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A B S T R A C T

Phosphorus removal is vital in wastewater treatment to reduce reliance on limited resources. Deep reinforce-
ment learning (DRL) can be used to optimize the processes in wastewater treatment plants by learning control
policies through trial and error. However, applying DRL to chemical and biological processes is challenging due
to the need for accurate simulators. This study trained six models to identify the phosphorus removal process
and used them to create a simulator for the DRL environment. While achieving high accuracy (>97%) in one-
step ahead prediction of the test dataset, these models struggled as simulators over longer horizons, showing
uncertainty and incorrect predictions when using their own outputs for multi-step simulations. Compounding
errors in the models’ predictions were identified as one of the causes of this problem. This approach for
improving process control involves creating simulation environments for DRL algorithms, using data from
supervisory control and data acquisition (SCADA) systems with a sufficient historical horizon without complex
system modeling or parameter estimation.
1. Introduction

Phosphorus (P) is essential for human nutrition and plant growth.
Without it, the primary cells of plants, animals, and life would not
exist (Nobaharan et al., 2021; Melgaço et al., 2021). The amount of
available P is limited due to the decreasing number of phosphate rock
resources (Porter and FitzSimons, 2009). The phosphorus nutrient is
often found in wastewater treatment plants (WWTP) outlets in surface
waters; therefore, high P concentrations lead to eutrophication that
can affect the environment and human health (Welch and Lindell,
1980). Efficient phosphorus removal from wastewater prevents eu-
trophication and its consequences (Gu et al., 2021). It is possible to
remove phosphorus from wastewater by incorporating phosphate into
Total Suspended Solids (TSS) and subsequently removing it from them.
A P-containing bio-solid (microorganisms, for example) or chemical
precipitate can be formed (Tchobanoglous et al., 2003). Removal and
recovery of P can be promoted by analyzing its dynamics through the
wastewater treatment process, which helps engineers and operators
comprehensively understand what is happening and identify potential
future problems (Hansen et al., 2022). The dynamic control system
measures and controls various parameters of the wastewater treatment
process, such as pH, dissolved oxygen, temperature, and flow rate.
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With real-time monitoring of these parameters, operators can optimize
treatment efficiency, reduce energy consumption, and minimize waste
production and byproduct generation (Revollar et al., 2017). The en-
hanced Biological phosphorus Removal (EBPR) process, which takes
advantage of phosphorus accumulating organisms (PAO), is a more
environmental-friendly and cost-effective way of phosphorus treatment
rather than chemical removal methods which use the addition of metal
salts for P precipitation (Acevedo et al., 2014). Combining chemical
and biological processes can achieve a desirable level of P removal
with lower expenses. Therefore, most plants nowadays use a hybrid P
removal system (Bunce et al., 2018).

Control of the phosphorus removal systems in wastewater treatment
plants is challenging in current literature because, on the one hand,
variables like dissolved oxygen (DO) are not the best indicators of the
aerobic zone. On the other hand, there are uncertainties in incoming
phosphate concentration and the influence of process conditions (pH,
temperature, etc.) on the coagulation process (Chong et al., 2013;
Seviour et al., 2003). Although there is not a wide range of studies on P
removal control strategies in the literature due to the mentioned issues,
some researchers applied control methods like fuzzy control (Xu and
Vilanova, 2015), Model Predictive Control (MPC) (Ostace et al., 2013),
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and the Supervisory and Override Control Approach (SOPCA) (Sheik
et al., 2022) in the framework of benchmark simulation models (BSM)
developed by International Water Association (IWA) (Alex et al., 2008;
Henze et al., 2006). Benchmark simulation models are standard gen-
eralized tools for the simulation of biological processes in WWTPs.
Still, they are also not a good representative of the process dynamics,
especially P removal, which is highly stochastic and unpredictable.
Novel control strategies such as Deep Reinforcement Learning (DRL)
algorithms have been recently introduced to overcome the complexity,
uncertainties, and challenges of process control for different biological
systems (Chen et al., 2021).

Reinforcement Learning (RL) is a machine learning technique that
involves training an agent to make decisions based on rewards received
from an environment. The agent learns to maximize rewards by taking
actions that lead to positive outcomes and avoiding actions that lead
to adverse outcomes. Reinforcement learning has been successfully
applied in various applications, including game playing (Silver et al.,
2017; Vinyals et al., 2019), robotics (Hua et al., 2021), and control
systems (Sutton and Barto, 2018; Moriyama et al., 2018). Deep rein-
forcement learning is a variation of reinforcement learning that uses
deep neural networks to represent the agent’s policy and value func-
tions (Sutton and Barto, 2018). DRL can learn from raw sensory data,
such as images, audio, or text, and handle high-dimensional inputs and
outputs (Mnih et al., 2015). Traditional optimal control methods, such
as model predictive control (MPC), face limitations when applied to
large-scale stochastic multiple-input multiple-output (MIMO) problems
due to their online computational requirements and assumptions about
uncertainty information (Maravelias and Sung, 2009). On the other
hand, DRL can pre-compute optimal solutions offline, reducing online
computation time, and can be trained in a process simulator to acquire
a general knowledge of the process (Nian et al., 2020). Although the
DRL agent’s performance may not surpass that of a corresponding MPC
designed based on the same simulator model, DRL’s learned optimal
policy implicitly includes information about optimal set points and
inputs, akin to the concept of economic MPC (Nian et al., 2020). As
a result, DRL shows promise in the process control industry and has
been used considerably in recent control research (Bao et al., 2021;
Lillicrap et al., 2015; Moriyama et al., 2018; Raju et al., 2015; Spiel-
berg et al., 2017). In the context of wastewater treatment, predicting
key indicators such as phosphorus levels is crucial for environmental
management. The dynamic nature of wastewater systems, influenced
by numerous unpredictable factors, poses a significant challenge. DRL’s
adaptability and learning capabilities present a novel approach to
accurately predicting these indicators, enabling more effective and
sustainable wastewater management strategies.

In Nian et al. (2020), some of the shortcomings of reinforcement
learning have been discussed for process control applications. In sum-
mary, it can be data inefficiency, scalability, stability, convergence,
constraints, and accurate simulator. The lack of a precise simulator for
most industrial process control applications has been the main issue
for using RL methods (Nian et al., 2020). This problem also extends
to chemical and biological processes, which led researchers to try
implementing different strategies for creating a simulation environment
to train and test RL algorithms in it (Spielberg et al., 2017; Wang et al.,
2018; Nian et al., 2019). The application of DRL methods in wastewater
treatment plants, especially for phosphorus removal processes, is very
limited. In Pang et al. (2019), a Q-learning algorithm was used to
optimize aerobic and anaerobic hydraulic retention time (HRT) for the
biological phosphorus removal process. They used the ASM2d model to
generate state transition matrices to train the Q-learning algorithm. The
developed model was verified using data from a lab-scale sequencing
batch reactor (SBR) with aerobic and anaerobic processes. A Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) was used in Chen
et al. (2021) for the purpose of dissolved oxygen and chemical dosage
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control in a WWTP. They used the MANTIS model, an integrated form
of three other mechanistic models (Chen et al., 2021) to simulate the
target WWTP.

Modeling the wastewater treatment process to study the system
behavior has been going on for decades, from earlier mechanistic mod-
els (Henze et al., 2000) to advanced data-driven approaches (Hansen
et al., 2022; Newhart et al., 2019). Simple wastewater treatment models
such as the Activated Sludge Model (ASM) and Anaerobic Digestion
Model (ADM) have been used for years to study the dynamics of
WWTPs (Gujer, 2006; Batstone et al., 2002). These models are no
longer feasible and accurate enough to describe different processes in
wastewater treatment plants (Burton et al., 2014). Activated Sludge
Models No. 2 are mainly used for biological phosphorus removal model-
ing (Henze et al., 2000). Anaerobic Digestion Model No. 1 (ADM1) has
also been used for studying struvite precipitation (Ikumi et al., 2011)
and biodegradability of organics in anaerobic digestion (Ikumi et al.,
2014).

With the advance of Artificial Intelligence (AI), modeling of WWTPs
based on machine learning and deep learning methods has become
very popular (Ye et al., 2020). AI methods can predict operational
parameters, evaluate energy usage, fault diagnosis, automation, and
intelligent control in WWTPs (Malviya and Jaspal, 2021; Zhao et al.,
2020). Data-driven modeling of WWTPs has emerged as an alternative
to mechanistic models, as the former does not necessitate a thorough
comprehension of the plant’s design and operation. Furthermore, data-
driven models can be developed relatively swiftly and with fewer
input data, as per the findings of Newhart et al. (2019). Artificial
Neural Networks (ANN), including the Multi-layer Perceptron (MLP)
network, have been demonstrated as a robust and precise technique for
forecasting operational parameters in WWTPs (Mannina et al., 2019;
Nelles, 2020; Wunsch et al., 2018; Pisa et al., 2019c). Data from WWTPs
can be treated as time series. The auto-regressive integrated moving
average (ARIMA) model is a time series prediction method that uses
past data to predict future target values (Berthouex and Box, 1996).
ARIMA has been used for studies like sedimentation modeling (Park
and Koo, 2015) and water quality prediction (Ömer Faruk, 2010). A
Recurrent Neural Network (RNN), an extended feed-forward Neural
Network (FFNN), can be used for time series prediction. RNN can cap-
ture and pass information through its elements with the help of memory
and takes advantage of past information for decision-making (Cheng
and Zhao, 2019; Zhu et al., 2020). RNNs have been used in controlling
activated sludge process (Foscoliano et al., 2016), forecasting the water
flow of the WWTP (Zhang et al., 2018), predicting the amount of
ammonium and total nitrogen (Pisa et al., 2019b), as a software sensor
for prediction of BOD, COD, and TSS indexes (Chang and Li, 2021), and
as a fuzzy controller for the dissolved oxygen and nitrate concentration
in WWTP (Gaitang et al., 2016).

As a type of recurrent neural network, Long Short-term Memory
(LSTM) networks can learn order dependence for sequence predic-
tion (Sak et al., 2014). The two technical problems of conventional
RNNs overcome by LSTMs are vanishing and exploding gradients re-
lated to how the network is trained (Graves et al., 2009). Considering
the good results of implementing LSTMs in areas like speech recogni-
tion (Peng et al., 2021) and natural language processing (Shuang et al.,
2020), it has been used in wastewater treatment studies recently. In the
wastewater treatment literature, LSTMs have been implemented for dif-
ferent kinds of applications such as prediction of effluent quality (Pisa
et al., 2019a), forecasting wastewater flow rate (Kang et al., 2020),
estimation of ammonium, total nitrogen, and total phosphorus removal
efficiency (Yaqub et al., 2020), predicting influent BOD, effluent BOD,
temperature, and power efficiency (Cheng et al., 2020), and as a control
strategy in WWTPs (Pisa et al., 2020). In Hansen et al. (2022), an LSTM
model was implemented to predict phosphorus dynamics in wastewater
treatment plants. They used Bayesian optimization for hyperparameter
tuning of the model, which could predict phosphorus concentrations up

to 24 h in the future. Additionally, recent advancements in time series
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forecasting methodologies have significant implications for environ-
mental engineering. Bayesian methods provide probabilistic modeling
and linear regression that excels in handling data inconsistencies like
time lags and abnormal signals (Zhang et al., 2024; Zhao et al., 2023b).
Meanwhile, the Bidirectional Long Short-term Memory (Bi-LSTM) net-
works were investigated for intricate pattern detection (Zhao et al.,
2023a). These methodologies mirror the complexities in phosphorus
removal from wastewater, underscoring the relevance of advanced
AI techniques, such as Deep Reinforcement Learning, for precise and
efficient environmental process modeling.

As a result of Vaswani et al.’s Transformer, encoder–decoder mod-
els based on attention mechanism were generated (Vaswani et al.,
2017). Transformers have been used to forecast time series in environ-
mental engineering areas such as defect detection inside the sewage
system (Dang et al., 2022) and prediction of effluent water qual-
ity in WWTPs (Huang et al., 2021). Later, Informer (Zhou et al.,
2021) was introduced in 2021 to overcome some problems of the
vanilla Transformer, such as high memory usage and limitations of
the encoder–decoder architecture for time-series forecasting. Informer
could outperform existing time-series forecasting methods like ARIMA,
LSTM, and Transformers for the benchmark datasets of energy and
weather (Zhou et al., 2021). Autoformer is a recent version of Trans-
formers introduced in Wu et al. (2021) to perform long-time series
forecasting. Currently, no study is based on the Informer and Autoformer
models for wastewater treatment applications. Still, considering that
the input sequence length for wastewater parameters is uncertain,
whether these approaches will perform well in WWTP modeling is a
question. The abovementioned deep learning models can be used to
simulate the DRL agent’s environment. The model inputs the current
state of the environment and outputs the next state and the reward
signal for the agent.

The lack of an accurate simulator for implementing deep reinforce-
ment learning algorithms in WWTPs motivated us to study state-of-the-
art deep learning models to address this problem. For this purpose,
we first extracted a dataset containing information on the P removal
process from the target WWTP (Agtrup, Denmark) and formulated it
as a time-series prediction problem. Then, we trained six models to
use them as simulation environments to implement DRL algorithms.
These models had different architectures for time series prediction,
such as linear (LTSF Linear (Zeng et al., 2022)), recurrent neural net-
works (LSTM (Hochreiter and Schmidhuber, 1997)), attention-based
(Transformer (Vaswani et al., 2017), Informer (Zhou et al., 2021)),
and auto-correlation (Autoformer (Wu et al., 2021)). We intended to
use the various models to explore different approaches to identify the
most effective time series forecasting model for implementing deep
reinforcement learning algorithms. Through this exploration, we aimed
to understand the challenges inherent in modeling such biological
processes and identify the best path forward for designing an accu-
rate simulator. The differences in the models’ structure influenced the
simulation environment results, where we found the strengths and
weaknesses of each prediction mechanism. The key contributions of this
study are outlined as follows:

• The creation of data-driven simulators for wastewater treatment
processes designed to operate effectively without requiring in-
depth system knowledge.

• A thorough evaluation of the simulation accuracy across var-
ious time series forecasting models, ranging from linear mod-
els to advanced, recurrent neural networks and attention-based
structures.

• An in-depth sensitivity analysis of these models, focusing on
how various wastewater treatment process variables impact the
accuracy of phosphorus concentration predictions.

• Addressing the challenges in developing accurate simulators for
wastewater treatment processes, particularly the issue of com-
3

pounding errors.
Fig. 1. Schematic of the phosphorus removal process in the plant with the flow lines:
The iron salt is added to the inflow to the biological tanks, where P is removed,
and a sensor in Tank 1 measures phosphate. There is a dosage of polyaluminium
chloride before the secondary settler to remove the remaining P, and the final phosphate
concentration is measured at the outlet.

The paper is structured as follows: Section 2 delves into the methodol-
ogy, detailing the plant, the data, the models, and their implementation
as simulators for training DRL algorithms on wastewater treatment
processes. Section 3 presents the results of our experiments, showcasing
the accuracy of the various models in one-step ahead prediction and
multi-step simulations. Section 4 discusses the implications of our
findings, drawing comparisons with existing methods and exploring the
challenges of developing accurate simulators. Finally, Section 5 con-
cludes the paper with a summary of our contributions and suggestions
for future research.

2. Material and methods

2.1. Case study

This study focuses on Kolding central WWTP in Agtrup Denmark,
which has a 125,000 population equivalents (PE) capacity and a cur-
rent load of approximately 65.5% (Anon, 2021). The plant removes
phosphorus with a combination of chemical and biological removal
methods. In the chemical phosphorus removal, metal salts such as
aluminum sulfate (alum), ferrous sulfate, or ferric chloride are added to
the wastewater in a rapid mix tank, followed by flocculation to form a
precipitate with soluble phosphorus (Burton et al., 2014). On the other
hand, biological phosphorus removal relies on naturally occurring mi-
croorganisms called Phosphorus Accumulating Organisms (PAO). PAOs
release stored phosphorus under anaerobic conditions and remove solu-
ble phosphorus under aerobic conditions (Zhang et al., 2022). Both pro-
cesses can be challenging to control, as inlet phosphate concentrations
can vary unpredictably due to industrial contributions. Conversion of
polyphosphate to orthophosphate before coagulant addition will affect
coagulation efficiency in chemical removal. Additionally, cultivating
a population of organisms that can survive alternating anaerobic and
aerobic cycles requires long acclimation periods from a few days to
several weeks or even months (Tuszynska et al., 2019). Moreover, high
recycle nitrate concentrations can inhibit anaerobic zone processes for
biological removal (Chong et al., 2013; Seviour et al., 2003).

2.1.1. Operation
The current operation of the plant for phosphorus removal is shown

in Fig. 1. The system consists of a wastewater treatment plant where
metal salts are added at two locations: Iron salts after the primary
settler and Polyaluminium Chloride before the secondary settler. The
biological phosphorus removal part is placed between the two settlers
and consists of 2 parallel lines, each including two reaction tanks. Only
tank 1 in biology line 1 has the phosphate sensor. The plant is currently
being monitored and controlled by the Hubgrade™ Performance Plant

system, designed by Krüger/Veolia. The sampling frequency is specified
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Fig. 2. The control block diagram of the system.

to measure the plant’s outputs and the controller’s updates, which is
currently every two minutes.

The control strategy shown in Fig. 2 involves a feedback control al-
gorithm that calculates the manipulated variable (metal dosage) based
on the measured outputs and the setpoint. The specific algorithm used
and any limitations or assumptions of the strategy are described in
detail in Hansen et al. (2022). In general, the control strategy can be
described by the following equation:

𝑢(𝑘) = 𝐾(𝑦𝑑 − 𝑦𝑚(𝑘)) (1)

Where 𝑢(𝑘) is the manipulated variable at time 𝑘, 𝐾 is the controller
gain, 𝑦𝑑 is the setpoint or reference value for the phosphate concentra-
tion in the outlet, and 𝑦𝑚(𝑘) is the measured concentration at time 𝑘.
The system responds to changes in the setpoint or disturbances, with
limitations on its performance. The iron salts are dosed at specified
locations and timing using a dosing mechanism based on the commands
from the explained controller.

2.1.2. Dataset preprocessing
Nineteen months of data (𝐷) were collected from the SCADA system

at the Agtrup plant between June 2021 and January 2023. 𝐷 consisted
of 23 two-dimensional vectors, each representing a pair of variables
at the treatment plant. Specifically, D can be represented as a matrix
of size 𝑛 × 𝑚, where 𝑛 is the number of measurements taken over the
19 months, and 𝑚 is the number of variables measured. Each row of
the matrix corresponds to a single measurement, and each column
corresponds to a particular variable. The value of each variable is
represented by the first component of the corresponding vector, while
the second component represents the quality of the measurement. The
quality variable takes binary values, with 0 and 1 indicating good and
bad quality, respectively. More details about the dataset can be found
in Hansen et al. (2022).

After preprocessing the data to detect issues such as insufficient
quality data, negative values, and missing values, the dataset with
23 variables has been processed with feature selection or engineering
methods. Insufficient quality, negative, and missing data were replaced
by the previously available values, which did not have any of those
issues. The Pearson correlation method of the pandas library (The
pandas development team, 2020) was used to investigate the most
critical variables of the plant affecting the phosphate concentration.
This correlation method is a statistical measure that quantifies the
linear relationship or degree of association between two continuous
variables (Faizi and Alvi, 2023). The selected variables were Nitrate
concentration [mg/L], Ammonia concentration [mg/L], and Ammonia
plus Nitrate concentration [mg/L], which are added to the metal dosage
flow [m3/hr] and Phosphate concentration [mg/L] to form the final
dataset. Additionally, Gradient Boosting Regression with decision trees
was used to determine the most optimum way of using time features
(hour, day of the week, and month) in the dataset to improve the
prediction accuracy.
4

2.2. Deep learning models

The following will explain the types of different deep learning
models used in the simulation environment for the phosphorus removal
process in wastewater treatment plants. All models were built with the
PyTorch library (Paszke et al., 2019).

2.2.1. Long Short-Term Memory (LSTM )
The LSTM was introduced by Hochreiter and Schmidhuber (1997)

as a successful technique for addressing the vanishing gradient problem
in recurrent neural networks. Unlike conventional RNNs, which use a
recurrent node, the LSTM structure replaces the recurrent node with
a memory cell. The memory cell contains a self-connected recurrent
edge of fixed weight 1, which allows the gradient to pass through many
time steps without disappearing or exploding. The memory cell is also
equipped with multiple multiplicative gates, such as the input gate,
forget gate and output gate. These gates determine whether to impact
the internal state of the neuron, flush the internal state to zero, or allow
the internal state to influence the cell’s output, respectively.

LSTM models have become popular for time series forecasting and
system identification due to their ability to capture long-term depen-
dencies in the data and handle variable-length input sequences (Hansen
et al., 2022; Wang, 2017). The procedure of forecasting time series
with LSTM model is shown in Fig. 3. The power of LSTM to fit non-
linear long periodic data patterns like wastewater treatment data has
resulted in its increased application in this field (Yunpeng et al., 2017).
Despite the power of LSTM in time series forecasting, it sometimes
has trouble capturing long-term dependencies, for example, in lan-
guage modeling (Khandelwal et al., 2018), and the model cannot be
parallelized.

2.2.2. Transformer
An important part of the Transformer model is the attention mech-

anism, originally intended to be a sequence-to-sequence RNN improve-
ment; it was used to enhance encoder–decoder RNNs for machine
translation (Bahdanau et al., 2014). Instead of compressing the input,
attention suggests that the decoder revisit the input sequence at ev-
ery step rather than compressing it. The decoder might be able to
focus on particular parts of the input sequence at particular decoding
steps rather than always seeing the exact representation of the input.
As each step of the decoding process was performed, the attention
mechanism enabled the decoder to dynamically attend to a different
part of the input (Bahdanau et al., 2014). The Transformer architec-
ture for machine translation was proposed by Vaswani et al. (2017),
which dispenses with recurrent connections and incorporates cleverly
arranged attention mechanisms instead of recurrent connections. As a
result of its outstanding performance, the Transformer began to appear
in most of the advanced natural language processing systems by 2018.
The attention mechanism of the Transformer can be described by the
following equation (Vaswani et al., 2017):

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
√

𝑑𝑘
)𝑉 (2)

Here, 𝑄, 𝐾, and 𝑉 represent the queries, keys, and values matrices.
Furthermore, 𝑑𝑘 represents the dimension of queries and keys. The
softmax function converts the vector of numbers to the vector of
probabilities.

As shown in Fig. 4, the most critical layer of the Transformer is
self-attention, which means compression of attention toward itself.
Compared to previous recurrent and convolutional architectures, self-
attention has the following advantages: parallel operations (compared
to RNN) and no need for deep networks to find long sentences (Shaw
et al., 2018). As self-attention can lead to loss of ordering information
and the Transformer, the encoder has no recurrence like RNNs; the
model takes advantage of positional encoding to preserve information
about the order of tokens (Shaw et al., 2018; Vaswani et al., 2017).
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Fig. 3. The structure of the LSTM (Hochreiter and Schmidhuber, 1997) model for time series forecasting tasks, where (𝐱0 ,… , 𝐱𝑡), and (𝐡0 ,… ,𝐡𝑡) represent the input and the hidden
tate (output) of each LSTM cell.
Fig. 4. The structures of encoder–decoder attention-based models (Transformer (Vaswani et al., 2017), Informer (Zhou et al., 2021)), and auto-correlation (Autoformer (Wu et al.,
021)) for time series forecasting tasks.
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ompared to the LSTM, the Transformer is potentially more success-
ul in capturing recurrent patterns with long-term dependencies. The
odel can access any part of history, no matter the distance (Lai et al.,
018). However, using the Transformer for extremely long sequences
equires an immense computation power because the growth of space
omplexity in self-attention is quadratic (Huang et al., 2018), which
an lead to problems in forecasting data with substantial long-term
ependencies (Lai et al., 2018). Also, the Transformer uses autoregres-
ion to decode the output, resulting in error accumulation in long-term
redictions (Zeng et al., 2022).

.2.3. Informer
Applying the Transformer model to long-term time series forecasting

LTSF) has critical issues such as quadratic time complexity, high
emory usage, and the inherent limitation of the encoder–decoder

rchitecture (Zhou et al., 2021). The Informer model was introduced
n Zhou et al. (2021) to overcome the limitations of the Transformer -
ased model for LTSF applications. To do so, Informer introduced some
ew features:

• Implementing the ProbSparse self-attention mechanism is pro-
posed to reduce canonical self-attention. It achieves the complex-
ity and memory usage of 𝑂(𝐿 log𝐿), where 𝐿 is the number of
layers in the network.

• Attention scores are dominated by self-attention distilling opera-
tions.

• Improvements in prediction accuracy in LTSF problems, which
contain Transformer -like models for capturing individual time-
series dependency.

• Reduced space complexity to 𝑂((2 − 𝜖)𝐿 log𝐿), where the pa-
rameter 𝜖 is a small positive constant that controls the method’s
accuracy.

• A generative style decoder was introduced to obtain long se-
quences with only one forward step.
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i

The pipeline of the time series forecasting task with the Informer
odel can be seen in Fig. 4. The Informer employs a generative decoder
ith direct multi-step (DMS) forecasting, which can produce more
ccurate predictions as it does not use the last prediction results as
nput for the next step (Zhou et al., 2021; Zeng et al., 2022).

.2.4. Autoformer
Using residuals and encoder decoders, Autoformer reconstructs the

ransformer into a decomposition forecasting architecture using resid-
als and encoder decoders (Wu et al., 2021). The pipeline of the
utoformer model in Fig. 4 illustrates the differences between its ar-
hitecture and attention-based models. The Autoformer extracts the
rend-cyclical component of the time series by decomposing it into
easonal-trend blocks behind the neural blocks. Additionally, the Auto-
ormer replaces attention with the Auto-Correlation mechanism, which
alculates the relationship between the current value of the variable
nd its past values. Auto-correlation explores period-based dependen-
ies by counting the series autocorrelations and aggregating similar
ubseries by time delay.

.2.5. LTSF linear
Autoregressive or iterated multi-step (IMS) prediction of the long-

erm time series data has been proven to have some problems, like
he significant accumulation of errors (Zeng et al., 2022). In Zeng
t al. (2022), authors challenge the effectiveness of Transformer -based
odels for long-term time series prediction by direct multi-step (DMS)

orecasting methods, which have better results when the prediction
orizon is large. They argue that applying self-attention to time se-
ies data can lead to loss of ordering information, and positional
ncoding of the data cannot help preserve the temporal information.
hey claim that the time series data must have significant trends and
easonality to make a long-term prediction. Calling them embarrass-
ngly simple models, they introduce a set of LTSF Linear baselines
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Fig. 5. The pipeline of LTSF Linear (Zeng et al., 2022) models (DLinear and NLinear) to forecast time series.
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to compare with Transformer -based methods. LTSF Linear outperforms
Transformer -based models up to 20%–50% in long-term time series
forecasting, and they prove that in contrast to the past claims, the
performance of Transformers will not be improved by increasing the
look-back window size (Zeng et al., 2022).

LTSF Linear is the simplest direct multi-step model with a linear
temporal layer. The basic linear model uses a weighted sum operation
of historical time series to predict the future. Considering the weighted
sum operation, we will have the following:

𝐗̂𝑖 = 𝐖 × 𝐗𝐢 (3)

In the above formula, 𝐗̂𝑖 is the prediction, and 𝐗𝐢 is the input for
each variable (i). The linear layer is shown by 𝐖 where 𝐖 ∈ R𝑇×𝐿.

DLinear is one type of LTSF Linear model with a specific data
preprocessing method. They used the decomposition layer introduced
in previous Autoformer (Wu et al., 2021) and FEDformer (Zhou et al.,
2022), then combined it with linear layers. It extracts two different
components from the raw data, one is a trend component, and the
other one is a reminder or a seasonal component. It gets the final
prediction by summing up the results from two linear layers applied to
each component (Zeng et al., 2022). NLinear is another linear model
specifically used when a distribution shift is found in the dataset.
Firstly, NLinear subtracts the input by the last value of the sequence as
a simple normalization and then sends the input through a linear layer.
At the end of the procedure, the subtracted part is added to the output
when making the final prediction (Zeng et al., 2022). Fig. 5 shows the
pipelines and differences of these two linear models while performing
forecasting tasks.

2.2.6. Training of the models
Each one of the models was trained individually with the PyTorch

library (Paszke et al., 2019) on the dataset from the actual plant as
described in Section 2.1.2 as input. The dataset was divided between
training and testing parts with a ratio of 85%/15%, respectively, and
15% of the training dataset was used for validation. The input to the
model at each training step was a sequence of time steps with length
𝑙, including all the features of the pre-processed WWTP dataset. The
output for each step was the values of all the features for one time step
after the last step in the input.

At each time step, 𝐱 = (𝑥1,… , 𝑥𝑛) denotes the values of the system’s
features. The sequence length (𝑙) was set at 240, representing 240 min
of the historical data as input. To ensure all models are trained in
the best way possible, Optuna (Akiba et al., 2019) library is used for
hyper-parameter optimization. Optuna’s Tree-structured Parzen Esti-
mator (TPE) uses a sampler derived from Bayesian (Mockus, 2012)
optimization. Using TPE, Optuna finds points closer to previous good
results rather than at random (Akiba et al., 2019). We first defined a
range for each hyper-parameter utilized in the training of models and
then used Optuna to find the best combination of them, which had the
lowest mean squared error for the prediction of the test dataset. After
this step, the models were trained with the optimized hyper-parameters
by using Adam as the optimization method and mean squared errors
(mse) as the loss function. The script from Zeng et al. (2022), which
6

d

is available on GitHub was used with some changes to train DLinear
and NLinear models. The best checkpoint for each model, which had
the lowest mse for the validation dataset, was used to perform a one-
step prediction on the test dataset and saved for further use in the
simulation environment. Fig. 6 shows a schematic representation of the
steps needed to train, test, and save each one of the models described
in Section 2.2.

2.2.7. Sensitivity analysis
Time series forecasting often involves multivariate input data where

the relationships between features and predictions can be very im-
portant. Sensitivity analysis seeks to unravel these relationships by
quantifying the impact of variations in input features on the model’s
output (Saltelli et al., 2010; Al et al., 2019). It is an incredible tool
for model interpretability, feature selection, and understanding the
robustness of predictions in real-world scenarios. The Sobol method
is a variance-based sensitivity analysis technique that decomposes the
total variance in model output into contributions from individual input
features and their interactions (Saltelli et al., 2010). The Sobol indices
provide clear insights into the relative importance of features. The
Sobol method employs a series of equations to calculate sensitivity
indices, specifically the first-order (main effects) and total indices.
Let us define our model output as 𝑌 and a set of input features as
[𝑋1, 𝑋2,… , 𝑋𝑛]. The first-order Sobol indices (𝑆𝑖) measure the contri-
bution of each individual input feature to the output variance (Saltelli
et al., 2010):

𝑆𝑖 =
Var(𝐸(𝑌 |𝑋𝑖))

Var(𝑌 ) (4)

Where: 𝑆𝑖, Var(𝐸(𝑌 |𝑋𝑖)), Var(𝑌 ) represent the first-order Sobol index
or feature 𝑋𝑖, the conditional variance of 𝑌 given 𝑋𝑖 and the total
ariance of 𝑌 , respectively. The total Sobol indices (𝑆𝑇𝑖 ) account for
oth individual and interaction effects (Saltelli et al., 2010):

𝑇𝑖 = 1 −
Var(𝐸(𝑌 |𝑋∼𝑖))

Var(𝑌 ) (5)

In the above equation, 𝑆𝑇𝑖 and Var(𝐸(𝑌 |𝑋∼𝑖)) are the total Sobol
index for feature 𝑋𝑖 and the conditional variance of 𝑌 due to all
ariables except 𝑋𝑖, respectively. We used the SALib library (Iwanaga
t al., 2022) in Python to perform Sobol sensitivity analysis for all
odels, where the number of model evaluations (𝑁) was set to be
024, and the sensitivity of the P amount in models’ output to each
eature in the preprocessed dataset was calculated.

.3. Formulation of the simulator

Phosphorus removal in WWTPs can be formulated as a nonlinear
ynamical system, as P concentration in wastewater is a dynamic
ariable that changes over time due to inflow variations, biochemical
eactions, and chemical additions (Kazadi Mbamba et al., 2019). Let us
onsider a nonlinear dynamical system with a vector of manipulated
ariables (𝐮), a vector of measured outputs (𝐲), a vector of unmeasured
isturbances (𝐰), and a vector of state variables (𝐱). The following set

https://github.com/cure-lab/LTSF-Linear
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Fig. 6. The procedure of training, testing, and saving a model for the prediction of future time steps of the plant’s data.
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of equations can represent this system (Brunton and Kutz, 2019; Åström
and Wittenmark, 2013; Wang, 2017):

State equation:

𝐱(𝑘 + 1) = 𝐟 (𝑘, 𝑥(𝑘), 𝑢(𝑘), 𝑤(𝑘)) (6)

here 𝐱(𝑘), 𝐮(𝑘), and 𝐰(𝑘) represent the state variables, the manip-
lated variables, and the unmeasured input disturbances at time 𝑘
espectively.
Output equation:

(𝑘) = 𝐠(𝑘, 𝑥(𝑘), 𝑢(𝑘), 𝑣(𝑘)) (7)

here 𝐲(𝑘), and 𝐯(𝑘) represent the measured output and the measured
isturbances at time 𝑘. In the above equations, 𝐟 represents the system’s
ynamics, while 𝐠 represents the output equation. The function f de-
cribes how the state variable changes over time, given the values of the
anipulated variable, measured output, and unmeasured disturbance.
he function 𝐠, on the other hand, describes how the state variable

nfluences the measured output. The representation of the unmeasured
isturbances in the system dynamics model needs disturbance models
or both input and output. It requires accurate disturbance data, which
s not possible for all systems. Here, we assume that the unmeasured
isturbances (𝐰(𝑘)) are included in the state variables data (𝐱(𝑘)) and
esult in an estimation of the true states for every step.

Now, let us consider a dynamical system with input history length
and manipulated variables 𝐮(𝑘) and output at time 𝑘 + 1 given

y Cocianu et al. (2022), Zarzycki and Ławryńczuk (2021):

(𝑘 + 1) = 𝐟 (𝑥(𝑘), 𝑥(𝑘 − 1),… , 𝑥(𝑘 − 𝑙 + 1),

𝑢(𝑘), 𝑢(𝑘 − 1),… , 𝑢(𝑘 − 𝑙 + 1))
(8)

In the above equation, 𝑓 is a nonlinear function that describes how
he system evolves over time based on the input history 𝐱(𝑘), 𝐱(𝑘 −
),… , 𝐱(𝑘− 𝑙+1), and the manipulated variables 𝐮(𝑘),𝐮(𝑘−1),… ,𝐮(𝑘−
𝑙 + 1). In the current study, we use six deep learning models described
in Section 2.2 as the 𝑓 function stated in Eq. (8).

Here, we will explain the LSTM as an example of how a deep
learning model can describe a specific discrete-time dynamical system.
The basic LSTM model consists of three layers: the input layer, the
LSTM layer, and the fully connected layer (Hochreiter and Schmid-
huber, 1997). In order to achieve the value of 𝐱(𝑘 + 1) in Eq. (8),
the state variables (𝐱(𝑘 − 𝑙),… , 𝐱(𝑘)), and the manipulated variables
(𝐮(𝑘 − 𝑙),… ,𝐮(𝑘)) first will be passed through the LSTM layer. In this
layer, the cell input activation vector (𝐜̃), the cell state vector (𝐜),
and the hidden state vector (𝐡) will be computed at each time point
𝑡 ∈ [𝑘− 𝑙, 𝑘] by the following equations (Hochreiter and Schmidhuber,
1997):

𝐜̃(𝑡) = 𝜎 (𝐖 (𝐱(𝑡),𝐮(𝑡)) + 𝐔 𝐡(𝑡 − 1) + 𝐛 ) (9)
7

𝑐 𝑐 𝑐 𝑐
𝐜(𝑡) = 𝐟 (𝑡) ⋅ 𝐜(𝑡 − 1) + 𝐢(𝑡) ⋅ 𝐜̃(𝑡) (10)

(𝑡) = 𝐨(𝑡) ⋅ 𝜎ℎ(𝐜(𝑡)) (11)

here 𝐖𝑐 , 𝐔𝑐 , and 𝐛𝑐 are the weight matrix, recursive weights matrix,
nd the bias components of the LSTM cell, respectively, additionally,
(𝑡), 𝐢(𝑡), and 𝐨(𝑡) represent the forget, input, and output gates activation
ectors. Also, 𝜎𝑐 and 𝜎ℎ are the sigmoid and the hyperbolic tangent
unctions. After this step, the output of the LSTM layer, which is its
idden state (𝐡), will be passed through a fully connected layer. Accord-
ng to Hochreiter and Schmidhuber (1997), Zarzycki and Ławryńczuk
2021), Cocianu et al. (2022), the output from the LSTM model for a
ynamic system can be computed as follows:

(𝑘 + 1) = 𝐖𝑥𝐡(𝑘) + 𝐛𝑥 (12)

𝐖𝑥 and 𝐛𝑥 are the weight vector and the bias components of the
ully connected layer at the output of the LSTM model. 𝐡(𝑘) is the
idden state or the output vector of the LSTM layer at time 𝑘. The
inal output of the LSTM network is the system’s state variables 𝐱 at
ime 𝑘 + 1.

The explained method can be used to identify and simulate dynamic
ystems. This identification approach can also be utilized as a train
nd test environment for process control with deep reinforcement
earning research in different industries. To do so, the first step will be
ormulating the industrial process as a discrete-time dynamical system.
hen, the system function or the model should be specified and fit the
istorical data of the process. Once the trained model is ready, we can
reate the specific environment with the saved model and used dataset.

Generally, a reinforcement learning environment returns the agent
our variables at each step. These four variables are the current or
redicted state of the system, reward, a Boolean value specifying
hether the episode has been finished or not called done, and info

hat consists of different information such as the current step of the
imulation, total reward, and history of observations. Total reward, or
umulative reward, refers to the sum of rewards obtained by an agent
ver a sequence of interactions with an environment. It quantifies the
erformance of the agent in achieving its goals. In continuous tasks, the
umulative reward is often discounted by a gamma (𝛾) factor at each
ime step, which is calculated over 𝑇 steps as (Lillicrap et al., 2015):

𝑡 =
𝑇
∑

𝑖=𝑡
𝛾 (𝑖−𝑡)𝐫(𝐬𝐢, 𝑎𝑖) (13)

In the above equation, 𝑅𝑡 is the cumulative reward, 𝐫 is the reward
unction where 𝐬 and 𝑎 are the system’s state and the action taken in
𝐢 𝑖
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Table 1
Parameters used in the explanation of simulation environment and testing algorithm.

Parameter Definition

episode length the number of episodes (time steps) for testing the simulation
p the date-time index of the initial input to the simulation environment
l sequence length of the historical input data used in the model training
n number of the state variables (features) in the dataset
Fig. 7. The process of a testing simulation environment for one model in a specific
time point.

the step 𝑖. The agent will work based on the returned variables from the
environment and generate the action (𝑎), which, in our case, is the flow
of metal dosage in the process. The action from the agent will replace
the current metal addition in the state vector. The predicted state will
be added to the state’s history, and the process will be repeated. The
whole procedure is shown in Fig. 7, which will be further explained in
the following.

We created a test script to study the accuracy of the simulation
environment with the six different models. The script takes one model
as the predictor and starts prediction with a series of data from the
actual dataset. We give each test step the episode length for which
the environment must run. The algorithm for testing the developed
environment is shown in algorithm 1. First, the trained model and
dataset from the real plant are loaded, as explained in Section 2.1.2.
Then, some parameters are defined as explained in Table 1 to test the
environment.

In deep reinforcement learning, the state of the system at each time
step 𝑡 is defined as 𝐬𝐭 , and when using a model as 𝐬̂𝑡 because it is
a prediction. We can rewrite Eq. (6) as below for a DRL simulation
environment:

𝐬̂𝑡+1 = 𝑓 (𝐬𝐭 , 𝑎𝑡) (14)

Where 𝐬̂𝑡+1 is the predicted state of the system at time 𝑡+1, and 𝑎𝑡 is the
action taken from the agent at time 𝑡. The input to the environment (𝐬𝟎)
is initialized from the time point p with the size of 𝑙×𝑛. This input is sent
to the environment as the system’s current state, where the next state
will be calculated according to Eq. (14). Then, the predicted state of
the system (𝐬̂𝑡+1) is delivered to the test agent to produce an action. The
agent produces an action (𝑎𝑡+1), the real amount of the action variable
collected from the plant. Finally, the action (𝑎𝑡+1) is added to the input
data (𝐬𝐭+𝟏) for the next state and replaces the predicted amount of
action variable. This process is repeated for the number of episodes
specified, and the values of action, predicted objective variable and real
objective variable from the dataset are saved for each time step.

By doing so, we are able to compare the real and simulated phos-
phorus amount at each step and observe the accuracy of the simulation
environment in case of having a real-time controller. The real phospho-
rus amount comes from the original dataset, and the simulated one is
extracted from the state of the environment.

2.4. Software and hardware

All of the tests for the simulation environment are implemented
in programming language Python by using the Gym (Brockman et al.,
8

2016) and PyTorch (Paszke et al., 2019) libraries. The AI Cloud service
Algorithm 1 DRL simulation environment testing
Inputs:

dataset, model, p, M (episode length), and l
Outputs:

The Simulated States over M episodes
Initialize:

𝑡 ← 0
𝑠0 from the point p of the dataset with size l × n
𝑎0 is the control variable from the last time step in 𝑠0

for episode = 1, M do
𝑠̂𝑡+1 ← model(𝑠𝑡, 𝑎𝑡)
append 𝑠̂𝑡+1 to 𝑠𝑡 and update
append 𝑠̂𝑡+1 to Simulated States
update 𝑎𝑡+1 from the dataset
𝑡 ← 𝑡 + 1

end for

from Aalborg University is used for GPU-based computations. The used
compute nodes are each equipped with 2 × 24-core Intel Xeon CPUs,
1.5 TB of system RAM, and 16 NVIDIA Tesla V100 GPUs with 32 GB of
RAM each, all connected via NVIDIA NVLink.

3. Results

This section will present the results from the models’ training and
testing of the simulation environment for all of them. The results are
discussed in Section 4.

3.1. Models

After training the models in Section 2.2, the one-step prediction
results for the test dataset were compared. Each algorithm was tested
several times by combining its main parameters, and the best model
was determined by obtaining the lowest errors according to the calcu-
lated metrics. The considered metrics at each time step 𝑡, where 𝐱𝑡,𝑛 and
𝐱̂𝑡,𝑛 are the actual and predicted values of the variable 𝑛 in the dataset
with the total number of variables 𝑁 , and total number of samples 𝑇 ,
were as following:

• Mean Squared Error (MSE): Represents the average squared
difference between actual and predicted values. A lower MSE
suggests closer predictions to the actual values.

MSE = 1
𝑇 ×𝑁

𝑇
∑

𝑡=1

𝑁
∑

𝑛=1
(𝐱̂𝑡,𝑛 − 𝐱𝑡,𝑛)2 (15)

• Root Mean Squared Error (RMSE): The square root of MSE,
providing error in the original data units. A lower RMSE indicates
that the model’s average predictions are closer to the actual
values.

RMSE =

√

√

√

√
1

𝑇 ×𝑁

𝑇
∑

𝑡=1

𝑁
∑

𝑛=1
(𝐱̂𝑡,𝑛 − 𝐱𝑡,𝑛)2 (16)

• Mean Absolute Error (MAE): Measures the average absolute
difference between actual and predicted values. Unlike MSE, it
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Table 2
The metrics of the trained models for one-step prediction of the test dataset in the current work and previous
studies, where the most optimum results are highlighted via the bold font.

Models Variables Metrics Ref.

mae mse rmse r2

LSTM 5 2.1.2 0.0181 0.0012 0.0346 0.9471
Transformer 5 2.1.2 0.0178 0.0013 0.0364 0.9644
Informer 5 2.1.2 0.0184 0.0012 0.0346 0.9598
Autoformer 5 2.1.2 0.0241 0.0015 0.0389 0.9096
DLinear 5 2.1.2 0.0081 0.0007 0.0255 0.9835
NLinear 5 2.1.2 0.0125 0.0009 0.0308 0.9800 Cu

rr
en

t
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ud
y

LSTM 1 (NH4) 0.2730 0.3790 0.6160 – Salles et al. (2022)
Transformer 1 (NH4) 0.0300 0.0030 0.0510 – Salles et al. (2022)
LSTM 1 (P) – 0.0770 – 0.4960 Xu et al. (2023)
LSTM 1 (TP) – 0.0180 – – Yaqub et al. (2020)
LSTM 1 (TN) – 0.0150 – – Yaqub et al. (2020)
LSTM 1 (TP) 0.01176 0.00039 – 0.87456 Ly et al. (2022)
Table 3
Optimized hyper-parameters and the computation time of one iteration over the training data for all models.

Models Hyper-parameters

Learning rate Dropout Batch-size Number of layers Dimension of layers Cost time (s)

LSTM 1e−6 0.1 32 2 249 1053
Transformer 1e−7 0.1 64 2 (Enc.) - 1 (Dec.) 512 1123
Informer 1e−7 0.1 64 2 (Enc.) - 2 (Dec.) 512 2225
Autoformer 1e−7 0.1 64 2 (Enc.) - 1 (Dec.) 512 2171
DLinear 1e−6 0.1 16 – – 335
NLinear 1e−6 0.1 16 – – 242
𝑦

does not penalize large errors as harshly. A lower MAE indicates
better model accuracy.

MAE = 1
𝑇 ×𝑁

𝑇
∑

𝑡=1

𝑁
∑

𝑛=1
|𝐱̂𝑡,𝑛 − 𝐱𝑡,𝑛| (17)

• Coefficient of determination (r2 score): Indicates the proportion
of variance in the dependent variable that is predictable from
the independent variable(s). A score closer to 1 means better
prediction accuracy, while a score closer to 0 suggests poor
model performance. Considering 𝐱̄𝑛 the mean value of the actual
sequence over all samples, the r2 score for the variable 𝑛 can be
computed as follows:

r2 = 1 −
∑𝑇

𝑡=1(𝐱̂𝑡,𝑛 − 𝐱𝑡,𝑛)2
∑𝑇

𝑡=1(𝐱̄𝑛 − 𝐱𝑡,𝑛)2
(18)

These metrics offer insights into the model’s prediction accuracy
in multivariate time series forecasting, with lower error values (MSE,
RMSE, MAE) and higher r2 scores, indicating better model performance.
Table 2 shows the metrics for one-step prediction of the test dataset
with the best-trained models, which had the lowest errors, alongside
the results from similar previous studies. The majority of the studies
used LSTM model to predict key variables in WWTPs like 𝑁𝐻4 (Salles
et al., 2022), total nitrogen (TN) and total phosphorus (Yaqub et al.,
2020), and effluent total phosphorus (TP) (Xu et al., 2023; Ly et al.,
2022). One of the studies used Transformer model to predict the critical
variables in WWTPs (Salles et al., 2022), while no similar applications
of the other models were found in the literature.

Table 3 shows optimized hyper-parameters for all models using
Bayesian optimization, which were chosen according to the most op-
timum metrics reported in Table 2. Additionally, Fig. 8 shows the test
dataset’s one-step prediction results for all models. The MSE reported
in Fig. 8 is the mean squared error of the model’s prediction for the
test dataset. Moreover, the results of the Sobol sensitivity analysis for
all models as described in 2.2.7 can be seen in Fig. 9, which shows the
sensitivity of the phosphate amount in the model’s prediction to each
one of the input features. Additionally, the computation time of training
for all models using the same hardware mentioned in Section 2.4 is
shown in Table 3.
9

𝑑

3.2. Simulation environment

The developed simulation environment was tested for all the models
explained in Section 2.2. In order to get a comprehensive overview of
the simulator results with the models, four sequences from different
seasons were chosen. The four sequences were selected to explore the
behavior of the models during different periods of the year when the
data varied in terms of trends, disturbances, and sensor failures. The
results of testing the simulation environment for different sequences
are shown in Fig. 10. It is worth noting that the selection of these
sequences was based on the characteristics of the data and did not
relate to any seasonal studies. Mean squared error and Dynamic Time
Warping (DTW) are used as metrics to analyze the behavior of models
as simulators. The mean squared error over all of the state dimensions
at each step of the simulation is computed as follows:

MSE𝑠𝑖𝑛𝑔𝑙𝑒_𝑠𝑡𝑒𝑝 =
1
𝑑𝑠

𝑑𝑠
∑

𝑑=1
(𝐬̂𝑡,𝑑 − 𝐬𝑡,𝑑 )2 (19)

In the above equation, 𝐬̂𝑡,𝑑 and 𝐬𝑡,𝑑 are the predicted and actual
state of the system at time 𝑡, while 𝑑𝑠 indicates the last index of the
state dimensions, which for our problem is the number of features 𝑁 .
According to the Eqs. (15) and (19), the average mean squared error
over ℎ consecutive steps for a simulation environment can be calculated
by following:

MSE𝑚𝑢𝑙𝑡𝑖_𝑠𝑡𝑒𝑝 =
1

ℎ × 𝑑𝑠

ℎ
∑

𝑡=1

𝑑𝑠
∑

𝑑=1
(𝐬̂𝑡,𝑑 − 𝐬𝑡,𝑑 )2 (20)

DTW is a robust algorithmic approach mainly used for identifying
similarities between two temporal sequences, say 𝑋 = [𝑥1, 𝑥2,… , 𝑥𝑁 ]
and 𝑌 = [𝑦1, 𝑦2,… , 𝑦𝑀 ], which may differ in speed or alignment.
Contrary to standard methods, which rely on direct point-to-point
comparisons, DTW optimally aligns sequences by iteratively ‘‘warping’’
the time axis (Müller, 2007). To elucidate, given two sequences of
lengths 𝑁 and 𝑀 respectively, DTW computes a 𝑁 × 𝑀 cost matrix
𝐷, where each element 𝐷(𝑖, 𝑗) represents the distance between 𝑥𝑖 and
𝑗 . A common distance measure used is the Euclidean distance:

2
(𝑥𝑖, 𝑦𝑗 ) = (𝑥𝑖 − 𝑦𝑗 ) (21)
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Fig. 8. Prediction results of all models for a part (5 days) of the test dataset.
Fig. 9. Sobol sensitivity indices (logarithmic) of the P amount in the prediction to each one of the input features for all models, where 𝑋1, 𝑋2, 𝑋3, 𝑋4, and 𝑋5, represent the
metal dosage, 𝑁𝐻4, 𝑁𝑂3, 𝑁𝐻4 +𝑁𝑂3, and 𝑃𝑂4, respectively.
The objective is to find a warping path 𝑊 that minimizes the
cumulative distance:

𝐷(𝑖, 𝑗) = 𝑑(𝑥𝑖, 𝑦𝑗 ) + min{𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖 − 1, 𝑗 − 1), 𝐷(𝑖, 𝑗 − 1)} (22)

with boundary conditions 𝐷(1, 𝑗) =
∑𝑗

𝑘=1 𝑑(𝑥1, 𝑦𝑘) and 𝐷(𝑖, 1)
=
∑𝑖

𝑘=1 𝑑(𝑥𝑘, 𝑦1).
The optimal path is the sequence of matrix indices that minimizes

the total distance from (1, 1) to (𝑁,𝑀). This warping path represents
how one sequence can be optimally ‘‘stretched’’ or ‘‘compressed’’ to
align with the other. DTW’s flexibility in matching varying temporal
structures has made it indispensable in domains like speech recog-
nition, bioinformatics, and gesture recognition, where the intrinsic
dynamics and patterns within sequences are of greater importance than
their exact temporal alignment.
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The metrics of the testing simulation environment for the four
sequences mentioned in Section 3.2 are shown in Table 4, where the
number of simulation steps was considered to be 180 min. In Table 4,
the lowest values of MSE and DTW for each sequence are highlighted
in bold and underlined for clarity.

4. Discussion

Based on the results of the one-step prediction of the test dataset,
Table 2 and Fig. 8, the best models are able to predict the next state of
the system more than 97% accurately. The metrics shown in Table 2
suggest that the DLinear model outperforms the LSTM and formers
while being close to NLinear. The Autoformer model exhibits the lowest
accuracy among the models investigated in this work. This can relate
to the highly stochastic nature of the wastewater treatment processes,
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Table 4
The values of mean squared error and dynamic time warping for all models in different sequences.

Models Autumn Winter Spring Summer Average

MSE DTW MSE DTW MSE DTW MSE DTW MSE DTW

LSTM 63.812 29.219 124.323 11.302 2.866 2.874 23.831 4.207 53.708 11.901
Transformer 7.582 30.161 5.304 7.907 17.72 2.613 13.228 3.901 10.958 11.145
Informer 379.524 33.469 86.131 11.245 20.917 3.559 9.443 4.457 124.004 13.182
Autoformer 283.529 25.964 477.33 3.729 708.111 1.575 739.358 4.267 552.082 8.884
DLinear 11.092 26.899 16.237 4.137 5.658 3.029 11.358 3.724 11.086 9.447
NLinear 16.772 27.24 0.161 4.419 3.685 2.181 3.067 2.975 5.921 9.204
Fig. 10. Simulation environment results of all models for the four data points in different sequences.
making the extraction of the seasonal-trend components challenging.
The previous studies were mainly focused on developing the LSTM or
Transformer models to predict a single variable from the plant (Salles
et al., 2022; Xu et al., 2023; Yaqub et al., 2020; Ly et al., 2022). In con-
trast, the models in this study were used to predict multiple variables as
the system’s future state, resulting in the models’ increased dimension
and output. However, the LSTM and Transformer models developed in
the current study also outperform the similar architectures developed
to predict wastewater treatment plant variables in past studies, as can
be seen in Table 2.

The sensitivity analysis of the predictive accuracy of phosphorus
amounts in the models’ prediction, as shown in Fig. 9, states two no-
table observations: 1. The accuracy of the P amount in the predictions
mainly depends on the historical trajectory of its values, and 2. Linear
models exhibit limitations in capturing causal relationships among the
input features at each time step.

Developing accurate simulation environments for phosphorus re-
moval systems is a big challenge in DRL research due to the complexity
and non-linearity of such systems in wastewater treatment plants. The
results from this study show that even the state-of-the-art models in
the field of time series forecasting might face some problems regarding
biological process simulation. Fig. 10 shows the difficulties of deep
learning models in predicting the phosphorus removal system’s behav-
ior. As one may notice, no specific model significantly outperforms
others, and each one has more accurate or poorer predictions for
particular periods.

The metrics in Table 4 show that the NLinear and Autoformer models
perform the best concerning MSE and DTW, respectively. The average
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MSE values for all models vary significantly, indicating that linear
models provided predictions closer to the actual values at each step. In
contrast, earlier models experienced fluctuations in their predictions,
leading to increased MSE values. However, the average DTW values
in Table 4 for various models are closely aligned, suggesting they
exhibit similar capabilities in capturing the system’s dynamics. Fur-
thermore, the variation in metrics across each sequence highlights the
models’ responsiveness to input data, reflecting the distinct dynamics
associated with date, time, and disturbances in wastewater treatment
plants. Disturbances in the wastewater treatment plant might arise
from numerous factors like rainfall, equipment malfunctions, or sudden
changes in the inlet flow. Although these disturbances can be examined
and incorporated into the system’s model, they were not a primary
focus of this research.

The possible main reason for inaccuracy and uncertainty in the
models’ predicted states is an issue called compounding error in rein-
forcement learning (Xiao et al., 2019). The compounding error refers
to the increase of unacceptable one-step prediction errors over longer
horizons (Xiao et al., 2019; Asadi et al., 2019; Lambert et al., 2022).
According to Lambert et al. (2022), the state of a dynamical system
after ℎ episodes can be predicted by the following equation:

𝐬̂𝑡+ℎ = 𝑓 (...𝑓 (𝑓 (𝐬𝑡, 𝑎𝑡), 𝑎𝑡+1)..., 𝑎𝑡+ℎ) (23)

The prediction error for each episode can be defined as 𝑒𝑡 = 𝐬̂𝑡 − 𝐬𝑡,
increasing multiplicatively because each step’s input consists of previ-
ously predicted states. This issue can be formulated like the following
over a prediction horizon (episode length) of ℎ (Lambert et al., 2022):

̂
𝐬𝑡+ℎ = 𝑓 (...𝑓 (𝑓 (𝐬𝑡, 𝑎𝑡) + 𝑒𝑡, 𝑎𝑡+1) + 𝑒𝑡+1..., 𝑎𝑡+ℎ) + 𝑒𝑡+ℎ (24)
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Fig. 11. Step-wise mean squared error of all models for the four data points in different sequences.
Then, the mean squared error of the prediction for each time step
can be computed by Eq. (19). Fig. 11 shows the effect of compounding
error in each simulation step for all models in different seasons. The
figure illustrates fluctuations in the mean squared error across different
models, with a notable increase in its value observed at later stages
compared to earlier stages. The normalized MSE values presented in
the plots range from 0, representing the most accurate predictions, to 1,
indicating completely wrong predictions. These results suggest that the
models may produce unrealistic predictions during extended episodes,
and caution should be exercised in interpreting long-term simulations.

According to the previous descriptions, we can conclude that the
compounding error issue can lead the system model toward unrealistic
and uncertain predictions. This issue appears in different forms for each
model, which we will discuss in the following sections.

4.1. LSTM

The LSTM model can capture the system’s dynamics in the early
steps, but as simulation goes on, it moves towards linear and constant
values. Considering the issue of compounding error, the LSTM model
could avoid extremely fluctuating predictions due to its ability to
extract the information from the previous data as possible and capture
long-term dependencies. In the summer sequence of Fig. 10, the LSTM
has very close predictions to linear models, which results in the inabil-
ity to capture the system’s dynamics. Furthermore, Table 4 indicates
that while the LSTM model may not exhibit the lowest average MSE, it
captures the dynamics comparably to other models when analyzed via
DTW.

4.2. Formers

The former models (Transformer, Informer, and Autoformer) are dif-
ferent in behavior compared to the LSTM. They act better in following
the system dynamics but poorly predict the values. In the Transformer,
autoregression in the decoder results in error accumulation in long-
term predictions (Zeng et al., 2022). As explained in the previous
section, the compounding error is the main challenge in simulating the
phosphorus removal system’s function. The formers also suffer from the
compounding error issue, which is more different than LSTM. These
models extract much information from the previous data at each step,
leading them to extract many more wrong values. They learn to pay
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attention to actual data information, which results in better predictions.
Still, it will be more troublesome when this attention is applied to the
predicted and non-precise data. They suffer from too much attention.
This particular issue is notably evident in the spring sequence shown
in Fig. 10 and Table 4, specifically regarding the Autoformer model. In
this instance, while the model produces notably dynamic predictions
that often exceed actual values, the DTW indicates its capability to
maintain the system’s dynamics, though with increased fluctuations.
Additionally, as observed in Fig. 11, while former models show a rise
in compounding errors over the course of the simulation, this trend is
not consistently significant at every stage. This issue is linked to the
black-box nature of these models, leading to unforeseeable accuracy in
predictions at various simulation phases. Furthermore, a comparison
between Figs. 10 and 11 reveals that despite lower mean squared errors
in later simulation stages, these former models struggle to represent
the system’s dynamics accurately. This highlights the challenge of
creating a metric that effectively assesses the dynamic representation
capabilities of the simulators.

4.3. LTSF linear

DLinear and NLinear have more similar behavior to the LSTM, as
they can keep the system dynamics at the beginning of the simulation.
Still, they lean towards a linear constant prediction as it goes forward.
On the one hand, the more simple and linear models cannot extract
much information from historical data, resulting in the inability to
capture system dynamics. On the other hand, their simple structure
prevents them from forecasting far from the actual values, leading
to a less fluctuating simulation. According to Fig. 10, this behavior
can be seen in all sequences but is more obvious in the autumn and
winter parts. The stochasticity of the P removal process, which results
in different trends in phosphorus concentration throughout the year,
is very problematic to linear models’ prediction as they learn the
linear relationship between input features and the target variable. Yet,
Table 4 demonstrates the capability of these models in aligning their
predictions with actual values, leading to low mean squared errors
without resulting in high DTW values.

The linear models suffer more from the compounding error issue as
they cannot get help from learned memory like LSTM or self-attention
mechanisms like the formers to overcome the accumulation of errors.
In the end, as shown in Fig. 9, it becomes evident that linear models
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have problems capturing the causal relationships among the features.
Consequently, they rely only on the input phosphorus levels to generate
output P values, ignoring the use of causal relationships for corrective
prediction enhancements.

4.4. Common issues

As the simulation behavior differs, the models share common issues
in the results. The first one is that none of them captures the sudden
changes in the process, which is more evident at the end of the autumn
sequence (from 06:20 to 06:35) and in the summer sequence (from
06:50 to 07:00) in Fig. 10. The mentioned issue results in higher DTW
values for all models, as shown in Table 4 in the Autumn compared
to the other sequences. These changes can be related to sensor failures
and inaccurate data from the actual plant, which is unknown, and there
is no possibility of including them in the models. Even though the
models were trained on the dataset with such inaccurate data, they
were successful in not following the wrong dynamics.

One potential issue arises in the summer sequence, where the initial
prediction differs from the actual observation. This disparity highlights
the possibility of models generating slightly wrong predictions at the
onset of the simulation, particularly when the entire input sequence
is derived from the actual dataset. Consequently, models that begin
with less precise predictions may exhibit inferior performance in sub-
sequent episodes compared to those that initially generated accurate
predictions.

While the models may generate similar values that differ slightly in
dynamics, there are instances where the predicted values can signifi-
cantly diverge. Such a scenario is apparent in the winter sequence of
Fig. 10 and Table 4, indicating that the behavior of models relative to
one another can vary depending on the input sequence.

Finally, selecting the optimal models based on Table 4 is a signifi-
cant challenge. As can be seen from the table, the leading models for
the simulation environment can differ according to the metric under
consideration. The MSE monitors how accurately the models predict
actual values at each sequence, whereas DTW assesses how well they
simulate the dynamics of the system. Models that perform well in MSE
might not consistently outperform in predicting the system’s dynamics.
Some models may attempt to forecast a linear average of actual val-
ues within a sequence to align closely with real data to explain this
inconsistency.

5. Conclusions

The lack of accurate simulators presents a significant challenge in
implementing Deep Reinforcement Learning for chemical and biolog-
ical processes. In this study, the authors trained six different state-of-
the-art time series forecasting models to create a simulator for the DRL
environment. The findings of this study emphasized the following:

• The models demonstrated over 97% accuracy in one-step-ahead
predictions on the test dataset.

• Sensitivity analysis of phosphorus amounts indicated that the
models, especially linear ones, rely heavily on historical P amounts
for making predictions.

• The performance of these models was compromised over longer
time horizons in multi-step simulations due to uncertainty and
incorrect prediction behavior.

• The LSTM and Linear models tended to produce linear predictions
over time, failing to represent the system’s dynamics accurately.

• The Former models exhibited more variability and fluctuating
behavior as the simulation progressed.

• The use of these models in multi-step simulations highlighted lim-
itations such as compounding errors and the inability to capture
13

industrial processes’ complex dynamics accurately.
Future research can focus on strategies such as developing hybrid
models, preparing an input of less noisy data, and using different model
training methods to improve the simulation environment results. More-
over, several deep reinforcement learning algorithms, including policy
gradient methods, offer potential as promising methods for training
control policies in imperfect simulation environments where it is chal-
lenging to train algorithms directly within a real-world environment.
Ultimately, the proposed approach of creating simulation environments
for DRL algorithms, utilizing SCADA data with a sufficient historical
horizon to capture all system dynamics, is a promising way to improve
process control in industrial applications.
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