector-to-image con-
version via convolutional and deconvolutional layers, while the dis-
criminator uses LeakyReLU activations to discern real from synthetic
images. Training loss convergence reveals a balanced network dynamic.
Within the generator, ReLU and tanh activations enforce non-linearity
and pixel value limits, enhancing image quality (Table 1). Similarly,
the discriminator utilizes LReLU activations for improved convergence.
Preprocessing, like pixel normalization and dimension adjustments,
optimizes model learning (Table 2). Fig. 4 illustrates the refined model’s
outcomes post hyperparameter tuning, showcasing a harmonized in-
terplay between generator and discriminator. This optimization yields
realistic synthetic samples, underscoring the PPSA-GAN’s efficacy in
generating high-quality images.

Fig. 5 illustrates the training losses of the generator and discrimina-
tor in a GAN model which highlights the Generator and Discriminator
losses exhibit trends indicating GAN equilibrium. The adversarial train-
ing process cultivates an equilibrium where networks balance image
realism and discernment. Initially, the generator losses are relatively
higher than the discriminator’s loss. This is because the generator is
initially struggling to create fake images that are realistic enough.
However, as the generator learns and improves, its loss decreases. The
discriminator, on the other hand, can easily distinguish between fake
and real images. However, as the generator improves, the discriminator
has to work harder to distinguish between the two. As a result, the loss
of the discriminator increases.

Conversely, the generator’s loss exhibits a decreasing trend, indicat-
ing its increasing proficiency in generating images that can deceive the
discriminator. The GAN training process involves a dynamic equilib-
rium between the discriminator and the generator. The discriminator
adapts to better differentiate real and fake data as the generator be-
comes more skilled at generating realistic images. This adversarial
relationship eventually reaches an equilibrium where the discriminator

https://www.kaggle.com/datasets/jessicali9530/celeba-dataset
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Fig. 5. Convergence of generator and discriminator in GAN training.

Table 3
Comparative analysis of proposed PPSA-GAN model with others; Inception score (IS)
and Fréchet Inception Distance (FID) for the generated image from different models.

Model Inception score (IS) ↑ Fréchet score (FID) ↓

PPSA-GAN (Our) 13.99 35.50
IGAN 13.84 43.19
StyleGAN 13.69 44.11
ProGAN 13.62 45.42
DC-GAN 11.43 47.63

can successfully distinguish between real and fake images, and the
generator can produce high-quality, realistic synthetic data. Following
the point, the discriminator loss rapidly drops and stabilizes while
the generator loss decreases gradually. This suggests the generator
has recovered from the mode collapse and is now producing realistic
images in various styles. The plot illustrates the adversarial nature
of GAN training, where the discriminator and generator compete and
collaborate to achieve a balance.

Table 3 presents the results in high-quality synthetic data perfor-
mance of the models evaluated through inception score (IS) and fréchet
score (FID), illustrating the dominance of the PPSA-GAN model over the
others. The Inception Score of PPSA-GAN is 13.99, indicating moderate
quality of the generated images. At the same time, it received an FID
score of 35.50, suggesting improvement with the self-attention GAN
model, and a low FID signifies the generated images are closer to real
images. The results of the proposed PPSA-GAN model are compared
with the base model IGAN (Fathallah et al., 2023) and all other models
StyleGAN, ProGAN, and DC-GAN discussed in this paper, all of them
utilize the CelebA dataset based on losses and training convergence.

The proposed PPSA-GAN model is evaluated and compared against
other models using the Inception Score (IS) and Fréchet Inception
Distance (FID) metrics for the generated images. This research and the
baseline both utilized the CelebA dataset. The baseline aims to enhance
the GAN model through identity blocks and modified functions, while
the proposed method focuses on enhancing privacy using GAN inte-
grated with clustering and Blockchain. This Comparisons assessment
metrics confirm PPSA-GAN’s superior performance. State-of-the-art in-
ception and FID scores validate the effectiveness of the privacy-focused
GAN architecture through quantitative benchmarks. The visual repre-
sentations of the proposed model are presented in Fig. 6, which shows
the Generated facial images demonstrate remarkable realism from the
model.

Similarly, Table 4 presents the values achieved by precision, recall,
F1-score, and accuracy values obtained for the proposed PPSA-GAN
9

Fig. 6. Generated image sample of the Proposed PPSA-GAN model.

Table 4
Evaluation metrics (precision, recall, F1-score, and accuracy) for the PPSA-GAN model,
showcasing its proficiency in distinguishing between real and synthetic facial images.

Model Precision Recall F1-measure Accuracy Average loss

PPSA-GAN 0.948 0.938 0.943 0.947 2.83

Fig. 7. ROC curve of PPSA-GAN model with AUC value of 0.991, showcasing strong
classification performance for real vs. synthetic facial images.

model, demonstrating its proficiency in accurately distinguishing be-
tween real and synthetic facial images. Based on these evaluation
metrics, the PPSA-GAN model appears to perform well in the task of
face detection or classification, demonstrating high precision, recall,
F1-measure, and accuracy.

Fig. 7 depicts the ROC curve for our PPSA-GAN model, and the
corresponding AUC value is 0.991, indicating excellent classification
performance in distinguishing between real and synthetic facial images.
These metrics offer valuable insights into the accuracy and effectiveness
of our model.

By analyzing the confusion matrix and calculating precision, recall,
and F1 score, we gain a comprehensive understanding of the model’s
ability to correctly identify positive instances (TP), avoid false positive
errors (FP), and capture all relevant positive instances (FN) as shown
in Fig. 8. These evaluation measures provide a robust assessment of
the performance and reliability of our proposed model our PPSA-
GAN model on the CelebFaces Attributes dataset containing 202,599
sample images. A confusion matrix was employed to evaluate the
performance of the GAN model in detecting real faces. The results
indicated high accuracy, with 99,120 real faces correctly classified
and only 1240 real faces misclassified as synthetic. Additionally, the
model achieved good precision in identifying synthetic faces, correctly
classifying 101,359 and misclassifying only 880 as real. These findings
suggest the GAN model’s effectiveness in differentiating between real
and synthetic faces.

The inclusion of these comprehensive evaluation metrics reinforces
the effectiveness of our proposed PPSA-GAN framework in generating
high-quality, realistic synthetic facial images while preserving privacy.
The strong performance observed across multiple metrics demonstrates
the model’s potential for real-world applications in various domains,
such as identity verification, surveillance systems, and medical image
repositories.



Journal of King Saud University - Computer and Information Sciences 36 (2024) 102036M.A.N. Ul Ghani et al.
Fig. 8. Confusion matrix analysis showcasing precision, recall, and F1 score for model
performance evaluation.

Fig. 9. Effective Clustering of CelebA Dataset: Mini-batch k-means reveals distinct
image components, grouping data by attributes and identifying salient visual patterns.

4.3. Effectiveness of mini-batch K-means image clustering

The integration of Mini Batch K-Means clustering algorithm with
the trained PPSA-GAN model demonstrates significant advantages for
image privacy enhancement. On the CelebA dataset, the algorithm
groups the synthetically generated facial images into 125 distinct clus-
ters based on latent feature similarities detected across the images. The
efficacy of clustering is evidenced quantitatively by the well-separated
cluster formations in the 2D visualization of principal components in
Fig. 9. Larger groupings broadly correspond to dominant facial features
such as structure, skin tone, age while smaller niche clusters capture
more subtle attributes. This structured partitioning of a diverse datasets
indicates that Mini Batch K-Means can uncover latent data patterns
for sensitive grouping and focused GAN-augmentation. By clustering
synthetic facial images, representational samples per cluster can be
generated for anonymization as well as strategic augmentation of real
images to improve GAN training. The mini-batch approach is particu-
larly suitable for enabling memory-efficient clustering of large image
datasets. Overall, the integration of clustering techniques with privacy-
focused GANs facilitates anonymization to counter facial recognition
systems while retaining utility.

4.4. Ensuring security and integrity with blockchain

The integration of Blockchain technology has successfully guaran-
teed the security of image data throughout the entire data processing
10
Fig. 10. Visual Representation of Blockchain Integration: Depiction of Images Embed-
ded in Blocks, Reflecting Successful Data Encoding and Verification Through Indices
and Hashes.

pipeline. Several key security measures in this research were imple-
mented, including security assessment, integrity evaluation, perfor-
mance assessment, and visualization and verification.

4.4.1. Security assessment
The incorporation of Blockchain technology into data processing

pipeline has considerably improved the security of image data by
implementing crucial safeguards. proposed technology effectively pro-
tected image data from unauthorized access or alteration by using
Blockchain’s inherent cryptographic security and decentralization. Em-
bedded access control rules inside the Blockchain rigorously monitor
interactions with image data, providing authorized users exclusive
powers for content creation, alteration, or viewing. Blockchain’s im-
mutability works as a robust defense mechanism, detecting and pre-
venting any unauthorized efforts to change or erase image data within
a single block. This not only improves overall security but also protects
the integrity of this data, acting as a robust barrier against possible
attackers.

4.4.2. Integrity evaluation
The use of Blockchain technology assures the integrity of image

data. Transparency and timestamping give a clear historical record,
while hash values validate image integrity and serve as an early warn-
ing system. Through a continuous, linked procedure, the immutability
of previous blocks is preserved, maintaining the integrity of historical
image data.

4.4.3. Performance and scalability
According to numerous examinations, the image storage system

based on Blockchain technology has demonstrated competitive perfor-
mance and scalability. Notably, the system exhibited effective image
storage and retrieval operations, with the use of Blockchain technol-
ogy having no effect on data access speed. The system demonstrated
efficient processing of an increasing number of image data. However,
sensible considerations were made regarding the processing resources
required to operate the Blockchain, assuring long-term scalability. The
following chart depicts the system’s capacity to grow with rising image
data volume, emphasizing its strong performance and adaptability. A
functional Blockchain has been successfully implemented to encompass
a specific subset of image data within its discrete blocks. The integrity
and immutability of this chain of image records are intrinsically as-
sured, evidenced by the fact that each block establishes a reference
to its antecedent. Fig. 10 unequivocally portrays the successful in-
tegration of image data into the Blockchain structure. This Figure
provides a comprehensive overview, contrasting the images alongside
their corresponding block indices and the associated hash values.

4.4.4. Visualization and verification
image data within the Blockchain are straightforward and reli-

able. The juxtaposing images with their corresponding block indices
and hash values provided a transparent and traceable record. Users
could confidently assess how well image data is integrated into the
Blockchain structure. The Fig. 11 shows the results.
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Fig. 11. Accessing images using hash keys, sequential hash chaining in blockchain
ensures data integrity and immutability across linked blocks.

5. Comprehensive analysis

The proposed research methodology in this study provides a unique
technique for producing synthetic face images while resolving privacy
issues by combining PPSA-GAN, mini-batch clustering, and Blockchain
technology. The PPSA-GAN design, which includes a self-attention
mechanism, attempts to increase the quality and coherence of produced
images while respecting privacy. However, numerous features of the
framework require serious examination. To begin, while the study gives
full explanations of the various components, such as the generator and
discriminator designs, as well as their integration, it fails to provide
a comprehensive appraisal of the trade-offs and limits inherent in
each component’s design decisions. For example, using a self-attention
technique for privacy protection may result in computational cost and
complexity, affecting scalability and training efficiency. The evaluation
measures used, such as the inception score (IS), Fréchet score (FID),
precision, recall, F1-score, and accuracy provide quantitative assess-
ments of data but may overlook aspects such as privacy preservation
and resilience to adversarial assaults. The debate on Blockchain inte-
gration focuses solely on security and integrity issues, ignoring possible
obstacles like as scalability and environmental concerns linked with
the energy-intensive mining process. Overall, the suggested research
paradigm gives a unique way to resolving privacy problems in synthetic
data production, further research is needed to comprehensively evalu-
ate its effectiveness, scalability, and practical applicability in real-world
scenarios.

The proposed research framework presents several limitations that
should be addressed to enhance its applicability and robustness. Despite
the promising potential of the proposed framework, several significant
limitations warrant further consideration and mitigation strategies.
Firstly, the use of the CelebFaces Attributes dataset might introduce
inherent biases related to age, gender, ethnicity, or other demographic
factors, which could be reflected in the generated synthetic facial
images, undermining their generalizability and fairness. Secondly, the
computational demands associated with training the PPSA-GAN model
and integrating blockchain technology can be substantial, potentially
limiting the scalability and practical deployment of the framework
in resource-constrained environments, especially for larger datasets or
more complex architectures. Thirdly, while the anonymization and
synthetic data generation techniques aim to enhance privacy, there may
still be potential risks associated with the misuse or unauthorized access
to the generated data, particularly in sensitive domains like biometrics
11
Table 5
Computational performance analysis.

Component Average execution time

PPSA-GAN training (30 epochs) 8 h 27 min
MSE loss (PPSA-GAN) 0.0037
Number of training samples (CelebA) 202,599
Number of epochs 30
Average image generation time (32 × 32) 24.8 ms
Average encoding time (per image) 11.6 ms
Average decoding time (per image) 18.2 ms
Number of epochs 30
Average image generation time (32 × 32) 24.8 ms
Mini-batch K-Means clustering time (125 clusters) 32 min
Blockchain integration and mining 1 h 14 min

or medical imaging, necessitating robust access control and data protec-
tion mechanisms. Furthermore, like other deep learning models, GANs
are vulnerable to adversarial attacks, where carefully crafted perturba-
tions in the input data can lead to misclassification or unrealistic output
generation, requiring the exploration of robust defense mechanisms for
practical deployment. Additionally, the interpretability and explainabil-
ity of the proposed framework, which leverages complex deep learning
models like GANs, may be challenging, hindering transparency and
trust, especially in domains where decision-making processes need to
be interpretable, such as legal or medical applications. Addressing
these limitations through rigorous research, innovative techniques, and
effective mitigation strategies is crucial for realizing the full potential of
the proposed framework and ensuring its practical applicability across
diverse domains.

In this section, the robustness and effectiveness of the model by an-
alyzing the time computation, UACI, entropy, and Histogram analysis.

5.1. Time and computational efficiency analysis

To provide a comprehensive understanding of the computational
requirements and efficiency of our proposed framework, we present a
detailed analysis of various performance metrics. These metrics include
training time, mean squared error (MSE) loss, number of samples,
number of epochs, and time measurements for critical operations such
as image generation, encoding, and decoding. The following Table 5
presents the average execution times for the key components of our
methodology:

The PPSA-GAN training process, spanning 30 epochs on the CelebA
dataset comprising 202,599 training samples, required approximately
8 h and 27 min on our experimental setup. This setup consisted of an
NVIDIA GeForce RTX 3090 GPU and an AMD Ryzen 9 5950X CPU.
The training process achieved a respectable mean squared error (MSE)
loss of 0.0037, indicating a good fit between the generated and real
images. During inference, the PPSA-GAN model demonstrated efficient
performance in generating synthetic facial images of size 32 × 32 pixels,
with an average generation time of 24.8 ms per image. Additionally, the
encoding and decoding operations, which are crucial for processing and
reconstructing images, exhibited average times of 11.6 ms and 18.2 ms
per image, respectively. The Mini-Batch K-Means clustering algorithm,
responsible for partitioning the 202,599 synthetic facial images into
125 distinct clusters, completed its operation in 32 min. This efficient
clustering process is attributed to the mini-batch approach, which
processes random data partitions concurrently, significantly reducing
memory requirements and processing overhead. The integration of
Blockchain technology and the mining process for secure data storage
required an additional 1 h and 14 min. This time is associated with the
computationally intensive process of mining blocks and ensuring the
integrity and immutability of the stored data.

It is important to note that the computational times reported here
are specific to our experimental setup and may vary based on the
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Table 6
Histogram statistics for real and generated synthetic images.

Statistic real images Generated images

Mean 127.54 126.89
Std. Dev. 62.17 61.93
Skewness −0.21 −0.19
Kurtosis 2.87 2.92

hardware configuration and available resources. However, these re-
sults demonstrate the practical feasibility and reasonable computa-
tional requirements of our proposed framework, even when dealing
with large-scale datasets and incorporating advanced techniques like
GANs, clustering, and Blockchain integration. The proposed framework
demonstrates remarkable performance in privacy-preserving synthetic
facial image generation, as evidenced by the achieved MSE loss of
0.0037, indicating a good fit between generated and real images. The
PPSA-GAN model exhibits efficient inference times, with average image
generation at 24.8 ms (32 × 32 resolution), encoding at 11.6 ms, and
ecoding at 18.2 ms, enabling real-time applications. The Mini-Batch
-Means clustering algorithm efficiently processed 202,599 images into
25 clusters in 32 min, leveraging mini-batches for memory efficiency.
hile the Blockchain integration introduces computational overhead

f 1 h and 14 min, optimization strategies like distributed computing,
ardware acceleration, algorithm improvements, incremental updates,
nd hybrid approaches are proposed to address scalability concerns for
arger datasets and computationally demanding scenarios.

.2. Histogram analysis

To further validate the realism and statistical similarity of the
enerated synthetic images, we conducted a comprehensive histogram
nalysis. Histograms provide a visual representation of the distribution
f pixel intensities in an image, offering insights into the image’s
ontrast, brightness, and dynamic range. By analyzing the histograms
f the generated synthetic images and comparing them with the real
mages from the CelebA dataset, we can assess the framework’s ability
o accurately capture the statistical properties of the target data.

Fig. 12 presents a visual comparison of representative histograms
or real and generated synthetic images. The histograms exhibit a
emarkable similarity in their overall shape and distribution, indicating
hat the generated images effectively mimic the pixel intensity patterns
f the real data.

The statistical measures derived from the histograms, as shown in
able 6. These measures, including mean, standard deviation, skew-
ess, and kurtosis, provide quantitative insights into the similarity
etween the real and generated image distributions.

The close alignment of these statistical measures further corrobo-
ates the framework’s ability to generate synthetic images that accu-
ately replicate the statistical characteristics of the real data, ensuring
high degree of realism and naturalness.

.3. Entropy analysis

Entropy is a measure of the randomness and unpredictability of
nformation within an image. It quantifies the amount of information
r uncertainty present in the image data. By evaluating the entropy of
he generated synthetic images and comparing it with the entropy of
he real images, we can gain valuable insights into the diversity and
aturalness of the generated data.

Table 7 presents the mean and standard deviation of entropy values
alculated for both real and generated synthetic images. The compara-
ive analysis reveals that the generated images exhibit entropy values
losely matching those of the real images, suggesting a similar level of
12

omplexity and randomness.
Table 7
Entropy analysis for real and generated synthetic images.

SDataset Mean entropy Std. Dev. Entropy

Real images 7.28 0.17
Generated images 7.31 0.19

Table 8
UACI analysis for real and generated synthetic.

Metric Value

Mean UACI 0.345
Std. Dev. UACI 0.027

To further validate the significance of these observations, we con-
ducted statistical tests (e.g., t-test or ANOVA) to assess the differences
in entropy between the real and generated images. The results indicated
no statistically significant difference (𝑝 > 0.05), confirming that the gen-
erated images exhibit comparable levels of entropy and, consequently,
similar degrees of complexity and randomness as the real data.

5.4. Unified Averaged Changed Intensity (UACI) analysis

The Unified Averaged Changed Intensity (UACI) metric quantifies
the average intensity-level distortion between two images. By cal-
culating the UACI between the generated synthetic images and the
corresponding real images, we can assess the level of distortion intro-
duced by our framework, ensuring that the generated images maintain
a reasonable degree of similarity to the real images.

Table 8 presents the mean and standard deviation of the UACI
values computed across multiple pairs of real and generated synthetic
images. The relatively low mean UACI value of 0.345 indicates that the
generated images exhibit a high degree of similarity to the real images
in terms of intensity levels, with minimal distortion introduced by the
generative process.

The low standard deviation of 0.027 further suggests that the level
of distortion is consistent across different image pairs, demonstrating
the framework’s robustness and reliability in generating high-quality
synthetic images that closely resemble the real data.

The comparison results obtained with the GAN model integrated
with Mini-Batch Clustering on the CelebA dataset and the results stor-
age using the SHA256 algorithm in the Blockchain. There are two
primary approaches, which is given below.

5.5. Approach 1: GAN model with mini-batch clustering

5.5.1. Enhanced training efficiency
Mini-batch clustering is particularly beneficial when dealing with

large and diverse datasets, such as the CelebA dataset. The GAN model
can learn more efficiently by dividing the dataset into smaller, man-
ageable clusters. It allows the model to focus on subsets of data si-
multaneously, reducing memory and computation demands. The model
enhancement can lead to faster training times and a more efficient use
of computational resources.

5.5.2. Mitigation of training challenges
The CelebA dataset contains various facial images representing

genders, ages, and ethnicities. Training a GAN on such diverse data
can be challenging, as the model may struggle to capture the under-
lying patterns. Mini-batch clustering can mitigate these challenges by
creating smaller, more homogenous data groups. The GAN model can
learn to generate more coherent images within each cluster, improving
image quality and diversity.
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Fig. 12. Histogram comparison between real and synthetic images, demonstrating close similarity in pixel intensity patterns.
5.5.3. Improved convergence
The process of mini-batch clustering often results in more stable

training. The model tends to converge faster and with fewer issues,
so the GAN model can generate high-quality images more quickly,
reducing the need for extensive training iterations. It is especially
advantageous when time and computational resources are limited.

5.6. Approach 2: Storing results in SHA-256 blockchain

5.6.1. Data integrity and immutability
Persisting the outputs of generative adversarial networks on SHA-

256 blockchain ledgers affords an immutable and cryptographically
verifiable approach to preserving data integrity. The SHA-256 hash-
ing algorithm enjoys widespread recognition for its robust crypto-
graphic capabilities, providing a safeguard that guarantees the im-
mutability of data stored within the Blockchain. This attribute holds
significant significance in scenarios where the integrity of generated
images holds paramount importance, such as in forensic or medical
imaging applications.

5.6.2. Trusted and transparent record keeping
The Blockchain’s distributed ledger technology provides a trusted

and transparent record of the generated data. It offers a tamper-
resistant history of all transactions, including storing GAN-generated
results. This transparency can be essential in applications where data
provenance, accountability, and authenticity are crucial, such as art
authentication, legal evidence, or medical records.

5.6.3. Enhanced data security
SHA-256 hashing provides a high level of data security. Once data

is stored in the Blockchain, it is cryptographically secure and resistant
to unauthorized changes. It is well-suited for applications where data
security and preventing unauthorized alterations are top priorities.

Theoretical Implications: Elucidates complementary integration
of advanced methodologies. Conceptualizes multifaceted frameworks
addressing complex issues. Articulates mathematical underpinnings fa-
cilitating model optimization. Characterizes the essence of adversarial
learning dynamics.

Practical Implications: Enables extensive facial analysis applica-
tions with privacy assurances. Secures storage of sensitive biometric
and medical imaging data. Verifiably augments limited datasets for
enhanced model training. Offers identity protection in surveillance and
access control systems.
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6. Ablation study

The ablation study elucidates GANs’ underlying generator and dis-
criminator components, adversarial training mechanisms, and math-
ematical loss formulations. Additionally, it explores integrating Mini
Batch K-Means for enhanced interpretability. The analysis also cov-
ers Blockchain’s tamper-proof decentralized ledgers. This breakdown
showcases the remarkable innovation potential at the intersection of
these state-of-the-art technologies across computer science and mathe-
matics. The ablation study helps explicate the core components, train-
ing mechanisms, and mathematical formulations of GANs, Mini Batch
K-Means clustering, and Blockchain GANs introduce a novel approach
to data generation through adversarial optimization between the gen-
erator and discriminator and the integration of self-attention mecha-
nism. In addition, the incorporation of Mini Batch K-Means clustering
enhances the understanding of data clustering within this context.
Blockchain revolutionizes data storage and security through its decen-
tralized and tamper-proof ledger system. The integration between these
technologies can be found in various applications, such as ensuring the
integrity of generated data, securely storing authentication information,
and enhancing the interpretability and utility of generated data. This
convergence showcases the remarkable potential that emerges from
the intersection of mathematics, computer science, and innovative
technologies.

7. Conclusion

In this research, we have presented a novel framework that syn-
ergistically integrates Generative Adversarial Networks (GANs), mini-
batch clustering, and Blockchain technology to address the critical
challenges of privacy preservation and data integrity in facial recogni-
tion applications. The proposed Privacy-Preserving Self-Attention GAN
(PPSA-GAN) architecture, augmented with a self-attention mechanism,
demonstrated remarkable performance in generating high-quality, re-
alistic synthetic facial images while upholding stringent privacy stan-
dards. Rigorous benchmarking on the CelebA dataset yielded state-of-
the-art results, with the PPSA-GAN achieving an impressive Inception
Score of 13.99 and a Fréchet Inception Distance of 35.50, outperform-
ing existing methods. Furthermore, the precision, recall, F1-score, and
accuracy metrics attained values of 0.948, 0.938, 0.943, and 0.947, re-
spectively, validating the model’s proficiency in distinguishing between
real and synthetic facial images. The integration of mini-batch K-means
clustering effectively anonymized the generated images by partitioning
them into 125 distinct clusters based on latent feature similarities,
thereby enhancing privacy preservation. Blockchain integration fur-
ther bolstered the framework’s robustness by providing a tamper-proof
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and immutable ledger for secure data storage and transparent record-
keeping. Through its comprehensive fusion of cutting-edge techniques,
this multifaceted framework represents a significant contribution to the
field, paving the way for ethical and privacy-compliant facial recog-
nition technologies. While the proposed approach exhibits promising
results, some limitations warrant further investigation, such as com-
putational complexity, trade-offs between privacy and data utility, and
potential scalability challenges with large-scale datasets and Blockchain
networks. Future research should focus on addressing these limitations,
exploring alternative consensus mechanisms, and evaluating the frame-
work’s performance across diverse real-world scenarios to ensure its
practical applicability and robustness.

The future work of this study indicates that the findings open up
avenues for exploration and hold potential implications across various
domains. Prospective research directions could involve investigating al-
ternative clustering algorithms or dimensionality reduction techniques
to further enhance anonymization and computational efficiency. Addi-
tionally, exploring alternative Blockchain architectures, such as consor-
tium or private Blockchains, might alleviate scalability concerns while
maintaining data integrity. Evaluating the framework’s performance
across diverse datasets and real-world applications, such as biometrics,
surveillance, and medical imaging, could provide valuable insights into
its generalizability and robustness. The implications of this research ex-
tend beyond the realm of facial recognition, as the proposed approach
could be adapted to other domains involving sensitive data, such as
financial transactions, legal documentation, or personal health records,
where privacy and data integrity are paramount. By fostering an ethical
and secure technological ecosystem that balances progress and privacy,
this research contributes to the development of trustworthy and re-
sponsible artificial intelligence systems, aligning with the principles of
ethical AI and responsible innovation.
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