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Abstract
Flying Ad‐Hoc Network (FANET) is a promising ad hoc networking paradigm that can
offer new added value services in military and civilian applications. Typically, it in-
corporates a group of Unmanned Aerial Vehicles (UAVs), known as drones that
collaborate and cooperate to accomplish several missions without human intervention.
However, UAV communications are prone to various attacks and detecting malicious
nodes is essential for efficient FANET operation. Trust management is an effective
method that plays a significant role in the prediction and recognition of intrusions in
FANETs. Specifically, evaluating node behaviour remains an important issue in this
domain. For this purpose, the authors suggest using fuzzy logic, one of the most
commonly used methods for trust computation, which classifies nodes based on multiple
criteria to handle complex environments. In addition, the Received Signal Strength
Indication (RSSI) is an important parameter that can be used in fuzzy logic to evaluate a
drone's behaviour. However, in outdoor flying networks, the RSSI can be seriously
influenced by the humidity of the air, which can dramatically impact the accuracy of the
trust results. FUBA, a fuzzy‐based UAV behaviour analytics is presented for trust
management in FANETs. By considering humidity as a new parameter, FUBA can
identify insider threats and increase the overall network's trustworthiness under bad
weather conditions. It is capable of performing well in outdoor flying networks. The
simulation results indicate that the proposed model significantly outperforms FNDN and
UNION in terms of the average end‐to‐end delay and the false positive ratio.
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1 | INTRODUCTION

Our world has changed and is still evolving due to rapidly
developing technology in sensors, communications, and
networking over the past few decades [1]. Unmanned Aerial
Vehicles (UAVs) have been proposed for a multitude of ap-
plications in both military and civilian domains, encompassing
ad hoc networks, search and rescue missions, electronic op-
erations in hostile zones, ground target identification and
tracking, automated forest fire surveillance, wind energy gen-
eration [2], and a host of other possibilities. Furthermore,

flying ad hoc networks (FANETs), a revolutionary concept,
comprise a group of UAVs that cooperate to perform some
crucial missions [3]. However, many cyberattacks against UAVs
have emerged since 2007 [4], and their impact can be
dangerous with divesting effects. Therefore, it is essential to
protect FANETs from insider and outsider attacks. In
FANETs, drones can leave and rejoin the network anytime,
creating an opportunity for attackers to compromise a node
and impersonate a legitimate one, leading to insider attacks.
Insiders use their trusted access to carry out illicit actions. As a
result, they are undetectable by external network security
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protocols (intrusion detection, firewalls, and cryptographic
methods) [5]. Consequently, ensuring secure and reliable
communications in FANETs is critical and continues to be an
issue.

In this context, trust management is an effective and
attractive technique to prevent unexpected node actions and
detect malicious nodes [6]. It can improve the robustness and
reliability of standard security techniques by guaranteeing that
only trustworthy nodes cooperate in network missions.
Nevertheless, trust depends on observation and recommen-
dation, and some models have been proposed for FANET to
calculate the trust of the drone, but they may lead to uncer-
tainty [7]. Fuzzy logic is a popular method for representing and
manipulating uncertain data, such as node behaviours. Few
related works use the RSSI as an important parameter for trust
evaluation, and this performs better in indoor networks.
However, in outdoor networks, the RSSI can be influenced by
humidity and thus impact the trust results. In addition, the
drone can be detected as non‐cooperative due to unintentional
misbehaviour related to poor signal strength (RSSI). The main
challenge in this domain is designing an efficient analytical
trust model for evaluating and understanding node behaviour
in FANET under poor signal (RSSI) and bad weather condi-
tions. Without this model, there will be no effective strategy to
distinguish between legitimate and malicious drone activities in
FANETs. Although several trust models have recently been
proposed, none have yet focused on the impact of bad weather
conditions on the trust management process in FANET. The
proposed work aims to address this gap using the fuzzy logic
method to determine the trust of a drone based on several
parameters, such as energy (battery level), weather (humidity),
signal strength (RSSI), packet delivery ratio (PDR) and trans-
mission delay (TD). Specifically, this article introduces a novel
fuzzy‐based UAV behaviour analytics system named FUBA for
trust management in FANETs. FUBA utilises fuzzy logic
methodology to assess drone trustworthiness by considering
various factors such as energy levels, weather conditions, signal
strength, packet delivery ratios, and transmission delays. The
proposed model offers several advantages: superior perfor-
mance in outdoor flying networks, effective characterisation of
node behaviour, subjective evaluation of node behaviour, and
the ability to make confident decisions regarding network in-
formation exchange. To comprehensively evaluate the model's
performance, we implement and rigorously test the system
through extensive simulation experiments conducted using the
Omnetþþ, Xplane, and Avens frameworks. The simulation
results demonstrate that our model outperforms existing ones
in terms of average end‐to‐end delay and false positive ratio.
Furthermore, we analyse the influence of RSSI and humidity
on trust results through Matlab simulations, shedding light on
prevailing challenges and open issues in this domain.

The rest of this paper is listed as follows: Section 2 offers
an overview of the related works on trust management in
FANETs. Section 3 introduces the proposed fuzzy‐based UAV
behaviour analytics for trust management in FANETs (FUBA).
Section 4 detailed the practical aspects and limitations of
FUBA. Section 5 provides the detailed implementation of

FUBA. Section 6 explains the impact of RSSI and humidity on
trust results. Section 7 reports and discusses the experimental
results. Finally, Section 8 concludes the paper and provides
possible future directions.

2 | RELATED WORK

Since UAV networks appeared, several trust models have been
implemented to strengthen the trust management systems in
FANET. Most of them were initially proposed for Mobile Ad
hoc Networks(MANETs) [8]. The recent research on trust‐
based solutions is presented below:

Berka et al. [9] proposed a new energy‐efficient scheme for
FANET that is reputation‐aware. Their approach computed
the trustworthiness by considering the count of both legal and
illegal node interactions to establish trust with low energy,
considering the indirect trust values. However, when there is
no interaction between the trustor and the trustee, the findings
impact the system's accuracy. To differentiate between legiti-
mate and malicious drone activities, the authors in ref. [8]
presented a second model referred to as UNION. To eliminate
man‐in‐the‐middle threats, Barka et al. [10] proposed a
comprehensive communication architecture named FNDN
(Flying Named Data Networking). This architecture revolves
around the integration of trust mechanisms. When propagating
data, their model system uses a trust management strategy to
address the network attack concern. FNDN utilises inter‐UAV
trust to decide whether to verify the authenticity of data for a
specific node. In ref. [11], the authors suggested a new trust
scheme named BUAS. BUAS is based on a blockchain
technology‐based inter‐UAV trust evaluation method.

The Bayesian inference method was used to calculate the
probability of the message's trustworthiness. Singh and Verma
described a fuzzy‐based trust model in ref. [12] that addresses
the trustworthiness of the FANET node. A fuzzy classification
has been implemented, and the quality of services and social
parameters are considered to calculate trust values. They also
proposed a weightage‐based method that uses the genetic al-
gorithm [13] to ascertain the trust values by simultaneously
optimising the weights assigned to different parameters. In ref.
[14], the authors proposed a trust‐based clustering scheme
using the first model to select a trustworthy cluster head that
can add new nodes to the network. Zhou and Wang in ref. [15]
proposed a K‐means þþ clustering algorithm. This model
determines the optimal number of clusters and integrates a
trust value using the Bayesian model to identify malicious
nodes for exclusion from the cluster selection process. Jena
et al. [16] provided a methodology for filtering erroneous event
messages produced by the network using event‐based reputa-
tion. The impact of the node's location on detecting the
genuineness of the event is considered in this model. Bhargava
et al. proposed a Kalman trust estimator (KATE) in ref. [17].
KATE checks drones' misbehaviour by combining direct and
indirect trust values. Kate considers the impact of historical
trust values stored on the Internet on current trust values.
Carlos et al. in ref. [18] suggested and assessed UAVouch, a
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system for identifying and locating UAVs in a group. UAVouch
uses a movement plausibility check and a public‐key‐based
authentication system to identify intruders who deviate from
the group's anticipated trajectory.

In summary, several trust management solutions for
FANETs have been proposed in recent years to enhance
network security. Still, none have considered weather condi-
tions' impact on node behaviour and trust computation.
Therefore, this paper incorporates humidity as a novel
parameter in the proposed study to demonstrate the influence
of humidity on both RSSI and trust outcomes.

3 | THE PROPOSED FUBA MODEL

This section presents the network architecture and the detailed
proposed FUBA model that considers the effects of climate
change and poor signal strength. The major idea is to protect
the network from insider attacks and differentiate between
legitimate drone actions and malicious activities.

3.1 | Network architecture

FANET comprises three fundamental components: nodes
(drones), ground control stations (GCS), and communication
links. There are two types of communication, UAV to UAV
(U2U) and UAV to Infrastructure (U2I). In FANET, the nodes
can leave and join the network anytime, but this flexibility can
also make the network vulnerable to attacks. During this, the
hacker can compromise a normal drone and convert it into a
malicious drone [14]. The intruder participates in the network as
a legitimate node and potentially deletes or corrupts messages or
damages the reputation of trustworthy nodes. This type of
attack, known as an insider attack, can be a significant threat to
the security of FANET. Figure 1 shows the network model of
FANET operating under the assumption of an insider attack.

As illustrated in Figure 2, the proposed FUBA model is
based on four steps: information gathering, trust score calcu-
lation, trust aggregation, and decision‐making.

3.2 | Information gathering

In the proposed FUBA model, every node collects behaviour
information about its neighbours, including their software and
hardware performance over time. The fuzzy logic method has
beenused bySingh et al. [13]with four parameters. The proposed
model employs five parameters: signal strength, the drone's en-
ergy, packet delivery ratio, transmission delay, and humidity. The
parameters collected by each drone are shown in Figure 3.

3.2.1 | Received signal strength indicator (RSSI)

The drone can measure the received signal power of its neigh-
bour at a specific location and time. The number obtained,

known as the Received Signal Strength Indicator (RSSI) is given
in dBm, which is typically a negative value [19]. The typical RSSI
for most excellent signal power is greater than −50 dBm (e.g.
−30 dBm). Good or acceptable signal power has RSSI ranging
from −50 to −70 dBm, (e.g. −60 dBm). Poor signal power has
RSSI less than −70 dbm (e.g. −90 dBm) [20].

3.2.2 | Node's energy (battery level)

The node's energy is one of the most critical factors to
consider in a drone; therefore, effective power management,
including wireless drone charging, solar drone charging, and
even the utilisation of artificial intelligence technology [21], are
required for the continuity of the applications [22]. The node
can accomplish the mission when its battery level exceeds 50%.
It can hardly collaborate with its neighbours when the energy
level is between 20% and 50%. If the battery level falls below
20%, the node may degrade the network mission [20].

3.2.3 | Packet delivery ratio (PDR)

The packet delivery ratio is the proportion of correctly
received packets to the total number of packets transmitted by
the sender, represented by Equation (1) [23].

PDR¼
Pn

i¼0ReceivedPi
Pn

i¼0SentPi
ð1Þ

where ReceivedPi and SentPi , respectively, denote the number
of correctly received packets and the number of packets
transmitted by the sender. In ref. [20], it has been illustrated
that if the ratio of packets sent effectively is less than 40%,
then the PDR is low; if it is between 40% and 70%, then the
PDR is medium; and if it is greater than 75%, then the PDR is
considered high.

3.2.4 | Transmission delay (TD)

TD represents the drone sender's time to transmit the packets
over the link. The following formula of TD is given as follows:

F I GURE 1 FANET model during an Insider attack.
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TD¼
L
R

ð2Þ

whereL is the length of the data packet, andR is the transmission
rate (bits per second). The transmission delay is judged small if its
value is lower than 0.61 ms; medium if the value is between 0.96
and 1.47 ms; and large if the value exceeds 1.47 ms [20].

3.2.5 | Weather condition

The drone is equipped with many sensors that continuously
measure and record information about the current environ-
mental conditions [24], including rain sensors, wind direction
sensors, wind speed sensors, air temperature, and humidity
sensors. Any change in weather may be sent to the ground
control station. If weather conditions significantly impact one

of the collected parameters used in the assessment, it becomes
challenging to differentiate between legitimate and malicious
drone activities or discern intentional from unintentional drone
behaviour. To address this issue, the humidity is used as an
input parameter in the proposed Fuzzy Logic system.

In this particular context, extensive investigation has been
carried out by the authors in ref. [25], focusing on an empirical
setup based on IEEE 802.11b/g. The experimentation in-
volves two external radio connections of varying lengths that
maintain a continuous data transfer process. The findings
indicate that, contrary to expectations, the shorter‐distance link
is found to be more susceptible to adverse weather conditions.
This is attributed to the modulation strategy utilised in that
specific scenario. It can be concluded that bad weather con-
ditions may alter the UAV radio signal Propagation.

To analyse the influence of temperature and humidity on
RSSI values, the authors in ref. [26] conducted measurements
at a constant distance of 25 m under varying weather condi-
tions during summer and winter. The measurement results
indicate that the temperature has a relatively minor impact on
RSSI compared to humidity because the RSSI values can
significantly vary even under similar temperatures. It can be
noticed that humidity has a significant influence on RSSI.
When the humidity increases, the RSSI values decrease, thereby
directly affecting the path loss exponent. It can be concluded
that humidity has a greater impact on RSSI than temperature.

3.3 | Trust score calculation

After collecting the necessary information, each drone deploys
a fuzzy logic method to calculate its neighbour's trust score.

F I GURE 2 FUBA trust model.

F I GURE 3 The collected parameters in FANET.
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The proposed system considers various input parameters,
including the received signal strength indicator, packet delivery
ratio, transmission delay, energy, and humidity. Triangular and
trapezoidal membership functions of the input parameters are
adopted to enhance the performance. Subsequently, fuzzy rules
are employed within the inference engine phase to generate a
final numerical value as an outcome. This resulting value sig-
nifies the direct trust assessment of the neighbouring node.
The configuration of the proposed trust management model
based on fuzzy logic is depicted in Figure 4.

3.4 | Trust aggregation

In this phase, the values of α and β are defined to aggregate the
direct and indirect trust values. Generally, a FANET is char-
acterised by lower node density and a small link duration be-
tween two communicating nodes. The values of α and β are
determined based on these two facts, which are used to obtain
the needed trust value. Table 1 represents the value of α and β
according to the trust state:

a) If the output characteristic value (trust) is “Bad” or
“Good,” then the confidence factors α = 1 and β = 0. This
means that the Finaltrust(i) = Directtrust(i).

b) If the output characteristic value is “Medium,” the node
requests the recommendations (indirect trust) to its neighbour
nodes. Therefore, the final trust computation combines both
direct and indirect trust values as shown in Figure 5. The in-
direct trust is given as follows:

IndirectTrustðiÞ ¼
1
n

Xn

j¼1
DirectTrustðiÞj ð3Þ

where n represents the total number of drones in the network,
(i) is the index of the trustee drone, and (j) is the index of the
trustor drone.

3.5 | Decision making

The main objective of the decision‐making process is to
respond to the following questions.

1. Is it confident to exchange information in the network?
2. Are the nodes interested in cooperating or not?

After analysing a node's behaviour and considering the climate
changes, the trustor node estimates the trust score of its
neighbours using Fuzzy Logic‐based trust management. Sub-
sequently, a threshold‐based decision module decides whether
to cooperate with the node involved in the considered oper-
ation. Specifically, the trust score of each node is then
compared to a threshold value to determine if the node is
trusted or malicious as follows:

�
if Final trust > 30% then Trust node
if Final trust ≤ 30% then Malicious node

4 | PRACTICAL ASPECTS AND
LIMITATIONS OF FUBA

The FUBA system presents an innovative approach to
enhancing trust management in FANETs by incorporating
humidity as a new parameter. This section explores the gen-
eralisability and scalability of the FUBA model under various
scenarios while also addressing the model's limitations and
practicality.

4.1 | FUBA generalisability, applicability,
and scalability

The FUBA is applicable under any weather conditions, as
FUBA attempts to adapt its operating parameters according to
the surrounding operating environment, which includes the
incorporation of fuzzy variables of humidity, namely, Low,
Medium, and Large. This adaptability ensures that FUBA's
trust assessment remains relevant and effective across various
environmental circumstances. Furthermore, the concept of
integrating environmental parameters into trust management
can be adapted to various contexts, such as agricultural ro-
botics, environmental monitoring, border surveillance, and
disaster response. On the other hand, the principles ofF I GURE 4 Structure of fuzzy system.

TABLE 1 Weight parameters.
Direct trust α β Final trust

Bad/good 1 0 Final Trust(i) = direct trust(i)

Medium 0.5 0.5 Final Trust(i) = 0.5 direct trust(i) þ 0.5 indirect trust(i)j
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behaviour analysis that incorporate environmental parameters
could inspire diverse autonomous systems that face complex
external conditions, such as wildlife monitoring, pollution
detection, and habitat preservation. Finally, ethical consider-
ations related to environmental data collection and the broader
social implications of integrating natural parameters into
autonomous systems such as airspace congestion, urban en-
vironments, or emergency response situations are required.

To tackle FUBA's scalability, every drone in the network
evaluates the trustworthiness of its adjacent drones and subse-
quently relays this information to the ground control station to
facilitate decision‐making. This approach efficiently restricts the
dissemination of trust data and evenly distributes the compu-
tational load, enabling the deployment of scalable FUBA. Thus,
the scalability of the proposed FUBA model is evident in its
ability to accommodate a growing number of drones.

4.2 | FUBA practicality and feasibility

Utilising FUBA in practical settings holds promise in
addressing the increasing security challenges associated with
drone‐related threats. Fuzzy logic can be a valuable tool for
identifying and responding to malicious drones, which can be
used for unauthorised surveillance, smuggling, or even acts of
terrorism. In what follows, we explore the implementation
process of the FUBA model and its practical implications in
identifying malicious drones.

� The proposed FUBA can identify anomalies in drone
behaviour by comparing the detected drone's actions to
predefined models of normal drone behaviour. If a drone's
actions deviate significantly from the expected behaviour,
the system can raise an alert and initiate appropriate
response measures.

� FUBA can incorporate contextual information, such as local
regulations, flight restrictions, and historical data, to make
more accurate decisions about the legitimacy of a drone's
presence. This ensures that harmless drones, such as hob-
byists or commercial drones, are not mistakenly flagged as
malicious.

� FUBA model can continuously learn from new data and
adjust its rules and inference mechanisms to adapt to
evolving tactics used by malicious drones.

� FUBA system can be integrated with existing aviation and
security infrastructure, such as air traffic control systems,
airport security, and critical infrastructure protection, to
improve overall airspace security.

� FUBA can provide real‐time monitoring and reporting of
drone activities, helping security personnel make timely and
informed decisions to mitigate potential threats.

4.3 | FUBA practical limitations

While FUBA demonstrates effective trust management in
FANET under poor weather conditions, the proposed
approach has the following main limitations:

� As the number of rules and fuzzy sets increases to model a
large problem space, fuzzy rule bases can become very
complex and difficult to manage. This affects issues such as
debugging, updating, and interpretability.

� Fuzzy systems are only as good as the input features they are
provided. Critical security features may be missing or noisy,
limiting detection capabilities. Furthermore, security con-
siderations around trust data exchange must be incorporated
into a full system deployment.

In summary, the proposed model offers a practical and
effective approach to improving security in the real world. By
leveraging its ability to handle uncertain and imprecise data, the
FUBA model can contribute to the development of robust and
adaptive systems that safeguard against the misuse of drones
for malicious purposes.

5 | IMPLEMENTATION DETAILS OF
THE FUBA MODEL

Fuzzy logic is a computational approach that handles uncertain
information by allowing for degrees of truth rather than rigid
binary values. This section uses MATLAB to evaluate the
proposed FUBA model. The fuzzy logic used to evaluate node
behaviour comprises three steps: fuzzification, inference en-
gine, and defuzzification.

5.1 | Step 1: Fuzzification

In this step, a membership function is generated to determine
the degree to which the numerical data correspond to a lin-
guistic variable, using triangular and trapezoidal functions
presented in Figures 6 and 7. Typically, a triangular member-
ship function is defined using three parameters, namely, a, b,
and c, as follows:

F I GURE 5 Trust aggregation.
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f ðx; a; b; cÞ ¼

8
>>>>>>>>><

>>>>>>>>>:

0 x ≤ a

x − a
b − a

a ≤ x ≤ b

c − x
c − b

b ≤ x ≤ c

0 c ≤ x

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

ð4Þ

The expression given in Equation (4) can be written in a
simple form using min and max functions as follows:

Fðx; a; b; cÞ ¼max
�
min
�x − a
b − a

�
;
�c − x
c − b

�
; 0
�

ð5Þ

Fðx; a; b; c; dÞ ¼max
�

min
�x − a
b − a

�
; 1;
�
d − x
d − c

�

; 0
�

ð6Þ

Figure 8a illustrates the membership functions of Energy:
A triangular membership function for the linguistic variable
Medium is defined by the triangle (x, 0.2, 0.35, 0.5). The
trapezoidal membership function for the linguistic variable
High is defined by the trapezoid (x, 0.5, 0.85, 1, d).

As shown in Figure 8a, the fuzzy variables of the energy are
VeryLow, Medium, and High and are analysed from 0 to 1.
Figure 8b shows the fuzzy variables for the packet delivery
ratio, which are Low, Medium, and High, analysed from 0 to 1.
Figure 8c shows that the fuzzy variables of the signal power are
Poor, Good, and Excellent. They are analysed from −100 to
−10 dBm. Figure 8d shows the fuzzy variables of the trans-
mission delay: Small, Medium, and Large. They are analysed
from 0.6 to 2.4 ms. In Figure 8e, the fuzzy variables of hu-
midity (Low, Medium, and Large) are analysed from 0 to 1.
Figure 8f illustrates the output trust fuzzy variables that are
Bad, Medium, and Good and are analysed from 0 to 100.

5.2 | Step 2: The inference engine

In this step, all the rules need to be defined in the proposed
fuzzy logic model and then explain those that reflect realistic
situations:

The first rule illustrates the worst‐case scenario. While the
second rule represents the best case. The third rule requires the
system to consider the node as trustworthy due to its low
battery, implying that unintentional misbehaviour is
considered.

Rules 4 through 7 state that if all variables have low values
except for one that has a positive value. Then, the node is
considered untrustworthy with a bad trust value.

Rule 8 requires the system to consider the node as trust-
worthy because it has a weak RSSI due to the high humidity.
This implies that the system takes into account unfavourable
weather conditions. Table 2 illustrates the rules when humidity
is low, while Table 3 shows the rules when humidity is high.

5.3 | Step 3: Defuzzification

Defuzzification is the pivotal stage within the fuzzy logic
process, where the crisp output is derived from the fuzzy
output generated by the fuzzy inference engine. This involves
translating the fuzzy set or linguistic term (Bad, Medium, and
Good) into a single, definite value that can be understood and
utilised for drone behaviour evaluation. Various methods, such
as centre of gravity, bisector, and maxima, can be employed for
defuzzification to convert the fuzzy output into a clear and
actionable result [27]. In the proposed model, the centroid
method (COG) is considered, which is the most widely used
technique and is depicted in Figure 9.

This method involves determining the centre of gravity of
the obtained polygon:

CG¼
Pb

x ¼ af ðxÞ � x
Pb

x ¼ af ðxÞ
ð7Þ

where f(x) represents the aggregation of the membership
functions while a and b represent the bounds of the obtained
polygon.

F I GURE 6 Triangular membership function.

F I GURE 7 Trapezoidal membership function.
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This method calculates the output by determining the ab-
scissa of the centroid located beneath the curve's surface. The
selection of the defuzzification method exerts a significant

impact on the final result of the fuzzy logic model. The centre
of gravity method is more flexible, as it considers the entire
fuzzy output (trust) to calculate the trust result.

The functions that determine the membership of the input
and output parameters must be adjusted for each iteration of
the fuzzy rule base [28]. The cut‐off method is depicted in
Figure 10.

6 | IMPACT OF RSSI AND HUMIDITY
ON TRUST RESULT

In this section, MATLAB programs are used to evaluate the
performance of the proposed FUBA model. The fuzzy logic
application is used for evaluating and understanding the node

F I GURE 8 Membership functions of the different parameters.

TABLE 2 Fuzzy rules with low humidity.

R RSSI PDR Energy TD Output

1 Poor Low Very low Large Bad

2 Excellent High High Small Good

3 Excellent High Very low Small Good

4 Excellent Low Very low Large Bad

5 Poor Large Very low Large Bad

6 Poor Low High Large Bad

7 Poor Low Very low Small Bad

8 - BENFRIHA ET AL.
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behaviour under the impact of bad weather conditions and
poor signal strength (RSSI).

6.1 | Impact of RSSI on trust result

The bar chart in Figure 11 illustrates the trust result of 8 nodes
in the network under high and low RSSI while varying the

other parameters (TD, Energy, PDR) to obtain several trust
values: high, medium, and low. The trust value dropped from
87% to 50% in nodes 1 and 3; the trust value decreased from
52% to 12% in nodes 4, 6, and 7. This figure shows that the
trust level in nodes 2, 5, and 8 remained constant. However,
the proportion of trust increases significantly when the RSSI is
excellent. There are several possible explanations for this
result, but it is essential to note that signal power (RSSI) plays a
vital role in assessing drone performance in FANET. It can be
concluded that trust values decrease when signal power de-
creases due to high humidity. Consequently, it is advisable to
eliminate the node from the network to enhance network
security.

6.2 | Impacts of humidity on trust result

Figure 12 illustrates the trust result for a network with 16
drones under high and low humidity while varying the other
parameters (TD, Energy, PDR, RSSI) to obtain high, me-
dium, and low trust values. The trust value reduced from
87.6% to 50.6% in node 9 and from 51.2% to 12.6% in node
12, then the trust values for the remaining nodes remained
constant.

The most notable conclusion that can be drawn from
Figure 12 is that the humidity significantly impacts the trust
results in FANET. For this reason, climate change should be
considered when designing a trust management system in
FANET.

7 | EXPERIMENTAL RESULT AND
DISCUSSION

7.1 | Simulation setup

The effectiveness of the newly introduced FUBA system is
assessed through the following communication frameworks:F I GURE 9 COG method.

TABLE 3 Fuzzy rules with high humidity.

R RSSI PDR Energy TD Output

1 Poor Low Very low Large Bad

2 Excellent High High Small Good

3 Excellent High Very low Small Good

4 Excellent Low Very low Large Bad

5 Poor Large Very low Large Bad

6 Poor Low High Large Bad

7 Poor Low Very low Small Bad

8 Poor High High Small Good

F I GURE 1 0 Cut‐off method to combine the rules.

BENFRIHA ET AL. - 9
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� OMNeTþþ: It is a powerful simulation library and
framework designed for building and testing complex
communication networks. It is built using Cþþ and is
highly extensible, modular, and component‐based, making it
a popular choice for researchers and engineers in the field
[29].

� INET Framework: The INET Framework is integrated
with OMNeTþþ and provides a rich set of network models
and protocols, facilitating realistic simulations of commu-
nication scenarios [30].

� AVENS (Aerial Vehicle Network Simulator): AVENS is
designed primarily to establish a simulation testing envi-
ronment that is specifically designed to conduct virtual

experiments focused on evaluating the network coverage
and interconnectivity of UAVs engaged in collaborative
flights or coexisting within the same airspace. The integra-
tion strategy for AVENS revolves around incorporating
both the XPlane Flight Simulator and the OMNeTþþ
network simulator [31].

� XPlane Flight Simulator: The XPlane Flight Simulator
significantly contributes to the authenticity of the simula-
tions by enabling the modelling of real‐world flight dy-
namics and interactions among UAVs [32].

The simulated network uses the IEEE 802.11 communi-
cation protocol for wireless interactions among UAVs. The

F I GURE 1 1 The impact of RSSI on trust result.

F I GURE 1 2 The impact of humidity on trust results.

10 - BENFRIHA ET AL.
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network area is defined as a space of 2500 m � 2500 m,
accurately reflecting real‐world operational conditions. To
ensure a comprehensive evaluation, the simulation time is set
to 3000 s, enabling observation of network behaviour and
performance over an extended duration. The simulations are
executed on a 64‐bit PC running Windows 10. This platform
offers the necessary computational resources to conduct sim-
ulations, thus effectively ensuring reliable and precise results.
Table 4 summarises the different simulation parameters used in
the simulation experiments.

In the simulation experiment, a scenario is designed to
emulate a UAV communication network with the proposed
FUBA system. The scenario initiates with 10 UAVs and a
ground control station. The UAVs collaborate to share a
wireless communication medium within the AVENS simula-
tion framework. During the simulation, UAVs exchange mes-
sages and collect critical network parameters, including
transmission delay, received signal strength indicator (RSSI),
packet delivery ratio, and node energy. To assess scalability and
performance, the number of UAVs is systematically increased

from 10 to 200 in steps. The increments are chosen to
comprehensively understand the proposed method's behaviour
across a wide range of UAV quantities. In OMNET þþ, the
recording module is configured to track end‐to‐end delay
across the network by specifying the appropriate recording
intervals and enabling scalar data collection.

7.2 | Simulation results

To assess the performance of FUBA, the well‐established
FNDN [10] and UNION [8] models are utilised as reference
points. These models provide a baseline for comparison based
on their inherent characteristics. Specifically, the conducted
simulations focus on two key parameters: false positive rate
and end‐to‐end delay. The false positive rate quantifies in-
stances where the system incorrectly identifies trustworthy
nodes as untrustworthy [33]. In the context of the simulation
experiments, several instances of false positives relate to situ-
ations in which the FUBA system erroneously categorises a
drone as a regular node despite not meeting the criteria for
such classification. Furthermore, the end‐to‐end delay is ana-
lysed, which reflects the time taken for the data to travel from
the source to the destination node in the network [34]. In the
context of the conducted simulations, the end‐to‐end delay
could be measured as the time it takes for a message or packet
to be transmitted from one UAV (source) to another UAV or
the ground control station (destination). It can be a critical
metric for assessing real‐time communication performance.

The FNDN [10] is a recent monitor‐based communication
architecture that uses both direct and indirect trusts for Flying
Named Data Networking. Nevertheless, the UNION [8]
model considers the UAV energy, mobility patterns, and
enqueued packets while employing both direct and indirect
trust to assess node behaviour. Comparing the proposed trust
model with these two trust models is an essential step in
evaluating FUBA's effectiveness and practicality.

Based on Figure 13, it can be observed that the proposed
FUBA model has a significant impact on reducing the average
end‐to‐end delay of data packets in comparison to the UNION
model in high‐density scenarios. Specifically, when there are 50
drones, the FUBA model reduces the delay by more than 1.4 s,
unlike UNION, and in large‐density scenarios with 100 drones,
the enhancement is roughly 1.1 s. When the number of nodes
exceeds 150, the mean end‐to‐end delay for FNDN and the
proposed solution is nearly the same. The figure shows that the
proposed FUBA model consistently results in the lowest end‐
to‐end delay across the three models.

The false positive ratio for FUBA, FNDN and UNION as
a function of the density of the UAV is shown in Figure 14.
The false positive can be obtained by calculating the trusted
node using the FUZZY logic application if a node (i) is not
compromised. The graph curves show that for both FNDN
and UNION, the calculated false positive steadily increases;
however, at the beginning of the simulation experiments, no
false positive instances were generated during this process.

TABLE 4 Simulation parameters.

Simulation tools OMNETþþ, Avens, Xplane10

Simulation area 2500 m � 2500 m

Node counts 10–200

Ping‐transmission interval 10 s

Ping‐sleep period 10 s

UDP‐transmission interval 10 ms

UDP‐packet size 1000 B

UDP application type name UdP video stream SVR

UDP application video size 10 MIB

MAC address assignment Auto

Ip process delay 10 μs

Mac Queue size 14

WLAN data rate 2 MIB

Transmission frequency 2400 Hz

Physical Tx power 100 mW

Power generation 100 MW

Simple energy storage 0.05 J

Energy generator sleep interval Exponential (10 s)

Mobility model Random way‐point

Ground control station mobility Stationary mobility

Mobility update rate 2 s

Wireless standard IEEE 802.11

Simulation time 3000 s

Operating platform 64‐bit Windows 10

BENFRIHA ET AL. - 11
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Therefore, comparing the proposed model with FNDN and
UNION, the proposed solution has a lower error ratio.

8 | CONCLUSIONS AND FUTURE
WORK

Trust management is an effective method of detecting insider
threats. The main challenge in this domain is designing a con-
ceptual and analytical trust model for FANET that can evaluate
and understand the behaviour of nodes. In the context of this
article, FUBA, a Fuzzy‐based UAV behaviour analytics for trust
management based on direct and indirect information was
introduced. Contrary to previous models, the proposed model
increases the trustworthiness of the network in bad weather
conditions and poor signal strength (RSSI). Furthermore, FUBA
has the ability to effectively distinguish between legitimate drone
actions and malicious ones. In future work, it would be valuable

to incorporate machine learning (ML) and blockchain technol-
ogy to enhance FUBA's capabilities. Automated tuning of the
fuzzy logic rules andmembership functions viamachine learning
may improve performance across diverse operating environ-
ments. Future research could explore more sophisticated algo-
rithms, such as deep learning and reinforcement learning, to
extract deeper insights from complex FANET data. Further-
more, federated learning presents an exciting opportunity for
FANETs, where data privacy is of paramount importance. On
the other hand, blockchain‐based distributed ledgers could
secure the sharing of trust data while providing resilience against
compromised nodes. Furthermore, it can facilitate transparent
and auditable trust records, reducing the reliance on centralised
authorities. As these technologies continue to evolve, their
integration offers the potential to create more resilient, secure,
and efficient FANETs, shaping the future of aerial communi-
cation and navigation.
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