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Abstract: With its exponential growth, the Internet of Things (IoT) has produced unprecedented
levels of connectivity and data. Anomaly detection is a security feature that identifies instances
in which system behavior deviates from the expected norm, facilitating the prompt identification
and resolution of anomalies. When AI and the IoT are combined, anomaly detection becomes more
effective, enhancing the reliability, efficacy, and integrity of IoT systems. AI-based anomaly detection
systems are capable of identifying a wide range of threats in IoT environments, including brute
force, buffer overflow, injection, replay attacks, DDos attack, SQL injection, and back-door exploits.
Intelligent Intrusion Detection Systems (IDSs) are imperative in IoT devices, which help detect
anomalies or intrusions in a network, as the IoT is increasingly employed in several industries but
possesses a large attack surface which presents more entry points for attackers. This study reviews the
literature on anomaly detection in IoT infrastructure using machine learning and deep learning. This
paper discusses the challenges in detecting intrusions and anomalies in IoT systems, highlighting the
increasing number of attacks. It reviews recent work on machine learning and deep-learning anomaly
detection schemes for IoT networks, summarizing the available literature. From this survey, it is
concluded that further development of current systems is needed by using varied datasets, real-time
testing, and making the systems scalable.

Keywords: anomaly; intrusion detection; Internet of Things; artificial intelligence; machine learning;
deep learning

1. Introduction

The Internet of Things (IoT) has grown exponentially over the years, with its appli-
cation spanning from healthcare to industrial devices. With its growth, it is providing an
unprecedented level of connectivity like never before. The amount of data being produced
has also increased exponentially as more devices are being connected. Sorting through this
vast amount of data and organizing it in an ordered manner is a difficult task.

The IoT can be classified into either three-, four-, five-, or seven-layer architectures [1],
while generally, the four-layer architecture is considered the essential component of the
IoT [2]. These four layers are the Perception layer, Network layer, Middleware layer, and
Application layer [2–5]. The Perception layer contains physical devices such as sensors
and actuators that collect data for processing. The Network layer is the communication
gateway for the Perception layer and the IoT system. The Middleware layer is where the
collected data from the Perception layer are processed, stored, and managed. Finally, the
Application layer contains the end-user applications that hold all of the processed data in
meaningful values [4]. Other studies consider more layers to have an integral part in IoT
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architecture, such as the Security layer [6,7], Management layer [6], Business layer [1], and
Environmental layer [8], which can also be considered as the Management layer.

IoT attacks are classified into four types: physical, encryption, network, and software-
based attacks [9]. There has been a plethora of attacks in the IoT environment, namely
buffer overflow attacks, brute-force attacks, DNS poisoning, injection attacks, replay attacks,
DDoS attacks, SQL injection, back-door exploits, and more [10]. Additionally, research has
been conducted revealing that the IoT can be used to facilitate violence between intimate
partners who share a smart home [11]. Many attacks in the IoT can be prevented by using
an anomaly detection mechanism, which can send an alert when any unusual behavior is
detected. This can help in preventing attacks when they are attempted or indicating issues
with system function that may result in downtime or failure. Table 1 highlights a summary
of the attacks that occur in the IoT according to previous studies.

Table 1. Summary of attacks in the IoT mentioned in the literature.

Reference Attacks

[12] Spoofing, Sleep deprivation, Replay, Session hijacking

[13] Spyware, Trojans, Sinkhole, Spoofing, Jamming, Tag cloning, Physical tampering

[14] DDoS, Botnets, Falsified sensor data, Attacks on cloud services, Physical tampering

[15] DDoS, Man-in-the-Middle, Spoofing, Physical tampering, Data breach, Malware, Ransomware

[16] DDoS, Man-in-the-Middle, Malware, Ransomware, Physical tampering, Data breach, Spoofing

[17] Physical damage, Exhaustion attacks, Cryptanalysis, Side-channel information, Man-in-the-Middle, DoS/DDoS,
Message forging

[18] Physical, Malware, DoS, Man-in-the-Middle, Replication, Spoofing, Injection, Social engineering

[19] DoS, Man-in-the-Middle, Malware, Physical, Password

[20] DoS, Man-in-the-Middle, Physical, Malware, Botnet, Spoofing, Eavesdropping

[21] DDoS, Ransomware, Industrial spying, Click fraud

Anomaly detection is a security mechanism that distinguishes when a system’s be-
havior departs from the normal baseline [22,23]. It can be either host-based (HIDS) or
network-based (NIDS) and is integral for IoT systems as it can detect variations in sensor
readings, network abnormality, and so on [24,25]. Intrusion detection systems are cate-
gorized into three types: signature-based, anomaly-based, and stateful protocol [26,27].
Additionally, IDS methods can be implemented in three ways: supervised, unsupervised,
or semi-supervised, which can be implemented through AI, statistical modeling, and so
on [28]. To detect anomalies, the system first has to be trained on what behavior is normal
in a given system and what the normal traffic pattern appears to be. Departure from
this normality will be considered an anomaly [29,30]. Training the system will require a
vast amount of complex IoT data with the usual network traffic pattern and considerable
time to build a profile based on the IoT data [30]. Moreover, the traditional methods are
not useful in detecting newer threats and need more time for updates [31], which can be
mitigated with the use of artificial intelligence techniques such as machine learning (ML)
and deep learning (DL) techniques. ML is a subfield of AI that comprises algorithms and
models that help complete tasks through learning patterns and relationships rather than
being explicitly programmed to do so. DL is a subset of ML that uses Artificial Neural
Networks, which are more complex and can deal better with large amounts of complex
data [32]. ML and DL techniques can use sophisticated analytical techniques to use the
enormous and complex data of IoT systems cohesively to form a normal baseline for the
network traffic of IoT devices [27,33]. This will result in improved accuracy, faster response
times, cost-effectiveness, real-time detection, and more [31,34,35]. As a result, the ML and
DL techniques can help detect when a system diverts from the baseline. ML and DL can
detect anomalies by learning relationships and patterns from data, which can then be used
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to distinguish between normal and abnormal behavior. However, the differing factors
between ML and DL techniques lie in their architecture and complexity, with DL being
more complex as it deals with Neural Networks [32]. DL uses Neural Networks to learn a
hierarchical representation of the data, which enables it to learn complex patterns [36]. ML
and DL techniques combined with the IoT result in efficient anomaly detection that allows
abnormalities to be found and fixed quickly. This strengthens the integrity, dependability,
and effectiveness of IoT systems. This combination can also be used in any domain of the
IoT, such as in healthcare, industrial settings, smart homes, and more [25,35,37,38].

To train ML and DL algorithms with IoT data, a dataset needs to be formed, which
ideally should comprise real-time data of the IoT system. However, due to the complexity
of IoT data, datasets are pre-formed by collecting the different types of traffic in IoT systems
along with attack signatures. These datasets are used to train ML and DL algorithms
and analyze the effectiveness of their various algorithms. Existing research mentions [39]
that the datasets formed must simulate real-world settings and must be comprehensive
and labeled. For the use of datasets in ML and DL techniques, the importance of feature
extraction techniques, data cleaning, and conditioning routines are also emphasized. The
accuracy of the dataset to real-world data will result in sound and reliable results from
the AI algorithm detection. Commonly used datasets are the IoT-23, DS2OS, and Bot-IoT
datasets, and more [24,39].

This paper examines the literature on investigating the technology and application
domain of machine learning and deep learning-based anomaly detection in IoT infrastruc-
ture. This study focused on privacy and security issues related to the exchange and storing
of patient data in intelligent health applications. The use of ML methods for Internet of
Medical Things (IoMT) authentication and anomaly detection is also included in this study.
The research also touches on the technology and use of ML approaches for anomaly detec-
tion in IoT networks. Furthermore, there is a focus on Hadoop-based big data processing
frameworks and using ML techniques to identify anomalies in IoT networks. An additional
discussion of the application of ML techniques in the domain of IoT anomaly detection,
such as advanced ML techniques and intrusion detection systems, is also covered in this
paper. Additionally, ML techniques for detecting distributed denial-of-service (DDoS)
attacks in software-defined IoT networks are covered in the paper.

Considering DL-based anomaly detection, this paper investigates the technological
and application fields of DL-based network intrusion detection systems, with an emphasis
on IoT device security. It also focuses on the security of IoT devices by combining DL
for intrusion detection with the IoT and IDSs. Using DL models for anomaly detection,
this paper also examines studies that inspect the design of an intrusion detection system
(IDS) for IoT networks. DL-based intrusion detection in IoT networks—more specifically,
transport networks, clouds, and fog computing—is the application domain that is explored
by most research in current times. This study also looks at DL-based cybersecurity for IoT
systems in smart cities, with a particular emphasis on real-time anomaly detection in IoT
data streams and time-series prediction.

This study presents a comprehensive review of the most recent work on ML and
DL-based anomaly detection methods in the IoT. The study follows the following structure
to achieve this: Survey Methodology, Machine Learning—IoT Network Anomaly Detection,
Deep Learning—IoT Network Anomaly Detection, Research Summary, Research Gaps,
Areas for Improvement, and Conclusions. In the Section 2, the methods used to retrieve
papers for this study, and which years they were retrieved from, are explained. Following
that, in the Section 3, the paper briefly explains the use of ML for anomaly detection. It
then proceeds to present the recent literature on evaluating and studying different ML
techniques for anomaly detection, which is further summarized in tabular format. In the
Section 4, it discusses studies related to DL techniques in anomaly detection, which follows
a similar structure to the previous section. The examples from the literature used to discuss
anomaly detection in both the ML and DL sections are divided into papers on general
anomaly detection and papers on attack-based anomaly detection for clarity. This study
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then summarizes some of the key points from the literature review in the Section 5. It then
proceeds to explain the disadvantages and drawbacks of current research in the Section 6.
Following this, in the Section 7, the study considers the future research that can be explored
in this topic. At the end, in the Section 8, the main points of the study are highlighted, and
the paper is concluded.

2. Survey Methodology

For this study, papers were collected from several publications that includes from
most to least- IEEE, Elsevier, MDPI, Springer, ACM, Wiley, Hindawi, and others. Papers
published in the years 2018–2024 were focused on to optimally analyze the recent studies
conducted on the subject. Additionally, to maintain unbiased research in the study, both
ML-based and DL-based papers were collected regarding anomaly detection in the IoT.
Each study was analyzed according to the domain in which it was carried out, the problem
statement it addressed, the process of the experiments conducted (input–process–output),
the datasets used, the advantages of the frameworks proposed, and the results obtained.

For this study, a total of 60 papers were considered for the literature review of both
ML-based and DL-based techniques. Figure 1 shows the publication years of the papers
collected for this study in graph form. For both ML-based and DL-based papers, there
has been an increase in publications over the years, with more DL-based papers being
published in 2023.
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3. Machine Learning—IoT Network Anomaly Detection

Machine learning-based (ML-based) anomaly detection is highly researched and is a
valuable technique for identifying anomalies in IoT systems [40]. There are four methods
of learning in ML, which are supervised learning, unsupervised learning, semi-supervised
learning, and reinforcement learning [41]. In supervised learning, the system is trained on
labeled datasets and the system explicitly identifies the anomalies. However, unsupervised
learning depends on the structure of the data, as it uses unlabeled data, hence the anomaly
is detected according to the structure of the data [42]. ML is said to be effective in detecting
anomalies and threats in real time [43]. The use of ML in the IoT also provides scalability,
real-time decision making, predictive maintenance, resource optimization, automation,
and more [44–46]. The different algorithms in ML can be used to optimize the detection
of anomalies and implement it in various industries in real time. Figure 2 shows the basic
process of ML algorithms, with the input data being labeled or unlabeled IoT data and the
output being an alert system that mentions whether the data are anomalous or normal.
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The study of ML-based anomaly detection is categorized firstly into papers that
discuss anomaly detection and IDSs, which includes anomaly detection and attacks, and
secondly into attacks that occur in IoT networks. Attacks in the IoT are anomalies in
the context of anomaly detection as the attacks require the system to portray unusual
behavior for it to be successful. The traffic could be anomalous through malicious payload,
behavioral anomalies, unusual network traffic, and such. Hence, a comprehensive study
was conducted into different aspects of anomaly detection with the use of ML. The summary
of all the studies and their results for anomaly detection using ML is presented in Table 2,
and attack-based anomaly detection is presented in Table 3.

3.1. Anomaly Detection

The study in [47] uses machine learning approaches to investigate the identification of
anomalies in the IoT context. It makes use of two datasets for time-series data and databases
such as the NSL-KDD dataset for non-time-series data. Numerous classification methods,
such as K-Nearest Neighbors, Multilayer Perceptron, Decision Trees, Linear Discriminant
Analysis, Logistic Regression, and Naïve Bayes, are compared in the study. The findings
demonstrate that, for non-time-series data, Decision Trees and Linear Discriminant Analysis
produce consistent outcomes with 80% accuracy. When dealing with time-series data that
has underlying trends, Neural Networks equipped with memory gates perform better than
other techniques. A comprehensive picture of anomaly detection in IoT environments was
provided by the study’s evaluation of time-series and non-time-series data. However, the
small number of datasets utilized could be a drawback, as it could affect how broadly
applicable the findings are.

Using an ML-based approach to detect and prevent attacks and anomalies in IoT
sensors, the study in [48] attempted to address cybersecurity concerns in IoT infrastructure.
To show how well-suited basic models like Decision Tree (DT) or Random Forest (RF)
models are for anomaly detection, the study evaluated the effectiveness of several ML
models in terms of accurately predicting attacks and abnormalities on IoT systems using
open-source datasets from Kaggle. The results of the study showed that Random Forest and
Artificial Neural Network (ANN) techniques outperform Decision Trees in terms of testing
and training accuracy with an accuracy rate of 99.4%, while Support Vector Machine and
Logistic Regression methods are less effective. While the paper proposed models that can
detect attacks with high accuracy, it also notes that the datasets only contain certain types
of attacks and anomalies and hence they may not be scalable in real IoT environments.

To prevent system failure, the research in [49] proposed ways to address the problem
of detecting attacks and abnormalities in IoT systems. It suggested a novel approach to a
feature-transformation-based classifier for the classification and imputation of missing data
values and evaluated its performance on real datasets. The classifiers it examined were
Naïve Bayes (NB), Decision Tree (DT), Support Vector Machine (SVM), and Random Forest
(RF) models with the DS2OS dataset. The suggested approach replaces missing values in a
dataset using state-of-the-art imputation technology, and then it uses a feature transforma-
tion strategy to lower the dataset’s dimensionality and improve classification performance.
The findings demonstrated that the proposed strategy beat baseline approaches in terms
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of performance metrics including F1 score, accuracy, precision, and recall. The accuracy
rate of detection for the Random Tree and Decision Tree classifiers were 99.43% and 99.44%
respectively. The study proved that the proposed method managed to retrieve missing
values from the data, and identified anomalies. It also points out that more datasets are
needed to carry out further research in order to form a sophisticated framework.

Regarding datasets, one study [50] explored the use of ML techniques to identify
anomalies in IoT networks. They tested a system that used IoT device network traffic data
to extract important information and train models like the K-Nearest Neighbors (KNN),
Decision Tree (DT), and Random Forest (RF) models. Real-time network traffic anomalies
were identified using these models, and the system classified traffic as regular or abnormal.
The IoT-23 dataset was used in the experimental setup, and the RF algorithm performed the
best in identifying abnormalities, producing an F1 score of 0.999 and an accuracy of 99.9%
with a weighted average precision of 1.00. The study also considered security indicators like
true positive, false positive, true negative, and false negative rates. The study showcases
accurate detection of anomalies in the IoT, while also suggesting further research with more
varied datasets.

Furthermore, in the domain of industrial sensors, the study in [32] analyzed recent
ML-based anomaly detection schemes for IoT networks, identified their drawbacks, and
proposed a novel scheme that combines supervised and unsupervised ML algorithms
which is said to perform better than existing techniques in terms of recall, precision, and F1
score. It classified various ML models such as Random Forest and Decision Tree models
and highlighted that these ML models present low false positive rates, which hinders
their accuracy and resilience. For increasing the accuracy of anomaly detection, the study
suggests testing the models with more data, which could be challenging to obtain, due
to the privacy of data that could be solved with a central server to deal with all traffic.
Moreover, the study also shows that the N-BaIoT dataset is a comprehensive IoT dataset,
covering most dimensions and anomalous attacks.

Another study [39] was conducted focusing on datasets and finding abnormal traffic
patterns in IoT networks, which can lead to issues with privacy and security. The UNSW-
NB15 and DAD datasets were used by these authors to create intelligent security solutions.
They used five shallow learning techniques along with ML to identify anomalies in traffic,
namely the Naïve Bayes (NB), Logistic Regression (LR), AdaBoost (AB), Random Forest
(RF), and Support Vector Machine (SVM) techniques. The study evaluated the effectiveness
of various ML approaches and validated the DAD dataset. AB and RF performed the best,
with a mean accuracy of 0.9998 each. Validating the DAD dataset and creating intelligent
defenses for IoT networks are benefits of this research. However, some ML approaches and
dataset restrictions present potential downsides of the study.

Considering the Wi-Fi network domain, the study in [51] focused on indoor positioning
challenges, signal attenuation, and the need for precise anomaly detection. It assessed
the effectiveness of different ML models for anomaly detection, suggested a method
based on ensemble learning for better accuracy, and provided an experimental analysis
of the proposed approach. The proposed system uses a self-organizing map (SOM) to
classify RSS data from Wi-Fi routers into normal and problematic categories. The aberrant
data are then exposed to a method of ensemble learning, including the elliptic envelope
method, Random Forests (RFs), and Decision Trees (DTs). The system outputs a normal or
abnormal categorization of the RSS data. The results showed that the suggested ensemble
learning strategy performed better in terms of recall, precision, and F1 score than alternative
algorithms like Decision Trees and Random Forests. When combining the stacking ensemble
method with the RF method, an accuracy of 98% was achieved compared to the RF alone,
which gave 94.7% accuracy. This portrays that ensemble learning improves the accuracy of
anomaly detection; nonetheless, to achieve high accuracy, a large dataset is also required.

IoT devices are susceptible to security breaches because of their constrained feature
and resource sets. One study [52] sought to find irregularities in IoT devices. It suggested
a Hadoop-based architecture for IoT anomaly detection that makes use of ML classifiers,
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evaluated its efficacy, and contrasted it with other solutions already in place. The system
trained the K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Naïve Bayes
(NB) classifiers with pre-processed IoT device data and found anomalies in real-time data
streams. ToN-IoT and BoT-IoT were the two datasets employed in the experimental setup
to assess the efficacy of the framework. The findings demonstrated that the suggested
framework outperformed other intrusion detection systems and outperformed existing
methods in terms of F1 score, accuracy, precision, and recall. The accuracy detection of the
proposed approach with the BoT-IoT dataset was 99% and with the ToN-IoT dataset was
90%. The study’s proposal achieved accuracy with low false positive rates; however, more
research is recommended using larger datasets and more complex ML algorithms.

Finding a balance between accuracy and efficiency in real-time security operations for
IoT applications was the goal of another study [53]. It evaluated memory consumption,
execution time, and anomaly detection accuracy for ML-enabled models, which were the
Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and Gradient-Boosting
Machine (GBM) models. To decrease the execution time, memory consumption, and
detection error rate, the study developed a Pareto-optimal collection of models. GBM and
RF outperformed other algorithms with 99.99% accuracy, fast execution speed, and low
memory consumption, according to the results. The models in the study showcased high
accuracy with low detection error, execution time, and memory usage. To further improve
this research, a larger, more complex, and more varied dataset is required to better detect
anomalies in real IoT systems.

For applications in smart homes, the research in [54] developed an ML-based frame-
work for estimating energy use in smart homes using previous consumption data. The
system used data from smart devices and sensors, along with environmental data, to fore-
cast and detect anomalies. ML methods like Artificial Neural Networks (ANNs), Prophet,
LightGBM, and Vector Autoregression (VAR) were employed. The system generated energy
consumption forecasts and searched for abnormalities in power usage patterns. Real-world
data from a smart home were used to train and test the ML algorithms for anomaly iden-
tification and predictions. The results showed that the ML models performed well in
identifying anomalies and estimating energy usage, with the Prophet and LightGBM mod-
els outperforming the VAR model for point anomaly identification. LightGBM achieved
the most accuracy, with a mean absolute error (MAE) of 0.282046. The study stated that this
technology can help with smart home automation and power system maintenance. To be
able to do so, the models need to be further trained with larger and more varied datasets.

The research in [55] addresses the issue of label noise in IoT intrusion detection,
which has an impact on the efficiency of ML algorithms. To identify noisy data, the
authors provide a framework that combines uncertainty sampling and active learning with
Decision Tree classification. This method works well for label noise detection as it can
reduce the amount of noisy data identified by up to 98%. The study’s benefits include a
significant detectable proportion of noisy samples with a low number of evaluated samples,
explainable AI premises, and comprehension for non-expert users. The study’s emphasis
on binary classification, however, might not apply to other classification issues, and its
generalizability might be constrained by the particular datasets employed.

Similarly using the IoT-23 dataset, another study [56] explored the use of ML methods
to enhance security in IoT systems. It focused on the application of the Gradient-Boosting
and Extreme Gradient-Boosting (XGBoost) algorithms in identifying anomalous traffic. The
studied system used IoT device network traffic data as the input, extracted features after
pre-processing, and trained XGBoost to identify unusual traffic. The system’s output then
predicted if network traffic was abnormal. The experimental setup involved obtaining
network traffic data from IoT devices with both normal and abnormal traffic from the IoT-23
dataset. The ML algorithm was trained and assessed using XGBoost, and the results showed
that XGBoost performed better than other algorithms like Support Vector Machines (SVMs)
and Deep Convolutional Neural Networks (DCNNs) in terms of accuracy, precision, recall,
and F1 score. XGBoost achieved accuracy levels as high as 99.98% during the execution
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time. Employing XGBoost will improve IoT security as it will accurately detect anomalies;
however, further testing is needed with larger datasets and real-world situations.

A new framework for automated ML-based intrusion and anomaly detection in IoT
networks was developed by another study [57]. Concerning criteria like server count, error
rate, and network protocol, its goal was to predict network invasions. To function, the
suggested system needed to first analyze network traffic from IoT devices, preprocess the
data, and transfer it to an Edge server for storage, and then it used an ML model, which
was the Bagged Tree (BT) model, to classify the data as either normal traffic, anomalies,
or attacks. Network traffic was labeled by the system as routine, attack, or anomaly.
This model achieved a 99.79% classification accuracy, which was higher than previous
models. The model’s performance indicators included the ability to distinguish between
22 different categories of anomalous behavior and types of attacks, reducing the likelihood
of attacks and speeding up reaction times. Despite its high accuracy rate, the model had
poor performance during the testing period.

In the paper of [58], an anonymized network traffic approach to network anomaly
identification in IoT networks is presented. The study proposed an ML model that can
handle activities including feature extraction, network monitoring, anonymization, the
training of models, and device identification as a suggested solution. The proposed model
used a combination of the K-Nearest Neighbors (KNN), Logistic Regression (LR), and
Multilayer Perceptron (MLP) methods. The findings indicate that while anonymization
preserved an accuracy of 99.5% (achieved by KNN) in network anomaly detection, it
decreased the capability for IoT device identification. The study includes limitations, such
as its use of only one dataset and the need for more evaluation, but the proposed approach
provides advantages relating to privacy and adheres to privacy standards.

Introducing a new dataset, the research in [59] focused on anomaly detection in IoT
environments, addressing limitations of sensing devices’ power, bandwidth, and memory.
It introduced a novel CoAP-IoT dataset for anomaly detection, validated these data using
supervised learning techniques, and proposed an ML-based IDS that overcame previous
solutions. The system used pre-processed data from the CoAP-IoT dataset, extracted
relevant features, and trained a classifier to classify traffic as either normal or abnormal.
The experimental setup of the study [15] used the CoAP-IoT dataset, and various supervised
learning methods were used to train the system. The results showed that the Naïve Bayes
classifier performed poorly, while the Support Vector Machine, Logistic Regression, and
Decision Tree-based classifiers were comparable with a mean accuracy of 0.9.

The research in [60] proposes a system for intrusion detection based on quick protocol
processing and feature grouping to address the difficulty of ensuring IoT device security.
Four ML models were employed to measure performance: Decision Tree (DT), Random
Forest (RF), K-Nearest Neighbors (KNN), and Extreme Gradient-Boosting (XGB). Three
public IoT datasets were used to evaluate these methods, which were BoT-IoT, MedBIoT,
and MQTT-IoT-IDS2020. The proposed system produced classification with high F1 scores
with an F1 score of more than 0.99 for all datasets. Its effective and lightweight approach
offers interpreted characteristics to expose the mechanisms of malicious attacks, making it
appropriate for IoT devices with constrained processing and storage capacity. Nevertheless,
this technique might not work with different IoT protocols or circumstances.

3.2. Attack-Based Anomaly Detection

The difficulties of detecting distributed denial-of-service (DDoS) assaults in actual
networks using ML approaches are covered in the study in [61], with particular attention
paid to data loss and incorrect classification of valid traffic. To train and evaluate ML
algorithms, these researchers employed Packet Capture (PCAP) information from the
Information Security Centre of Excellence (ISCX) in Canada. The goal of the study was to
create classifiers for testing against DDos attack scenarios by choosing seven well-known
classifiers, namely the QDA, SVM, KNN, Naïve Bayes, Decision Tree, and Random Forest
classifiers, then identifying attributes defining network traffic patterns. To identify and
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categorize DDoS attacks in a real network testbed, they used the Data Plane Auxiliary
Engine (DPAE) in nmeta2, an SDN-based traffic categorization architecture. The DPAE
performed better with less processing time and a higher number of predictions. However,
from the ML models, the SVM had a high accuracy of prediction, with a 0.93 mean accuracy
score. The study showed the use of SDN for centralized network control, which can be
used to detect anomalous traffic. However, it also highlighted some challenges regarding
legitimate traffic being misclassified and the processing time of the models, which can
cause delays.

The study in [62] focused on identifying DDoS attacks that compromise IoT infrastruc-
ture by coming from consumer IoT devices that are not secure. Using data from regular
and DDoS attack traffic collected from an end-user IoT device network, the researchers
generated a dataset for training and testing ML algorithms. They experimented with five
distinct ML classifiers: Neural Networks (NNs), Decision Trees, Random Forests, Support
Vector Machines with linear kernels, and the K-Nearest Neighbors algorithm. The test set
accuracy of all five classifiers was greater than 0.99, indicating the efficacy of combining ML
methods and IoT-specific data for DDoS detection. With excellent recall, accuracy, F1 scores,
precision, and total precision, the Neural Network classifier produced the greatest results.

The difficulty of defending against distributed denial-of-service (DDoS) attacks in
Industrial IoT (IIoT) scenarios is covered in the paper in [63]. It proposes a fog/edge
computing and federated learning collaborative defense strategy. The UNSW NB15 dataset
was used by the proposed FLEAM procedure for both training and assessment. A global
optimized model was collaboratively trained following the proposed protocol using dis-
tributed datasets from several defenders. The outcomes included a 47% increase in accu-
racy, a 72% reduction in mitigation reaction time, and an accuracy equivalent to that of
centralized training.

A hybrid approach was suggested in another study [64] that focused on the security
of IoT networks, a challenge faced by manufacturers who often fail to follow security
requirements. A two-stage hybrid approach was proposed using advanced ML algorithms,
namely Support Vector Machines, ensemble classifiers, and Decision Trees, along with a
genetic algorithm, to detect intrusions in IoT networks. The system used pre-processed
network traffic data extracted using a genetic algorithm, classified the traffic as danger-
ous or normal, and output an alert for intrusions. The system was trained and tested
using a multi-class NSL-KDD dataset, achieving an accuracy of 99.8% using 10-fold cross-
validation. The results showed that the ensemble classifier, Decision Trees, and SVMs,
among other classifiers, had overall classification accuracy values of 99.8%, 99.5%, and
99.2%, respectively. However, the study mentions that the ensemble classifier was proven
to yield the best results.

In IoT networks, the problem of identifying and preventing malicious Bot-IoT traffic is
covered in [65]. In this paper, a new feature selection measure approach called CorrAUC is
evaluated using a Bot-IoT dataset. To increase the accuracy of detecting malicious commu-
nication, this algorithm filters features. With an average accuracy of over 96%, the approach
demonstrated exceptional specificity, sensitivity, accuracy, and precision in identifying
Bot-IoT attacks. However, although the study offers a thorough framework for handling
security issues in IoT networks, it is not scalable or evaluated using a particular dataset.

The identification of malicious intrusions in network traffic before they cause harm to
an organization was the subject of another study [66]. It looked at the connection between
five different categorization algorithms’ sensitivity and the quantity of packets observed.
The researchers put forth a novel technique for identifying assaults when network traffic is
just getting started. The suggested system classifies network traffic as harmful or benign
based on pre-processed data. Using the CSE-CIC-IDS2018 dataset, the experimental setting
evaluated the performance of five classification techniques: Random Forest (RF), Decision
Tree (DT), K-Nearest Neighbors (KNN), Gaussian Naïve Bayes (GNB), and SVM. The
results showed that the suggested method, which only included the first 10 packets of every
flow, achieved excellent accuracy and efficiency in identifying malicious assaults with RF
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classification, achieving a high F1 score of 89.5% and precision of 99.38% in detecting attacks.
The authors also conducted a sensitivity study to examine how various hyperparameters
affected the effectiveness of the suggested strategy.

With an emphasis on security in IoT networks, the study in [67] explored the appli-
cation of ML methods to categorize IoT malware. For learning techniques, it made use of
datasets IoT-23, NetML-2020, and LITNET-2020. Algorithms including Random Forests
(RFs), K-Nearest Neighbors (K-NN), and Artificial Neural Networks (ANNs) were used
in the suggested solution. The RF algorithm achieved the highest accuracy in detecting
attacks, with an accuracy score of 96%. However, handling huge datasets and algorith-
mic restrictions are potential drawbacks, as they can become computationally heavy in
IoT systems.

The study in [68] employed network intrusion detection and ML models to identify
and stop IoT-Botnet attacks. The training and evaluation datasets were derived from
CICIoT2023. The Gaussian Naïve Bayes (GNB), Random Forest (RF), K-Nearest Neighbors
(KNN), and Decision Tree (DT) classifiers were all used in the suggested solution. At 99.17%
accuracy, the DT classifier proved to be the most precise. The benefits of this approach
include its large dataset, in-depth analysis, and strong defense against Botnet attacks that
are always changing. On the other hand, the detection of anomalies unique to IoT and
computational complexity present possible challenges.

To detect DDoS attacks with the use of ML models, one study [42] focused on de-
tecting DDoS attacks in software-defined IoT networks, a challenge exacerbated by the
unpredictable nature of these networks and the increasing complexity of DDoS attacks.
The research proposed an ML-based model for identifying DDoS incidents in IoT networks,
comparing its performance to current solutions. The proposed system uses ML methods
such as Naïve Bayes (NB), Decision Trees (DTs), and SVMs to categorize network traffic
data as malicious or benign, with three primary parts: classification, feature extraction,
and data pre-processing. The system filters and cleans raw network traffic data, extracts
features, and uses the ML methods to determine if a communication is malicious or normal.
The system’s output thus indicates whether the communication is malicious or legitimate.
The results showed that the proposed framework maintained a low false negative rate
while outperforming current approaches in terms of detection and false positive rate, with
the DTs achieving the highest accuracy rate of 98.1%. ML-based anomaly detection can be
used in various domains; however, a challenge remains with the datasets used, as they are
not formed with diverse traffic and varying application devices. Moreover, the data used
are not real-time, which remains a challenge [42].

To identify cyberattacks on Industrial IoT (IIoT) networks, the study in [69] proposes a
hybrid ML technique. This methodology employs a mixed range of ML techniques to create
a hybrid ML (HML) model to discriminate between legitimate and malicious traffic. Ten
ML classifiers were combined to make the HML, including KNN, GB, LR, RF, ET AB, LDA,
and CART. The efficacy of the technique was assessed using the sophisticated open-source
DS2OS dataset. The accuracy rate achieved with the model was 99.8%, with an F1 score of
99%. The model achieved a high rate of accuracy and F1 measure in classifying malware,
but it could be computationally heavy when implemented.

The study in [70] investigated the security issues with IoT devices and how ML
algorithms can identify and avert security breaches. Using a laptop, an Alexa device,
and a HomePod that were all linked to a router, the authors carried out a real-world
experiment in which they attacked the network with an ARP poisoning attack. They
suggested classifying and identifying unwanted traffic on the Xiaomi Redmi Note 9S device
using the Decision Tree (J48) method. The outcomes demonstrated that the algorithm was
successful in maintaining privacy and gaining security improvements. However, the paper
fails to go into extensive detail about accuracy rates or performance indicators.

In [71], comparative research of different ML models highlights the difficulties in
identifying vulnerabilities used by cyberattacks as it addresses the problem of detecting
intrusions in IoT networks. It makes use of the IoT network intrusion dataset as well as
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the IoT-23 dataset. Using these datasets, the study evaluates five ML classifiers, namely
Random Forest (RF), Decision Tree (DT), Naïve Bayes (NB), Multilayer Perceptron (MLP),
and K-Nearest Neighbors (KNN), to detect intrusions. The best-performing algorithms,
RF and DT, exhibit accuracy scores of 99.9% each for both the IoT-20 and IoT-23 datasets.
The paper provides insights into the performance of ML models for detecting network
intrusions and highlights the need for more research with larger datasets to improve the
accuracy of these models.

To improve cybersecurity in IoT systems, the study in [72] addresses how to use the
IoTID20 dataset to identify and stop denial-of-service (DoS) assaults. To keep an eye out for
DoS abnormalities in network data, the authors suggested implementing ML classification
methods in an IDS. Feature selection based on correlation-based feature selection (CFS)
and the use of genetic algorithms (GAs) were used to train K-Nearest Neighbors (KNN),
Decision Tree (DT), Random Forest (RF), and Support Vector Machine (SVM) classifiers.
According to the study, training RF and DT with 100% accuracy using GA-selected features
produced the greatest results across all assessment criteria. Unfortunately, the study also
has some shortcomings, like its inadequate consideration of DL methods for IDSs in IoT
systems and its lack of attention to scalability.

The study in [73] examines how vulnerable IoT security systems are to hostile attacks,
with a particular emphasis on ML-based intrusion detection, malware, and device identifi-
cation systems. The Smart Home Testbed dataset, UNSW-NB15 dataset, CIFAR-10 dataset,
Kitsune dataset, Bot-IoT dataset, and NSL-KDD dataset are all used in the study. It catego-
rizes attack-generating strategies and defense mechanisms and assesses how well various
methods work with ML classifiers, including Naïve Bayes (NB), Random Forests (RFs),
Support Vector Machines (SVMs), Decision Trees (DTs), and the J48 Decision Tree. Subjected
to adversarial attacks, the Random Forest classifier showed impressive resilience, with the
accuracy declining by only 21%. Although this study provides insights into cutting-edge
adversarial approaches, it might have drawbacks such as restricted balanced IoT datasets.

The study in [74] addresses the growing issue of malware assaults and suggests
efficient methods for their detection and classification with the use of the UNSW-NB15
dataset. The suggested strategy optimizes the performance of ML models such as LR, KNN,
DT, ET, RF, and MLP through the application of Deep Convolutional Network techniques
and image processing. This study’s technique outperformed earlier techniques with an
accuracy rating of 99.98% when using the ET classifier. However, there were several
drawbacks, such as its requirement of multiple datasets, the possibility of overfitting, and
the failure to address zero-day attacks, which pose serious cybersecurity risks.
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Table 2. Summary of the ML-based literature for anomaly detection in the IoT environment.

Ref. Problem Addressed Dataset Proposed Solution Results Obtained Advantages Disadvantages Year

[47] Anomaly detection in the
IoT using ML

Time-series data,
NSL-KDD

Compared several ML
classifiers, such as KNN

and DTs

DTs and Linear Discriminant
Analysis achieved 80%

accuracy with
non-time-series data

Both time-series data
and non-time-series

data used
Small dataset size 2018

[48] Detecting anomalies and
attacks in IoT networks Dataset from Kaggle

Compared different ML
models in predicting attacks

and anomalies on IoT systems

RF and ANN outperformed
DT with 99.4% accuracy

Model better and faster
than other techniques

Dataset limitations and
computational

complexity
2019

[49] Identifying attacks and
anomalies in IoT systems DS2OS

Proposed a new method for
missing data values, and

evaluated its effectiveness on
real datasets

The accuracy rate was
99.43% with RT and 99.4%

with DT in detecting
anomalies

Managed missing data
values, reduced dataset

dimensionality

Needs testing with
more datasets 2020

[50] Identifying anomalies in
the IoT using ML IoT-23

Investigated ML models,
compared algorithms, and
assessed their performance

using metrics

RF outperformed others
with an accuracy rate

of 99.9%

Accurately identified
anomalies in

network traffic

Needs testing with
more datasets other

than IoT-23
2020

[32] ML-based anomaly
detection -

Proposed combining
supervised and unsupervised

algorithms

Showcased different ML
models, datasets, and

applications

A broad overview of
all related topics

In-depth research
is needed 2021

[39] ML-based anomaly
detection IoT networks

DAD and
UNSW-NB15

Used five shallow ML models
(NB, LR, AB, RF, and SVM)

with the DAD dataset

RF and AB achieved a mean
accuracy of 0.9998

Dataset validated in
detecting anomalies

with ML

Needs varied datasets
and testing with

different ML models
2021

[51]
Anomaly detection in

indoor Wi-Fi and
IoT devices

UCI Wi-Fi indoor
localization dataset

Evaluated ML models and
proposed ensemble learning

for improved accuracy

Ensemble learning strategy
with RF achieved an

accuracy of 98%

Precise anomaly
detection method for

indoor IoT devices

Needs more training
data and testing with
more ML algorithms

2021

[52] Using ML-based models to
detect anomalies in the IoT ToN-IoT and BoT-IoT

Proposed a Hadoop-based
framework using KNN, SVM,

and NB ML classifiers

Accuracy was 90% with
ToN-IoT and 99% with

BoT-IoT

High accuracy and low
false positive rates

Needs testing with
larger datasets and
more complex ML

algorithms

2021

[53] ML-based anomaly
detection in the IoT DS2OS

Assessed memory usage,
execution time, and detection

accuracy for LR, DT, RF,
and GBM

GBM and RF achieved
99.99% accuracy,

outperforming others

Minimizes detection
error rates and
execution time

Requires extensive
training data 2022
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Table 2. Cont.

Ref. Problem Addressed Dataset Proposed Solution Results Obtained Advantages Disadvantages Year

[54]
ML-based techniques to

identify power
consumption anomalies

Private data
Employed ML-based

techniques—VAR, Prophet,
and LightGBM

LightGBM had the best
accuracy with an MAE of

0.282046

Can help in smart
home automation and

power system
maintenance

Needs more testing
with large data 2022

[55] Detecting label noise in
IDSs with ML models -

Proposed new framework
using Decision Trees and

active learning to detect label
noise

Reduced noise by 98%
An explainable AI

approach that detects a
high % of noise

Only achieves binary
classification, and uses a

limited dataset
2022

[56]
Identifying anomalous
activity in IoT systems

with ML
IoT-23

Evaluated Gradient-Boosting
and Extreme

Gradient-Boosting (XGBoost)
techniques using the IoT-23

dataset

XGBoost had a high
accuracy rate of 99.98%

XGBoost can increase
IoT system security

Needs more testing on
larger and real-world

datasets
2022

[57]
Network intrusions and
cyberattacks in the IoT

with ML
KDDcup99

Used BT ML model to test
anomalies and compared it to

other models (KNN, NN,
SVM, etc.)

Model accuracy was 99.79%
Distinguished between
22 different anomalous

behaviors

Performed poorly
during testing 2023

[58]
Detecting anomalies and
maintaining user privacy

with ML

Real-life traffic
data from IoT

device networks

Proposed an ML model using
KNN, LR, and MLP that

identifies IoT devices and
detects anomalies

Accuracy of 99.5% was
achieved with KNN while

keeping the device
anonymous

Ensures the privacy of
users while accurately
detecting anomalies

Needs more testing on
datasets and in varied

networks
2023

[59] Anomaly detection in the
IoT with ML CoAP-IoT

Introduced a new CoAP-IoT
dataset and validated it using

supervised learning

RF, SVM, and DT
performed best, with a
mean accuracy of 0.9

Created a new dataset
and validated it

Needs more testing
using various datasets

and real-world
IoT systems

2023

[60] ML-based IDSs in the IoT Bot-IoT, MedBIoT, and
MQTT-IoT-IDS2020

Introduced a lightweight
framework by testing it with

DT, RF, KNN, and XGB
ML models

Achieved high classification
accuracy with an F1 score of

0.99 across all datasets

Lightweight and
efficient, which is

suitable for IoT
applications

The ML model used
does not apply to all

IoT sensors
2023
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Table 3. Summary of the ML-based literature for attack anomaly detection in the IoT environment.

Ref. Problem Addressed Dataset Proposed Solution Results Obtained Advantages Disadvantages Year

[61] DDoS attacks in the IoT PCAP data Used ML classifiers QDA,
SVM, KNN, NV, DT, and RF

DPAE outperformed other
models SDN-based categorizer Legit traffic misclassified

and delays in detection 2018

[62] Detecting DDoS attacks in
the IoT

Regular DDoS attack
traffic data

Five ML classifiers tested
with datasets—NN, DT, RF,

SVM, KNN

Classifiers achieved an
accuracy of more than 0.99.

NN achieved the
best overall

Accuracy in detecting
DDoS attacks

No real-world
dataset used 2018

[63] DDoS in IIoT scenarios UNSW NB15 Proposed federated learning
to detect DDoS in the IIoT

Low mitigation response
time with high mitigation

accuracy

High accuracy and low
response time

Needs more tests to
implement in real-world

IIoT settings
2020

[64] Network security in
IoT systems NSL-KDD

Proposed a two-stage hybrid
using ML algorithms and a

genetic algorithm

Ensemble classifier
performed better with

99.8% accuracy

Can reduce cyberattacks
and improve security

Needs more testing on
actual IoT networks 2021

[65] Malicious bot-IoT traffic in
IoT networks Bot-IoT

Proposed a novel metric
called CorrAUC based on

the AUC metric

The model was effective
and achieved 96% accuracy

High accuracy in
detecting malicious

traffic

Not scalable and needs
more training data 2021

[66] Identifying intrusions in
network activity CSE-CIC-IDS2018 Used DT, EF, KNN, and

GNB ML models

RF scored the highest F1
score of 89.5% with a

precision of 99.3%

Early detection of
malicious attacks;

efficient and accurate

Needs better
parameters and a wider

dataset range
2022

[67] IoT malware identification IoT-23, LITNET-2020,
and NetML-2020

Used both ML and DL
algorithms on datasets to

detect malware on datasets

RF achieved the highest
accuracy score of 96%

Exhibits high accuracy
in classifying malware

Management of large
datasets 2022

[68]
Mitigating IoT-Botnet
attacks using NIDS for

the IoT
CICIoT2023

Proposed solution with
ML models to detect

Botnet attacks

DT was most accurate with
a 99.17% score, followed by

RF and KNN

A wide-ranging dataset
was used

Computationally
complex 2023

[42] Detecting DDoS attacks in
SDN IoT Private data

NB, DT, SVM model
classifiers used to test

attacks in the IoT

DT achieved 98.1%
accuracy, outperforming

other models

Reduces the impact of
DDoS attacks Enhanced the system 2023

[69]

Detecting cyberattacks in
Industrial IoT (IIoT)

scenarios with hybrid ML
models

DS2OS
Proposed framework

combines different ML
models to form an HML

The models scored an
accuracy of 99.8% in

detecting abnormal traffic

Use of a comprehensive
dataset and high

accuracy of detection

The framework is
computationally heavy 2023
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Table 3. Cont.

Ref. Problem Addressed Dataset Proposed Solution Results Obtained Advantages Disadvantages Year

[70]
Using ML models to

prevent security threats
in the IoT

- Proposed the DT model to
classify abnormal data

Successful in detecting and
classifying abnormal data

Works in maintaining
security

No specific accuracy or
performance rates are

mentioned in the paper
2023

[71] Cyberattacks and IDSs in
IoT networks

IoT-23 and IoT
Network Intrusion

Compared different ML
models—RF, DT, NB, MLP,

and KNN

RF and DT performed
best with an accuracy of

99.9% each

Highly accurate in
classifying malicious

activity

Needs larger datasets
and improved accuracy

of the models
2023

[72] Detecting DoS attacks
with datasets IoTID20

Features selected via a GA
and CFS trained with KNN,

DT, RF, SVM classifiers

DT and RF achieved 100%
accuracy with the GA

Used recent and
real-time data Lack of scalability 2024

[73] Detecting attacks using ML

Smart Home Testbed,
UNSW-NB15,

CIFAR-10, Kitsune,
Bot-IoT, NSL-KDD

Used NV, RF, DT, and SVM
models to detect adversary

attacks in the IoT

RF showed the most
resilience- accuracy
dropped only 21%

Showed innovative
detection methods

Lack of a balanced
dataset 2024

[74] Detection of malware in
the IoT UNSW-NB15 Used ML models—LR, KNN,

DT, ET, RF, and MLP
ET achieved 99.98%

accuracy
Used large and
diverse dataset

Difficult to detect a
zero-day attack 2024
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4. Deep Learning—IoT Network Anomaly Detection

Deep learning (DL) involves the use of Neural Network architecture to detect anoma-
lies in a system. Neural Networks are designed to mimic the human brain. where each
layer processes the input data [75]. Due to the use of Neural Networks, DL can process
large and complex data to extract relevant information [76]. DL can be used as supervised,
unsupervised, or semi-supervised learning [76]. Different types of DL models include
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Temporal
Convolutional Networks (TCNs), Autoencoders, Generative Adversarial Networks (GANs),
Deep Belief Networks (DBNs), Long Short-Term Memory (LSTM) Neural Networks, and
more [77,78]. Compared to ML models, it is mentioned that DL models are better at detect-
ing anomalies that were previously not detected [76] and are more capable of analyzing
large and complex datasets, which makes them suitable for the IoT [75]. Hence, DL models
are said to be better suited for security and privacy maintenance in IoT systems [79]. In
addition to anomaly detection, other benefits of DL models include predictive analysis,
automation, improved accuracy, scalability, efficiency, and more [77,79,80]. Figure 3 shows
the basic process of a DL-based algorithm’s function, where the input is the data from IoT
environments and the output is a binary alert system that informs the user whether the
data are anomalous or normal.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 35 
 

 

4. Deep Learning—IoT Network Anomaly Detection 
Deep learning (DL) involves the use of Neural Network architecture to detect 

anomalies in a system. Neural Networks are designed to mimic the human brain. where 
each layer processes the input data [75]. Due to the use of Neural Networks, DL can pro-
cess large and complex data to extract relevant information [76]. DL can be used as su-
pervised, unsupervised, or semi-supervised learning [76]. Different types of DL models 
include Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), 
Temporal Convolutional Networks (TCNs), Autoencoders, Generative Adversarial Net-
works (GANs), Deep Belief Networks (DBNs), Long Short-Term Memory (LSTM) Neural 
Networks, and more [77,78]. Compared to ML models, it is mentioned that DL models 
are better at detecting anomalies that were previously not detected [76] and are more 
capable of analyzing large and complex datasets, which makes them suitable for the IoT 
[75]. Hence, DL models are said to be better suited for security and privacy maintenance 
in IoT systems [79]. In addition to anomaly detection, other benefits of DL models in-
clude predictive analysis, automation, improved accuracy, scalability, efficiency, and 
more [77,79,80]. Figure 3 shows the basic process of a DL-based algorithm’s function, 
where the input is the data from IoT environments and the output is a binary alert sys-
tem that informs the user whether the data are anomalous or normal. 

 
Figure 3. The basic process of a deep learning algorithm that is used to detect anomalies in the IoT. 

Anomaly detection with DL is categorized into the detection of anomalies in the IoT 
which is presented in a summarized format in Table 4, and the detection of attacks 
which is presented in Table 5. Attacks in this study are considered anomalies; however, 
the two are divided systematically in order to categorize them. 

4.1. Anomaly Detection 
To enhance security in the IoT of smart cities, the study in [81] suggests an IoT de-

tection system for intrusions that makes use of deep migration learning. Utilizing a large 
number of network connection records from the KDD CUP 99 dataset, the system de-
tects anomalies and implements the appropriate corrective actions. At 99.78% accuracy, 
0.22% false alarms, and 98.99% precision, the proposed method performs better than es-
tablished techniques like Extreme Learning Machine (ELM) and Backpropagation (BP). 
It demonstrates increased efficiency, a decreased false positive rate, and a greater detec-
tion rate. It may, however, exhibit reduced classification accuracy during compression, 
necessitating more research on classifier adjustment in real time. This study offers a via-
ble strategy for enhancing security in intelligent urban areas.  

To solve scalability concerns, the study in [82] proposes a framework for anomaly 
identification in IoT communications. For this, traffic logs are distributed across fog 
nodes for parallel learning in the framework using vector convolutional DL (VCDL). An 
evaluation was conducted using the Bot-IoT dataset, which consists of attack and regular 
traffic logs from IoT smart home devices. The framework was put into practice using 
Keras on a Theano package, Apache Spark, and an Intel Core i7-6700 processor. The re-

Figure 3. The basic process of a deep learning algorithm that is used to detect anomalies in the IoT.

Anomaly detection with DL is categorized into the detection of anomalies in the IoT
which is presented in a summarized format in Table 4, and the detection of attacks which is
presented in Table 5. Attacks in this study are considered anomalies; however, the two are
divided systematically in order to categorize them.

4.1. Anomaly Detection

To enhance security in the IoT of smart cities, the study in [81] suggests an IoT detection
system for intrusions that makes use of deep migration learning. Utilizing a large number
of network connection records from the KDD CUP 99 dataset, the system detects anomalies
and implements the appropriate corrective actions. At 99.78% accuracy, 0.22% false alarms,
and 98.99% precision, the proposed method performs better than established techniques
like Extreme Learning Machine (ELM) and Backpropagation (BP). It demonstrates increased
efficiency, a decreased false positive rate, and a greater detection rate. It may, however,
exhibit reduced classification accuracy during compression, necessitating more research on
classifier adjustment in real time. This study offers a viable strategy for enhancing security
in intelligent urban areas.

To solve scalability concerns, the study in [82] proposes a framework for anomaly
identification in IoT communications. For this, traffic logs are distributed across fog
nodes for parallel learning in the framework using vector convolutional DL (VCDL). An
evaluation was conducted using the Bot-IoT dataset, which consists of attack and regular
traffic logs from IoT smart home devices. The framework was put into practice using
Keras on a Theano package, Apache Spark, and an Intel Core i7-6700 processor. The
results indicated that, in comparison to other systems like SVMs, LSTM Networks, and
RNNs, the framework facilitated distributed anomaly detection with a lower detection
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time and showed notable performance benefits. With an accuracy score of 99.7%, the
model outperformed all other models. Nevertheless, there are certain drawbacks to this
study, including class imbalance issues that may result in lower detection accuracy in
multi-class classification.

Additionally, another study [36] conducted a survey on IDSs in IoT networks and the
limitations of conventional systems. It explored various DL methods including Convolu-
tional Neural Networks (CNNs), Long Short-Term Memory Networks (LSTM Networks),
and Recurrent Neural Networks (RNNs). It also explored various datasets that are used
with DL models, such as UNSW-NB15, NSL-KDD, UNB ISCX 2012, and KDD CUP 99,
which are used often in experiments as they contain raw data. It also surveyed various
studies of IDSs using DL models with various datasets. From this survey, Deep Neural
Networks (DNNs), Forward Neural Networks (FNNs), and Recurrent Neural Networks
(RNNs) were shown to have the best detection, with an average accuracy of 99.7%.

A new system was proposed by the study in [83] on deep transfer learning-based
intrusion detection system architecture to address the shortcomings of traditional network
intrusion detection techniques in managing modern network infrastructure, including
real-time processing and increasing network traffic complexity. The proposed system trains
an algorithm on a source domain using more data and processing power, then moves to
an intended domain using less data and processing power. The system classifies network
traffic as malicious or legitimate. The proposed system was tested using the UNSW-NB15
dataset and used various DL methods, including a hybrid CNN-LSTM model, Long Short-
Term Memory Networks, and Convolutional Neural Networks. The results showed that
the proposed deep transfer learning-based design outperformed a state-of-the-art IDS,
achieving high accuracy scores of 98.43% in both the source and target domains. The
architecture’s combination of CNNs and LSTM Networks proved effective, allowing it to
process network traffic in real time. The research also aims to further validate the proposed
framework with more datasets.

Regarding Industry 4.0 applications based on the IoT, one study [84] addressed the
problem of real-time anomaly detection in time-series data. It offered a prediction-based
approach for anomaly identification in time-series data by utilizing a multi-source predic-
tion module and a cutting-edge detection technique. Two real-world datasets, Numenta
Anomaly Benchmark (NAB) and Yahoo Webscope, were used to evaluate this approach.
The proposed system works by using time-series data as the input, using a multi-source pre-
diction module—Prediction-Driven Anomaly Detection (PDAD-SID)—to improve model
reliability by considering the ensemble of successive predictions and giving each prediction
source a probabilistic score. The output is a probability for an incoming anomaly record
using the SID metric and using predicted sequences to assess variations of a real sequence
from anticipated sequences in real time. The results showed that the proposed PDAD-SID
method outperformed the current anomaly detection techniques in the AUC metric (overall
performance) of 92.6%, outperforming cutting-edge techniques like LSTM Networks in
terms of TPR, FPR, and AUC-ROC.

Examining information security in the context of the IoT, the research in [85] empha-
sized the significance of an effective IDS. The research suggested a DL model for identifying
irregularities in IoT networks, evaluated its performance on many datasets, and contrasted
it with rule-based systems and traditional ML techniques. The suggested model classifies
normal and abnormal traffic using recursive feature removal and transfer learning applied
to network traffic data as the input. The model was trained and tested on four datasets, com-
paring its performance to rule-based systems and conventional ML methods. The CNN1D,
CNN2D, and CNN3D models achieved minimum detection rates of 99.74%, 99.42%, and
99.03% for the BoT-IoT, MQTT-IoT-IDS2020, IoT-23, and IoT-DS-2 datasets, respectively. The
results showed that the DL-based model performed better than conventional ML methods
and rule-based systems in terms of precision, recall, accuracy, and F1 score. However, more
research is recommended to test the models with real data.
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With regards to IDSs, the study in [86] proposed an IDS for detecting anomalies
in IoT networks using DL models. The proposed system uses pre-processed network
traffic data to train a deep Convolutional Neural Network (CNN) to distinguish between
regular and abnormal traffic. The model outputs a binary-based classification outcome.
The experimental setup used two datasets: NSL-KDD and UNSW-NB15. The model’s
performance was assessed using precision, recall, accuracy, and F1 score measures. The
results showed that the suggested method performed better than conventional ML models
in terms of F1 score, accuracy, precision, and recall. On the NSL-KDD dataset, the system
achieved 99.8% accuracy and a 0.998 F1 score, while on the UNSW-NB15 dataset, it achieved
99.9% accuracy and a 0.999 F1 score.

Similarly, another study [87] explored the limitations of current IDSs in IoT networks,
focusing on the heterogeneity of traffic streams and disregarding spatial and temporal
correlations. The paper proposed a hierarchical-based semi-supervised training method,
called SS-Deep-ID, that considers the sequential characteristics of IoT traffic data, incorpo-
rating a multiscale residual temporal convolutional module and optimized traffic attention
mechanism. The system’s output predicts whether an incursion is detected in the traffic
data. The method was tested on two datasets, CIC-IDS2017, and CIC-IDS2018, and the
results showed improved precision, accuracy, recall, and F1 score compared to existing
approaches, with an accuracy above 99% and F1 measure between 98% and 99%. Hence,
the study concluded that this hierarchical semi-supervised method enhances network
performance by considering the sequential properties of IoT traffic data. Future work is
recommended to make the model detect anomalies in real time and make it general and
scalable so that it works in various scenarios.

Regarding IDSs, another study [88] worked on detecting intrusions in IoT devices
using an intrusion detection system built on the SDN architecture. The proposed system
uses network traffic data from IoT devices to distinguish between malicious and legitimate
traffic using a DL LSTM algorithm. The system compares data flows and actions within
the network to address security issues. The experimental setup used the CSE-CIC-IDS2018
dataset to train the LSTM model. The results showed that the proposed system of IDSIoT-
SDL performs better in accuracy, sensitivity, and false positive rate than current methods.
The four security parameters considered were false positive rate, detection rate, specificity,
and sensitivity. The IDSIoT-SDL simulation results showed 1775 true positives, 212 true
negatives, 12 false positives, and 7 false negatives, and an accuracy of 99.05%. This
paper provides a novel method of combining SDN and DL methods for IDSs in IoT
traffic. Moreover, further research can be conducted with other DL models and in real
environments to enhance the proposed model.

As stated previously, IoT networks and devices are susceptible to intrusions that
try to undermine data integrity and service availability. One study [76] examined these
security flaws. This study suggested a DL-enabled solution that leverages the network
traffic of IoT devices as input data (DS2OS) to identify anomalies in IoT security. The
system simulates the probability distribution of normal behavior and recognizes normal
network behavior using a Deep Neural Network (DNN). The input is labeled as anomalous
if the error surpasses a set threshold. A binary classification of regular or anomalous
traffic is the system’s output. The system was evaluated against other alternatives, such
as rule-based and signature-based IDSs, utilizing actual traffic data from an IoT network-
connected smart house. The accuracy of the method was 99.8%, demonstrating its potential
for dependable security in decision-support systems. This study, while highlighting an
accurate and efficient technique of anomaly detection, also suggests further research with
more datasets and real environments.

Another paper [89] suggested a DL-based intrusion detection system to enhance IoT
device security in smart cities. This system uses network traffic data from IoT devices,
which are pre-processed and loaded into a DL and ML model to detect intrusions. The
proposed model used the Minority Oversampling Technique (SMOTE) with a voting
classifier and the dataset ToN-IoT Telemetry. The system outputs a binary classification
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of regular or anomalous traffic. The experimental setup used an IoT device network
traffic dataset for training and testing. The system was compared to existing options
like rule-based and conventional ML-based IDSs. The results showed that the proposed
system performed better than current solutions in precision, recall, accuracy, and F1 score,
with the voting classifier with SMOTE achieving 99.7% accuracy. In addition, the system
demonstrated a lower rate of false positives and false negatives than the existing systems.
Further studies are recommended with more DL models and varied datasets to achieve a
comprehensive analysis.

The problem of false alarms in IDSs, which can lead to alert fatigue and make it
challenging to identify actual security incidents, is the subject of the research in [90]. The
authors provide a technique for increasing the accuracy of false alert detection by combining
DL and ML. This is carried out by inputting the result of hidden layers of DNNs into ML
models such as the DT, GNB, KNN, RF, and AB models. Using a traffic log dataset, the
proposed model was used to detect false alert rates, and its detection was compared to
that of the conventional ML models alone. Combining the DNN with the RF gave the best
accuracy, at an average of 96.7%. The study also notes that the use of DL and ML models
improved the detection of false alerts and recommends this approach for further research.
However, the study is limited, as it uses one dataset and does not compare its findings to
those of other approaches.

Another study’s [91] goal was to create an industrial IoT intrusion detection system.
The WUSTL-IIOT-2021 dataset was used by this system. In this study, class imbalances and
irrelevant characteristics were addressed in deep IIoT scenarios through the employment
of a deep-learning classifier to analyze features. The solution solved the dataset imbalance
problem and performed better than existing IDSs. However, its applicability to different
IIoT scenarios could be limited by its dependence on a particular dataset.

Based on a CNN-based IDS, the study in [92] examined the difficulties associated with
CNN-based detection of intrusions in diverse network environments, as well as how CNNs
may be used for the extraction and classification of features and how well they perform
when measured with the right metrics. The study divided CNN-based intrusion detection
methods into several classes based on the WUSTL-IIOT-2021 dataset it used. The method
achieved an accuracy of more than 99%, with a 0.069% false positive rate. This study states
that the model outperformed other models in the same domain and that further research is
required to make its classification of anomalies more sophisticated than a binary result.

The difficulty of deciphering Deep Neural Network judgments in detection systems
for intrusion is discussed in [93]. This paper suggests a CNN model and hybrid CNN
models with LSTM or Autoencoder methodology for understanding cyberattacks in the
NSL-KDD and CICIDS2017 datasets. The hybrid LSTM model with 1D-CNN showed the
best accuracy, at 98.02% with the CICIDS2017 dataset and 89.93% with NSL-KDD. This
framework improves human comprehension, produces very precise results, and gives clear
descriptions of the CNN detection technique. Nevertheless, it has drawbacks in real-world
deployment, explainability strategies, model optimization, and dataset selection.

Using DL algorithms, the research in [94] aimed to detect anomalies in IoT data. The
proposed system receives time-series data from IoT devices, pre-processes it to eliminate
outliers and noise, and uses a DL model to identify anomalies. The model, which is either a
Temporal Convolutional Network (TCN), Long Short-Term Memory (LSTM) Network, BI-
LSTM, or CuDNN-LSTM, was trained on pre-processed data from Secure Water Treatment
(SWaT) to identify patterns and abnormalities. The experimental setup involved pre-
processing data from publicly accessible datasets and training and evaluating DL models.
The results showed that the Root Mean Square Error (RMSE) for the prediction accuracy
of CuDNN-LSTM was an average of 0.042, which is more accurate, but it required more
training time. While TCN had an average RMSE of 0.161, it required less training time. The
authors also provided evidence of their method’s effectiveness in identifying irregularities
in actual IoT data, with larger timestamped values resulting in longer training times but
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better model accuracy performance. For better analysis, the study recommends further
research with different datasets to compare between the two methods.

Furthermore, another research’s [95] objective included improving IDSs in IoT net-
works using DL. This project addressed the difficulty of interpreting the judgments made
by AI algorithms used in detecting intrusions in IoT networks. The research presented an
implementation of a deep SHAP with a CNN for explaining IDS output in IoT networks
and suggested a structure for the global and local justification of IDSs based on artificial
intelligence in IoT and IoV communication networks. The proposed system processes net-
work traffic data from IoT-enabled transportation networks with the ToN_IoT dataset, and
uses the CNN deep SHAP approach to understand its output and offer regional and global
justifications for its choices. The proposed system achieved a higher accuracy of 99.15% and
an F1 score of 98.83% compared to previous SHAP approaches and conventional ML-based
and DL-based IDSs. However a drawback of this method is that SHAP is computationally
heavy, is vulnerable to attacks, and is costly, which might hinder its implementation in the
IoT environment.

For IoT-enabled smart cities, the paper in [96] suggests two-tiered detection of intru-
sions based on the anomaly method. This methodology enhances system efficiency and
chooses the best features for IoT IDSs by utilizing DL techniques and lightweight ML algo-
rithms, namely the combination of the lightweight GBC with a CNN model. Employing the
UNSW-NB15 dataset, the study verified the proposed approach and produced competitive
results when compared to other methods (such as CNN-BiLSTM), with an accuracy of
99.85%. The benefits of this approach include improved feature selection and a collabo-
rative IDS architecture. However, limitations in resources and validation in real-world
settings could be drawbacks.

Providing a targeted approach for identifying anomalies in network activity, another
study [97] researched detecting cyberattacks in distributed and heterogeneous fog comput-
ing environments. The proposed system operates by utilizing data on network traffic from
several fog ecosystem edge units. It employs a federated deep Q-learning network (FDQN)
method, with local learning and global learning phases. Edge units learn a unique deep
reinforcement learning framework using local data and share their models through aggre-
gation points. The system outputs a list of abnormalities in network flow. The experimental
setup involved a set of network traffic data from the NS-3 network simulator, which was
dispersed among edge units to employ the suggested service-based FDQN technique to
identify network traffic irregularities, and two services were focused on for the data—DNS
and HTTP. The results showed that the suggested solution performed better than current
options in terms of resource usage and detection accuracy. More research is recommended
on sophisticated DL methods to explore better detection techniques.

Using the KDD99 dataset, a novel DL technique for identifying anomalies in IoT
devices is presented in [98]. A CNN and LSTM Network were combined to form a C2-LSTM
model in the suggested architecture to handle large amounts of data with a high degree of
sensitivity. The KDD99 dataset was used in this study for measuring performance. When
measured against other DL implementations currently in use, namely the CNN, LSTM,
and C-LSTM models, the proposed model yielded improved accuracy, precision, and recall,
with an accuracy of about 99%. Nevertheless, it presents problems related to obsolescence,
as pre-processing data can lead to latency and needs more investigation.

In [99], DIS-IoT—a method for intrusion detection in IoT environments—is presented.
It integrates four DL models: an LSTM-based model, a CNN-based model, a Deep Neural
Network (DNN), and a shallow Multilayer Perceptron (MLP). The models were evaluated
with CICIDS2017, ToN_IoT, and SWaT datasets. This study indicated that DIS-IoT achieved
good scores in both multi-class and binary classification for precision, recall, accuracy, and
F1 score using three open-source datasets. With the ToN_IoT dataset, the proposed DIS-IoT
achieved 99.6% accuracy; with the CICIDS2017 dataset, the model achieved 98.7% accuracy;
and with SwaT, it achieved 99.7% accuracy. For future research, it is recommended that
this proposed model be tested with actual IoT devices.
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4.2. Attack-Based Anomaly Detection

The application of DL for distributed fog-level cyberattack detection in IoT networks
is covered in [100]. A Deep Neural Network was evaluated and validated in this study
with the NSL-KDD intrusion dataset. In the study, the efficacy of the Deep Neural Network
model achieved a high accuracy of 99.2% with a two-class model and 98.2% accuracy with
a four-class model. Improved scalability, parameter sharing, and precision are among the
benefits of this approach. Longer training times, complicated implementation, and a need
for huge training datasets are its drawbacks. This study emphasizes that DL might improve
the detection of cyberattacks in IoT networks, while it might require longer training times
and a larger dataset than ML models.

The application of DL approaches to improve security in SDN-based IoT architecture
is explored in [101]. This study develops an IDS employing Restricted Boltzmann Machines
(RBMs) for the detection of anomalies and attacks in the network using the widely used
KDD99 dataset. The system’s precision rate, above 94%, shows the promise of DL for
IoT networks. The study sheds light on how DL models may be used to detect network
anomalies, which could improve cybersecurity in IoT settings. It does not, however, provide
comprehensive information on performance and scalability in large-scale IoT systems.

The study in [102] addresses the problem of identifying malicious activity in IoT
backbone networks, emphasizing the requirement for effective large data-processing tools
and detection algorithms. A suggested framework that makes use of the Keras DL Library
is tested in this study using the UNSW-NB15 and NSL-KDD99 datasets. Convolutional
Neural Networks (CNNs), Autoencoders, Deep Neural Networks (DNNs), and Multilayer
Perceptrons (MLPs) are the four DL models used by the framework. The results show that
the DNN model outperformed the MLP model, which had an accuracy rate of 98.96%, with
a rate of 99.24%. The study offers high F1 values and accuracy in identifying anomalies in
IoT environments, but it also points out that one potential limitation of DL models may
be their complexity, which makes them computationally demanding for use in real-world
IoT systems.

The research in [103] offers a distributed DL framework that may be used to detect
and mitigate Botnet and phishing attempts, thus improving the security of IoT devices. The
PhishTank, OpenPhish, Curlie, and “Detection of IoT botnet attacks N_BaIoT” databases
are among the datasets used in this study. To identify and prevent attacks at their point of
origin, the proposed framework makes use of a Long Short-Term Memory (LSTM) Neural
Network. With 94.3% accuracy and a 93.58% F1 score, the IoT microsecurity addition
effectively identified phishing assaults. An accuracy of 94.80% was attained by the LSTM
algorithm used for Botnet attack detection. The study provides benefits like distributed
attack detection by integrating CNN and LSTM models, which achieved high accuracy but
could be complex when implemented in a real-world IoT environment.

The study in [104] offers a method for identifying and stopping intrusions in IoT
networks. The authors developed a hybrid DL architecture for attack detection that in-
corporated Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN)
models that were tested on the IoT-23 dataset. In this experimental scenario, the model was
trained using the dataset, yielding a 96% detection accuracy and a 97% recall value for IoT
threats. The study showcased the use of the CNN and LSTM models together and achieved
improved accuracy and efficiency through such, but it also notes certain drawbacks, namely
its reliance on a single dataset and the requirement of additional validation across a variety
of datasets.

Considering DDoS attacks, the research in [105] aimed to protect IoT devices from
attacks like distributed denial-of-service (DDoS) and denial-of-service (DoS) attacks using
the DeL-IoT deep ensemble learning method using SDN. The proposed system uses data
from IoT devices and apps, extracts important aspects, and uses behavioral analysis to
determine labeling. The detection module tracks traffic and system parameters, and the
learning module uses a deep ensemble learning technique to find anomalies. The experi-
mental setup involved creating various attacks and gathering metrics. The results showed
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that the DeL-IoT technique outperformed state-of-the-art ML-based methods in detecting
anomalies, with a 99.8% detection rate on testbeds and a 99.9% rate on benchmark datasets.

In [106], DL methods are used to detect brute-force assaults on IoT networks. The
study proposed using a supervised DL model to detect attacks in the MQTT-IoT-IDS2020
dataset. Researchers used the Deeplearning4j library in Java to integrate the DL model
on which the dataset would be used. The study stated that the DL classifier showed high
accuracy, with an accuracy rate of 99.6% on bi-flow and 99.7% accuracy on uni-flow features
using the MQTT-IoT-IDS2020 dataset. The study showed robust techniques for detecting
attacks in the IoT using DL models; however, the use of one dataset might restrict the
generalizability and ignore other kinds of attacks.

The paper in [107] uses the Edge-IIoTset dataset, containing a variety of cyberattacks,
to propose an effective methodology for IIoT intrusion detection. The deep transfer learning
(DTL) framework makes use of bootstrap aggregation ensemble techniques, Convolutional
Neural Networks (CNNs), and genetic algorithms (GAs). With fourteen types of cyberat-
tacks predicted, it exceeds modern systems for intrusion detection in accuracy with a score
of 100%. While to increase its real-time detection, scalability, and resilience, more research
is needed, the proposed framework outperformed other DTL models.

In [108], cyberattacks on IoT networks were examined, along with the necessity of
effective security protocols. This study proposed the use of several DL models, namely Feed
Forward Neural Network (FFNN), Long Short Term Memory (LSTM), and Random Neural
Network (RandNN) models, that were each trained on the CIC IoT 2022 dataset. Using
data from IoT sensors and devices, the proposed system inputs and outputs anomalies and
cyber threats within the IoT through DL models for binary and multi-class classification.
An IoT device and a dataset of network traffic generated by sensors were employed
in the experimental setup. The FFNN scored an accuracy of 99.93%, the LSTM model
scored 99.7%, and the RandNN achieved 96.42% accuracy, making the FFNN the most
accurate among them. The proposed IDS can extract and classify features in a versatile
way, making it efficient in detecting cyberattacks in the IoT. For future work, exploration of
more DL models is recommended to build a sophisticated system for implementation in
IoT environments.
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Table 4. Summary of the DL-based literature for anomaly detection in the IoT environment.

Ref. Problem Addressed Dataset Proposed Solution Results Obtained Advantages Disadvantages Year

[81] DL-based anomaly
detection in smart cities KDD CUP 99 Deep mitigation

learning proposed

The model achieved 99.78%
accuracy and outperformed

BP and ELM

Can enhance security in
urban areas

Classification accuracy
reduced during

compression
2019

[82] DL-based anomaly
detection BoT-IoT VCDL model proposed Achieved 99.7% accuracy Outperformed

other models Class imbalance issues 2020

[36] DL-based IDSs in
IoT networks

UNSW—NB15,
NSL-KDD, UNB ISCX

2012, and KDD
CUP 99

Surveys various DL models
in studies—DNN, CNN,
RNN, FNN, and more

DNN, FNN, and RNN
performed best with

99.7% accuracy

Showcased several
DL model results on

various datasets

Further study is
needed to explore

more DL models with
other datasets

2021

[83] DL-based IDSs UNSW-15 DL-based CNN-LSTM
model proposed

Achieved an accuracy of
98.43% across all domains

Detected anomalies in
resource-constrained

domains

Needs more research
with more varied

datasets
2021

[84] Real-time anomaly
detection in time-series data

NAB and the Yahoo
Webscope

PDAD-SID model proposed
to detect anomalies

Outperformed other models
like LSTM with an AUC

score of 92.6%

Can be applied to
various Industry 4.0

applications

Needs testing with more
complex time-series

data types
2021

[85] DL-based anomaly
detection in the IoT

BoT-IoT,
MQTT-IoT-IDS2020,

IoT-23, IoT-DS-1, and
IoT-DS-2

CNN1D, CNN2D, and
CNN3D models proposed

All models achieved an
accuracy >99% for all

datasets

Proposed DL models
outperformed other

models

Limited datasets and
lack of actual testing 2022

[86] DL-based IDSs NSL-KDD and
UNSW-NB15

CNN models proposed to
detect anomalies in datasets

The model achieved an
average of 99% accuracy on

both datasets

Efficient in finding
anomalies in IoT

networks

Needs more testing with
larger and real datasets 2022

[87] Heterogeneity of traffic in
IoT devices

CIC-IDS2017 and
CIC-IDS2018

Semi-supervised method
proposed called SS-Deep-ID

Achieved an accuracy >99%
with the datasets

Integrated into
fog-enabled IoT

networks

Computational overhead
is significant 2022

[88] SDN and DL for IDSs in IoT CSE-CIC-IDS2018
SDN architecture

IDSIoT-SDL used with the
LSTM DL model

The model had an accuracy
of 99.05% and 212 true

negatives

High accuracy and low
false positive rates

Needs testing with DL
models and in real

environments
2022

[76] DL-enabled anomaly
identification DS2OS DNN DL-based model

proposed
Achieved an accuracy of

99.8%
Accurate and efficient

anomaly detection

Needs testing with more
datasets and real-world

situations
2022
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Table 4. Cont.

Ref. Problem Addressed Dataset Proposed Solution Results Obtained Advantages Disadvantages Year

[89] Anomaly detection in
smart cities ToN-IoT Telemetry

Compared DL and
ML-based models with

the dataset

The voting classifier with
SMOTE achieved
99.7% accuracy

Compared to many
learning models

Needs more testing with
more varied datasets 2022

[90] False alert detection in IDSs
in the IoT Traffic log Combined ML and DNN to

detect false alerts

DNN with RF had an
accuracy of 96.7%, which

was higher than other
ML models

Used real alert records
from traffic log data

Needs testing with more
datasets and comparison

to other models
2022

[91] IDSs in the IIoT WUSTL-IIOT-2021 Used DL models with
network flow data for an IDS

Achieved a 99%
accuracy rating

Successful in handling
class imbalance in

the dataset

Needs more testing with
more varied datasets 2023

[92] DL-based IDSs in the IIoT WUSTL-IIOT-2021 DL models applied to the
dataset to detect anomalies

DeepIIoT achieved
>99% accuracy

Higher accuracy than
others in the IIoT

Better classification
of anomalies could

be achieved
2023

[93] Interpreting DL decisions
with IDSs in the IoT

CICIDS2017 and
NSL-KDD

CNN models and a hybrid
CNN model with LSTM

and Autoencoder

LSTM with 1D-CNN
showed 98.02% accuracy

with CICIDS2017

Thorough study of
CNNs and other

DL-models

Needs more varied
datasets, model

optimization
2023

[94] Detect anomalies in IoT
data using DL techniques

SWaT (Secure Water
Treatment)

Compared TCN, LSTM,
BI-LSTM, and

CuDNN-LSTM on SWaT

The average RMSE of
CuDNN-LSTM was 0.042,
with more time, and TCN
was 0.161, with less time

Effective in detecting
anomalies

Needs testing with
different datasets 2023

[95] Anomaly detection in IDSs
with DL ToN_IoT Implemented deep SHAP

with the CNN model
Achieved accuracy of 99.15%

and F1 score of 98.83%

Increased accuracy
and F1 score than
previous SHAP

SHAP is computationally
heavy and costly 2023

[96] Anomaly detection with DL
and ML UNSW-NB15

Proposed two-tier
classification with GBC

and CNNs

Achieved an accuracy
of 99.85%

Employs ML and DL
collaboration

Needs further validation
in a real-world setting 2023

[97] Anomaly detection by
federated DL UNSW-NB15 FDQN used on the dataset to

detect anomalies

Performed better in
resource usage and
detection accuracy

Scalable, versatile,
and outperformed

other models

The exact values of
metrics are not

mentioned
2023

[98] IDSs in the IoT in Industry
4.0 applications KDD99 Combined a CNN with

LSTM to form C2-LSTM

Achieved high accuracy,
precision, recall, and

AUC score

Extracted temporal
and spatial features

separately

An old dataset was used.
Testing is needed with a

newer dataset
2023



Sensors 2024, 24, 1968 25 of 32

Table 4. Cont.

Ref. Problem Addressed Dataset Proposed Solution Results Obtained Advantages Disadvantages Year

[99] IDSs in the IoT with
DL-based models

ToN_IoT, CICIDS2017,
and SWaT

Proposed a stacking
ensemble of DL models

named DIS-IoT

Accuracy score with
ToN_IoT was 99.6%, with

CICIDS2017 was 98.7%, and
with SWaT was 99.7%

Outperformed other
models in all metrics

Needs testing with real
IoT devices 2024

Table 5. Summary of the DL-based literature for detecting attacks and anomalies in the IoT environment.

Ref. Problem
Addressed Dataset Proposed Solution Results Obtained Advantages Disadvantages Year

[100] DL-based cyberattack
detection NSL-KDD DNN proposed Accuracy score of 99.2%

with a two-class model
Improved detection of

cyberattacks
Longer training time and

needs a large dataset 2018

[101] IDSs for attack detection KDD99 RBM employed for detection A precision rate of 94%
was achieved

The ability of DL models
to detect an attack

Comprehensive results
not mentioned 2018

[102] Detecting malicious
activity in the IoT with DL

UNSW-NB15 and
NSL-KDD99

Four DL models were
used—CNN, DNN, MLP,

and Autoencoder

DNN outperformed others
with an accuracy of 99.24%

High accuracy and F1
results achieved

Complex model and
computationally heavy 2019

[103] Botnet and phishing
attacks in the IoT

PhishTan, OpenPhish,
Curlie

LSTM neural network
proposed

Accuracy with botnet attack
was 94.8%; accuracy with

phishing was 94.3%

Integrated CNN and
LSTM models

Complex to implement in
a real environment 2020

[104] Identifying attacks in
the IoT IoT-23 Hybrid DL model of CNN

and LSTM
Achieved a detection

accuracy of 96%
Improved accuracy

and efficiency
Needs testing with

more datasets 2021

[105] Detecting DDoS and DoS
attacks in the IoT

Collected data and
N-BaIoT

DeL-IoT deep ensemble
learning model

Outperformed ML methods
with a 99.8% detection rate

Provides accuracy
and scalability

More tests are needed
with varied datasets 2021

[106] Brute-force attacks in
the IoT MQTT-IoT-IDS2020 Featured bi-flow and

uni-flow DL-based models

The bi-flow feature had
99.6% accuracy and the

uni-flow feature had
99.7% accuracy

High accuracy
in detection

Needs more datasets
for testing 2023

[107] Cyberattacks and device
profiling in the IoT Edge-IIoTset DTL model with a CNN, GA,

and aggregation ensemble

Achieved 100% accuracy
and detected various

cyberattacks

Incorporated a
realistic dataset

Needs more research for
scalability and real-time

detection
2023

[108] Detecting cyberattacks
with DL CIC IoT 2022 FFNN, LSTM, and RandNN

were used to test the dataset

Accuracy score of FFNN was
99.93%, of LSTM was 99.7%,

of was RandNN 96.42%

Versatile extraction and
classification features

Optimization needed
with more diverse

datasets
2023
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Conclusively, using a DL-based algorithm shows promise for the accurate detection
of anomalies. However, the challenge with DL-based algorithms is that they need large
and high-quality datasets, are computationally heavy, and require time to train. Moreover,
the complexity of DL algorithms makes it difficult to source the reason or pathway of the
decision-making process.

5. Research Summary

For the ML-based studies, the model most cited to have the highest accuracy is the
Random Forest (RF) model, which was cited about twelve times to have the highest
accuracy [49,50]. The models least cited to have a high accuracy are the ANN, GBM, and RT
models. The ranged uses of RFs over the years makes it an accurate ML model for detecting
anomalies and attacks. Most of the studies share a common drawback, which is the need
for more varied datasets to validate the proposed models [59,64,71]. This is followed by
the drawback that the models can be computationally heavy for IoT systems [69]. Figure 4
includes a summary of the datasets most used in the studies considered for this study.
According to Figure 4 among all of the datasets, UNSW-NB 15 and IoT-23 appear to be the
most used datasets for both ML and DL model testing [56,63].
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For the DL-based studies, the model most cited with the highest accuracy is the Long
Short-Term Memory (LSTM) Neural Network and its hybrid [85,89], which appeared about
seven times, followed by the Conventional Neural Network (CNN) [87] and its hybrid [84],
which appeared about six times, followed by the Deep Neural Network (DNN) [36]. Hence,
from the literature, LSTM, CNN, and DNN models appear to be the most accurate DL
models in the detection of anomalies and attacks. The most common drawbacks for DL-
based models appears to be the need for more varied datasets [36] and larger datasets [86],
and the computational complexity of the models [88,104].

6. Research Gaps

The current work on detecting anomalies in IoT networks using ML techniques has
several limitations and areas for improvement. These include the inaccuracy of current
algorithms, the lack of consideration of adversarial attacks, the complexity and variability
of IoT data, the lack of privacy and security issues, and the insufficient comprehensiveness
of frameworks for evaluating the performance of ML and DL algorithms. The literature
also fails to consider the trade-offs between accuracy, efficiency, and scalability in ML-based



Sensors 2024, 24, 1968 27 of 32

anomaly detection systems. The methods for visualizing and interpreting anomaly detec-
tion results are not user-friendly for non-experts. Novel approaches to anomaly detection,
such as DL and reinforcement learning, are not explored thoroughly. Moreover, the current
evaluation methods do not consider the heterogeneity and variability of IoT devices and
networks, and the impact of network topology and architecture on the performance of
ML-based anomaly detection systems.

7. Areas for Improvement

The existing work on detecting anomalies in IoT networks using ML and DL tech-
niques needs improvement. The possible improvements include developing more accurate
and efficient algorithms, exploring new approaches such as reinforcement learning, the use
of blockchain technology to enhance security and privacy, improving data collection and
preprocessing methods, conducting extensive experiments to evaluate algorithm perfor-
mance, developing user-friendly interfaces and visualization tools, and exploring real-time
anomaly detection. These improvements aim to enhance the security and privacy of IoT
networks while ensuring the safety of the devices.

This is significant as the IoT is increasingly being integrated into different environ-
ments, such as smart homes, smart governments, smart cities, agriculture, industries, and
more. With this integration comes the risk of attacks and adversarial traffic, which may
cause harm to the device or the entire system. These attacks can be used for ransomware
and data breaches. Hence, developing intrusion detection methods that can detect new
attacks, take less time to detect anomalies, and are dynamic is essential in keeping up
with the growing use of IoT systems. This can be achieved through AI with ML and DL
models. Moreover, the use of AI to detect anomalies remains relatively recent and needs
more attention to develop thorough policies and standards to enforce guidelines on the use
of AI models for IDSs. Therefore, further research in this field is crucial to develop robust
and scalable security and privacy measures in IoT systems.

8. Conclusions

This paper addresses the difficulties in locating intrusions and anomalies in IoT
systems, which could lead to a breakdown of the system. The justification for this research
is due to increasing attacks in IoT systems. The paper then presents a comprehensive review
of the most recent work on machine learning-based and deep learning-based anomaly
detection schemes for IoT networks. All of studies from the literature in this review
are summarized in tabular format. Overall, most papers suggested novel systems for
detecting intrusions in IoT systems, which were then compared with existing models using
various performance and security metrics to determine the suggested models’ efficiency
and accuracy.

Most of the research provides an introductory framework for anomaly detection,
which is suggested by the researchers to further develop. The way to develop these existing
systems is to firstly use more varied datasets to train the AI systems. Other ways to improve
the systems are through testing them in real-time and in different environments. The
systems also need to be made scalable and sophisticated to successfully detect anomalies
in IoT systems in real-world settings. Regarding DL-based algorithms, more research is
needed to integrate them in IoT environments, as DL algorithms are computationally heavy.
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