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Electricity theft is the largest type of non-technical losses faced by power utilities around the 
globe. It not only raises revenue losses to the utilities but also leads to lethal fires and electric 
shocks at distribution side. In the past, field operation groups were sent by the utilities to 
conduct inspections of suspicions electric equipments stated by the public. Advanced metering 
infrastructure based recent development in the smart grids makes it easy to detect electricity 
thefts. However, the conventional supervised learning techniques have low theft detection 
performance mainly due to imbalance datasets available for training. Therefore, in this paper, 
we develop a novel theft detection model with twofold contribution. A unique hybrid sampling 
technique named as hybrid oversampling and undersampling using both classes (HOUBC) is 
proposed to balance the dataset. HOUBC first performs undersampling and then oversampling 
using both the majority (normal) and minority (theft) classes. A new deep learning method, 
fractal network is applied with light gradient boosting method to extract and learn important 
characteristics from electricity consumption profiles for identifying electricity thieves. The 
proposed model relies on smart meter’s data for theft detection and hence, a rapid and widespread 
adaption of this model is feasible, which shows its main advantage. The performance of the 
model is evaluated with real-world smart meter’s data, i.e., state grid corporation of China. 
Comprehensive simulation results describe the effectiveness of the proposed model against 
conventional schemes in terms of electricity theft detection.
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1. Introduction

Electricity theft not only endangers human lives such as risks of fire and electricity shocks but also leads to significant revenue 
loss. It occurs when electricity users manipulate the smart meters to reduce electricity bills and bypass connection of the smart 
meters. These practices raise the financial burden for both legitimate electricity users and power utilities. Nonetheless, power utility 
companies face two types of power losses. Technical losses (TL) and non-technical losses (NTL). The first TL occur when there 
is energy dissipation in the transformers and transmission lines. Whereas, NTL is caused due to billing errors, faulty meters and 
electricity theft [1]. Based on statistics, utilities incur revenue losses of 0.5% to 3.5% per year due to electricity theft in the United 
States [2].

To alleviate the revenue losses caused by electricity theft, several solutions have been proposed in the recent literature for 
electricity theft detection (ETD). Traditional methods rely on labor-intensive inspection, which is tedious and time-consuming task. 
This inspection can be replaced by advanced methods, which rely on electricity consumption (EC) data obtained from smart meters 
[3]. However, the enhancement of advanced metering infrastructure (AMI) in the smart grids leads to new electricity theft attacks. 
The stealing of energy becomes easy with the debut of AMI and therefore, it is predominant in smart grids as compared to traditional 
grids [4]. These electricity theft attacks can be categorized into three groups: 1) cyber-attacks that are being done within smart meters 
over the network; 2) physical-attacks in which consumers physically tamper their meters to reduce electricity bills and disconnect or 
reverse the meters to reduce the load; and 3) data-attacks that occur through cyber and physical-attacks with the aim of manipulating 
measurement values. All these types of attacks can be detected through analysis of the consumers’ EC patterns [5].

The existing methods used for ETD are broadly categorized into hardware-based methods and data-driven methods. Hardware-

based methods use sensors and micro-controller systems to detect electricity theft. Although, due to the high cost of development and 
maintenance, these methods cannot be adopted as efficient methods. Contrarily, the data-driven based ETD methods have acquired 
ample attention from researchers in the past few years [6]. These methods leverage a variety of machine learning techniques to 
identify the anomalous electricity consumption behavior of consumers using classifiers. However, these methods request for a large 
amount of data, which increases the training period of classifiers. These methods also require retraining with respect to the changes 
in conditions such as occurrence of new theft type [7]. Moreover, a large number of labeled theft cases required by supervised 
learning models are rarely exist in the real-world scenarios. Despite of the issues in data-driven methods, they are feasible to utilize 
in real-world and are successful in achieving wonderful performance in short period of time.

Literature is teemed with supervised and unsupervised learning techniques for NTL detection. The widely adopted supervised 
learning methods include convolutional neural network with long short-term memory (CNN-LSTM) [6], LSTM based boosting [8], 
gated recurrent unit (GRU) [9], UNet model [10], wide and deep convolutional neural network (W&D CNN) [3], auto-regressive 
integrated moving average [11], ensemble bagged tree [12], multiple linear regression [13], gradient boosting theft detector [14], 
support vector machine (SVM) [15], [16] etc., which are used in the literature for detecting electricity fraudsters. Alternatively, 
unsupervised methods used for ETD are entropy-based detection [17], K-means clustering-based model [18], self-organizing map 
(SOM) [4], fuzzy logic or clustering [19], [20], LSTM-Gaussian mixture model [21], Markov-chain model [22], autoencoders [23], 
etc. Moreover, there are also semi-supervised methods that use both labeled and unlabeled data to detect inspected and un-inspected 
theft cases [24–27]. Most of these models are less accurate in terms of ETD with high computational time and dependence on the 
domain knowledge to perform feature selection and extraction.

In the existing literature of ETD, the common issue discussed but seldom solved is the imbalanced data problem. Two generic 
data sampling strategies found in the literature are oversampling and undersampling. Some of the broadly accepted methods for 
oversampling include synthetic minority oversampling technique (SMOTE), borderline oversampling with SVM, random oversam-

pling, borderline-SMOTE and adaptive synthetic sampling [28]. All these methods follow the concept of alleviating imbalance ratio 
by synthesizing samples of the minority (theft) class. However, random generation of data replicates existing samples, which are 
likely to overfit the model. SMOTE generates new instances of electricity consumers to balance the data. However, newly generated 
instances do not belong to the actual consumption of residential consumers due to the addition of noise. On the other hand, few 
techniques used for undersampling include condensed nearest neighbor rule, one-sided selection, neighborhood cleansing rule, near 
miss and Tomek links undersampling [28]. These methods follow the convention of lessening samples in the majority (honest) class 
to balance the dataset. Although, they discard useful information from the majority (honest) class, which could be necessary to train 
a classifier. It also causes underfitting problem. Sampling methods are judgmental tasks as there exist chances of biasness due to the 
wrong selection of samples. This wrong selection will make the whole process ineffective. Hybrid methods such as adaptive sampling 
boosting and normal-distribution with similarity-based method [28], are also developed to overcome the issues of oversampling and 
undersampling techniques.

1.1. Problem analysis

By analyzing consumers’ previous EC behavior, it becomes easy for the supervised learning methods to detect electricity theft. 
However, existing methods have low detection accuracy due to the predominant issue of imbalanced data available for training. 
Specifically, the number of fair consumers is remarkably higher than the electricity thieves. This problem of imbalanced data (i.e., 
underrepresentation of one class) is a major concern in supervised machine learning, which is the most extensively adopted method-

ology in the literature of NTL detection [29]. Moreover, unavailability of sufficient theft data limits the performance of the supervised 
2

learning solutions, resulting in low detection rate. Therefore, to handle the class imbalance problem in the context of NTL detection, 
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Fig. 1. Overview of the proposed system model.

little attention has been paid in the literature. This potentially raises the need for an efficient and a cost-effective solution to solve 
the above-mentioned class underrepresentation problem.

1.2. Contributions

Following are the contributions of the paper.

1. Novel hybrid oversampling and undersampling using both classes (HOUBC) technique: To overcome the limitation of class biasness, 
a new sampling technique HOUBC is proposed that solves the imbalanced data problem. This hybrid technique first undersamples 
the data from majority class, then oversamples the data using both majority and minority classes. HOUBC does not only resolve the 
overfitting problem by generating distinct samples but also consider resemblance with the realistic energy theft data. It also enhances 
learning ability of the supervised learning methods.

2. Proposed STL-FractalNet-LightGBM model: A new model is proposed which is a combination of seasonal and trend decomposition 
using loess (STL), fractal network (FractalNet) and light gradient boosting machine (LightGBM). The preprocessed data is first given 
as input to STL method that separates seasonality and trend from consumer’s data pattern. Then, this separated data is passed to 
FractalNet for better generalization and memorization. LightGBM is applied for classification results and for improving the learning 
ability of FractalNet based on loss function.

3. Inclusive simulations: A number of simulations are performed with different values of parameters to find optimal values on 
which our proposed model and benchmark methods perform the best for ETD. The proposed model is then compared with various 
conventional methods to verify its effectiveness using seven performance metrics. These metrics are area under the receiver operating 
characteristic curve (AUC-ROC), precision-recall area under the curve (PR-AUC), precision, recall, accuracy, Matthews correlation 
coefficient (MCC) and F1-score.

2. System methodology

Electricity theft is one of the major threats in AMI that does not only affect revenue of the utility companies but also economy of 
a country. So, there is need for an efficient solution that deals with these threats and helps in providing a reliable supply of energy 
to the consumers. Therefore, a more secure, efficient and reliable solution is proposed for ETD in this paper. The proposed solution 
is composed of four main steps, as shown in Fig. 1. These steps are: 1) data preprocessing that deals with missing values, outliers 
and data imbalance issues before passing data to the model for learning and prediction, 2) the preprocessed data is passed to STL 
for decomposition, 3) the decomposed data is passed to the FractalNet for feature extraction and then LightGBM is used as final 
classifier, 4) suitable performance indicators are then employed to fairly assess the performance of the proposed model for ETD.

2.1. Data preprocessing and cleansing

To apply the proposed model for NTL detection, we first clean the raw data. Real-time energy consumption data usually contains 
3

missing values due to several reasons such as storage issues of the system, failure of smart meters, unscheduled maintenance, poor 
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signal issues and if there are problems in sending or receiving endpoints. Two kinds of missing values are found in the dataset: 
missing channel data, which occurs when no information is stored in the channel and missing interval data, which is related to 
transmission problems [30], [31]. Consequently, the simplest solution so far is to either remove the observations containing missing 
values or replace these values by fill-in methods. Therefore, this paper presents a linear interpolation method to handle missing 
values using the formula as given in equation (1) [3]:

𝑓 (𝑥𝑖,𝑡) =
⎧⎪⎨⎪⎩

𝑥𝑖,𝑡−1 + 𝑥𝑖,𝑡+1

2
𝑥𝑖,𝑡 ∈𝑁𝑎𝑁,𝑥𝑖,𝑡−1, 𝑥𝑖,𝑡+1 ∉𝑁𝑎𝑁,

0 𝑥𝑖,𝑡 ∈𝑁𝑎𝑁,𝑥𝑖,𝑡−1 or 𝑥𝑖,𝑡+1 ∈𝑁𝑎𝑁,

𝑥𝑖,𝑡 𝑥𝑖,𝑡 ∉𝑁𝑎𝑁,

(1)

where, 𝑥𝑖,𝑡 is the value of consumption data that is represented as 𝑁𝑎𝑁 in the case of null or non-numeric character.

Z-score-based method such as “Three-sigma rule of thumb” [3] is an effective method to deal with the outliers. However, it is 
convenient only for small size datasets. So, we choose isolation forest method (IFM) [32] to deal with the outliers after recovering 
missing values. This method is based on decision trees. To build a single tree, IFM picks one feature from the feature space and 
performs its random splitting. Values ranging between minimum and maximum is called path length. This step is performed for all 
training data. All trees are then ensembled to create a forest. To make a prediction, IFM takes one observation and compares it with 
a random splitting value in a node. Such node has two children nodes where further comparisons can be made. Each observation 
is assigned a score between 0 and 1, where 0 means that the observation is normal and 1 means that the observation is different. 
This method has few parameters that make it fairly robust and easy to optimize. After dealing with the outliers, data is normalized 
to make sure that each feature in the feature space lies on the same scale. Data normalization is necessary as neural networks are 
sensitive to diverse data. Therefore, we apply min-max normalization method [4] to standardize the data.

Algorithm 1 HOUBC technique for class balancing in ETD.

Given: S, an imbalanced dataset with minority class 𝑦 labeled as 1 and majority class 𝑧 labeled as 0
Output: Balanced dataset 𝑆′

1: 𝑆 = {(𝑥1 , 𝑦1), (𝑥2 , 𝑦2), ..., (𝑥𝑚 , 𝑦𝑚)}, (𝑣1 , 𝑧1), (𝑣2 , 𝑧2), ..., (𝑣𝑚 , 𝑧𝑚)} where, 𝑥𝑚 , 𝑣𝑚 ∈ R and 𝑦𝑚 , 𝑧𝑚 ∈ [1,0]
2: Initialization: Theft consumers 𝑥𝑚 , honest consumers 𝑣𝑚 , 25th percentile 𝑃𝑟1 , 50th percentile 𝑃𝑟2 , 75th percentile 𝑃𝑟3
3: for n = 1 to 10 do

4: Randomly select 10% users 𝑣𝑗 from honest consumer’s class 𝑧
5: Make distribution of each consumer by calculating 𝑃𝑟1 , 𝑃𝑟2 and 𝑃𝑟3
6: Calculate the similarity between these distributions using Euclidean distance 𝑑(𝑟, 𝑠) = 

√∑𝑛

𝑖=1(𝑟𝑖 − 𝑠𝑖)2 , such that 𝑟, 𝑠 are two data points in the distribution

7: Make clusters 𝑐𝑖 = {𝑐1, 𝑐2 , 𝑐3 ..} of consumers with similar distributions

8: Select one consumer’s distribution from each cluster and discard the rest

9: end for

10: return 𝑧′

11: 𝑎 = len (𝑦)

12: 𝑏 = len (𝑧′)
13: 𝑢 = 𝑏 - 𝑎

14: for n = 1 to 𝑢 do

15: Make distribution by calculating 𝑃𝑟1 , 𝑃𝑟2 and 𝑃𝑟3 of theft consumers 𝑥𝑚
16: Make distribution by calculating 𝑃𝑟1 , 𝑃𝑟2 and 𝑃𝑟3 of honest consumers 𝑣𝑚
17: Randomly select 95% data points from 𝑥𝑚 such that 15% is from positive side of distribution, 15% from negative side and 65% from mean

18: Randomly select 5% data points from 𝑣𝑚 such that 1% is from positive side distribution, 1% from negative side and 3% from mean

19: Merge the data points (new distribution is created), assign label as 1 to 𝑣𝑚𝑡ℎ distribution

20: Add this distribution in the dataset 𝑆
21: end for

22: return Balanced dataset 𝑆′

Data sampling is one of the common methods to deal with the data imbalance issue in supervised machine learning methods. 
After data normalization, a proposed sampling method HOUBC is applied in this study. This method is based on the concept of 
random oversampling and random undersampling method as this technique also selects random users’ consumption from the dataset. 
However, the logic behind the creating or discarding the samples after choosing these random samples is different in our case. The 
pseudocode of this method is given in Algorithm 1, in which input variables are given as: dataset S, minority class 𝑦 with consumers 
labeled as 1 and majority class 𝑧 consumers labeled as 0. Whereas, minority class and majority class are interchangeably represented 
as theft class and honest class, respectively.

HOUBC has two parts: undersampling and oversampling. Firstly in undersampling, we randomly select 10% of consumers’ con-

sumption from data of the honest consumers’ class 𝑧. Then, the data distribution of each consumer is created using percentiles. 
Similarity index of two consumers’ distribution pattern is then calculated using Euclidean distance formula [33]. This index is mea-

sured to check the similarities in the consumer’s consumption patterns. The number of consumers whose EC patterns have more 
resemblance is put into the same cluster. After clustering, one consumer is selected from each cluster as all the consumers possess 
same distribution pattern that causes overfitting. Whereas, rest of the consumers in the clusters are discarded. This process is per-

formed for 10 iterations. Now the updated majority class becomes 𝑧′. After completion of the undersampling process, oversampling 
is performed.

The total number of consumers (cases) is calculated from the dataset S for example, it contains 1000 consumers. Thereafter, 
4

the numbers of both honest 𝑦 and theft consumers 𝑧′ are counted and assigned to temporary variables a and b interchangeably. 
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Fig. 2. Proposed STL-FractalNet-LightGBM model.

The difference between them is stored in 𝑢, i.e., 980 (honest) - 20 (theft) = 960 samples that need to be created for balancing the 
data. The consumption distributions of both minority class 𝑦 and majority class 𝑧′ are created and divided using percentiles 𝑃𝑟1, 
𝑃𝑟2 and 𝑃𝑟3. Then, percentage of the data residing in the percentiles of both distributions is calculated. We then randomly select 
5% and 95% data points from both distributions, i.e., honest and theft consumers’ data, respectively. After selection, we merge the 
selected data points and make a new distribution. The newly created samples are added to the dataset. The process is repeated until 
𝑦 becomes equal to 𝑧′. This mechanism of oversampling shows how theft samples are created. So, by doing sampling of the data 
in this way, it overcomes the previous limitations of divergence from the actual data, overfitting in oversampling and insufficient 
learning when undersampling of data is done. We collect 95% (15+15+65) data points from the theft class and only 5% (1+1+3) 
points from honest class for oversampling. The reason is that choosing data points from the theft class leads to overfitting and 
synthetic generation of samples will diverge the data from actual data. The proposed model will be better able to learn the normal 
and abnormal consumption.

Fig. 2 presents a more detailed illustration of the proposed model. STL method is applied for decomposing time series data into 
seasonality and trend, so that FractalNet model will be better able to learn seasonality and trend of both honest and theft consumers’ 
profiles. After decomposition, FractalNet is applied for refined feature extraction. LightGBM is then applied for classification and to 
improve the performance of FractalNet by learning from the previous mistakes.

2.2. FractalNet module

Fig. 3 shows the building block of the FractalNet architecture. This model is built upon the idea of using non-residual deep 
network and drop-paths to reduce overfitting and regularize the co-adaption of sub paths in the FractalNet structure [34]. It has an 
interesting property that with shallow subnetworks, it performs efficiently and by increasing depth of the subnetworks, it yields more 
accurate results.

For the ground case, 𝑓1(𝑚) is the single convolutional layer which is calculated by 𝑓1(𝑚) = 𝑐𝑜𝑛𝑣(𝑚). Then recursive fractals 
𝑓𝐶+1(𝑚) are calculated using equation (2) [34]:

𝑓𝐶+1(𝑚) = [(𝑓𝐶 ○ 𝑓𝐶 )(𝑚)]⊕ [𝑐𝑜𝑛𝑣(𝑚)] (2)

where, C is the number of columns of the truncated fractal 𝑓𝐶 , ○ denotes composition and ⊕ represents the joint operation that 
merges output features of two convolutional layers into one. The total number of convolutional layers of the deepest path within a 
block is 2(𝐶−1), where C = 4, which means that there are total 8 layers. For the joining layer (pink), element-wise mean is computed 
instead of concatenation or addition. At the left side of Fig. 3, FractalNet is cascaded with four blocks (b = 4). Then the total number 
5

of convolutional layers in the deepest path of the whole network is b × 2(𝐶−1), which means that there are 32 layers in the entire 
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Fig. 3. Detailed FractalNet model architecture.

network. Between the two blocks, 2 × 2 max pooling layer and dropout layer are used to reduce both the size of feature maps and 
dependency of the network on specific neurons. Batch normalization and leaky ReLU are used after each convolution. Drop paths 
(as regularization strategy) are of two types: local and global drop paths. In global drop paths, one path is selected for the entire 
network. On the other hand, local drop paths have fixed probabilities to drop the inputs. It ensures that at least one path will survive. 
Drop-paths prevent co-adaption of parallel paths in a block by randomly dropping operands of the joining layer. Lastly, LightGBM 
uses leaf-wise generation strategy that can reduce training loss when growing the same leaf [35]. We use it as a classifier for final 
results as well as for improving the learning ability of the weak learners on the basis of training loss calculated. So, it gives 0 as 
output for fair consumption and 1 if theft is detected.

3. Simulation results and discussion

3.1. Experimentation setup

The Python scripts used for the proposed scheme are as follows:

1. 𝑆𝑐𝑖𝑘𝑖𝑡 − 𝑙𝑒𝑎𝑟𝑛 library is used for outlier detection and normalization. IFM is applied for removing outliers from the data. 
Furthermore, after removing the erroneous values, min-max normalization is applied to scale the data.

2. After preliminary processing, theft profiles are generated using the HOUBC strategy. FractalNet is built and trained using an 
open source library, i.e., TensorFlow [36].

3.2. Dataset availability

All the simulations are performed on the real smart meters’ data released by state grid corporation of China (𝑆𝐺𝐶𝐶)1 and 
available on cite2 [3]. Specifically, this dataset contains the record of 42,372 electricity consumers within the period of three years 
(from January 1, 2014 to October 31, 2016). The dataset is sorted according to dates. Column represents features in the form of 
dates, which means that it is a multi-variate dataset. Whereas, the EC values are observations given in the rows. Although, it contains 
some missing and erroneous values that need to be handled. It is a highly imbalanced data as it contains 38,757 honest consumers 
and only 3,615 dishonest consumers occupying nearly 9% of all the consumers. This implies that the electricity theft rate is quite 
serious in China.

3.3. Evaluation criteria

One of the most difficult challenges to tackle electricity theft is to choose suitable metrics for the evaluation of supervised machine 
learning models as the data is usually imbalanced. Attention should be paid in considering a metric that is suitable for this type of 
data. AUC is the most widely used performance metric to evaluate classification accuracy of a binary classifier at various threshold 
settings. It measures the quality of the model’s separability, i.e., how good it is at distinguishing between classes. An average classifier 
has 0.5 score of AUC. Whereas, an efficient classifier presents the AUC score near to 1. It is calculated by using the formula as given 

1 State Grid Corporation of China http://www .sgcc .com .cn/.
6

2 https://github .com /henryRDlab /ElectricityTheftDetection.
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Table 1

Hyperparameter settings of proposed model.

FractalNet Module

Parameters Values range Optimal value

N (layers) 20, 32, 60, 80 32

Kernel size 3, 4 3

Activation function Sigmoid, 
ReLU, Leaky 
ReLU

Leaky ReLU

Dropout 0.01, 0.1 0.01

Pooling Average, max max

Strides 2, 3 2

LightGBM Module

Parameters Values range Optimal value

max_depth 5, 10 5

lambda_l1 0.1 0.1

lambda_l2 0.001, 0.01 0.01

learning_rate 0.01, 0.1 0.1

Adam Optimizer

Parameters Values range Optimal value

learning_rate 0.001, 0.01 0.001

in [29]. ROC is the probability curve with two parameters, i.e., true positive rate (TPR) and false positive rate (FPR). MCC [29]

is also used for evaluating the performance of binary classifiers. It takes into account all the four outcomes of a confusion matrix, 
which indicate a reliable assessment of a classifier with imbalanced data. The values of MCC ranges between -1 to 1, i.e., from perfect 
prediction to completely inaccurate prediction. The objective of ETD detection is to increase TPR while, decreasing the FPR.

3.4. Simulation settings of the proposed model

All neural network models strongly rely on hyper-parameters, so we fine-tune their values and control the size of filters and hidden 
layers. We set the values using grid-search approach and monitor the performance of the proposed solution using the validation 
dataset. Table 1 shows the range of parameter values for our proposed model. Dropout and pooling layers are used after every fractal 
block. We set FractalNet with four blocks. Moreover, 2 × 2 non-overlapping max-pooling layer, dropout layer and subsampling are 
applied after each block. This reduces spatial resolution over the duration of the entire network. The number of layers selected for 
the FractalNet model is 32. By increasing layers to 60 or above, the number of parameters increases and the demand for large size 
data also increases, which further results in overfitting, high computational time and high error rate.

For LightGBM, three parameters are tuned. Maximum depth set for this method is 5, which limits the depth of the tree model. It 
is used to deal with overfitting problem for small sized datasets. Alpha is the learning rate, which means higher value of alpha results 
in faster initial training. Adam optimizer is used as it can handle sparse gradient on noisy data problems. It is a robust optimization 
technique, computationally less expensive and requires little memory. The configuration of Adam parameters is shown in Table 1.

3.5. FractalNet model results

To assess the performance of the proposed model, extensive experiments are performed. Fig. 4 shows the performance of our 
proposed model in terms of loss function. Here, two different splitting of dataset are considered, where proposed model is trained 
alternatively. SGCC dataset is first split into 60% training data and 40% validation data as shown in Fig. 4(a) to evaluate the model’s 
performance. The number of epochs is set to 30 to show clear representation of loss function values of the complex model at each 
epoch. As the number of epochs increases, the logarithmic loss (𝑙𝑜𝑔_𝑙𝑜𝑠𝑠) decreases gradually from 0.85 to 0.15 on both training and 
validation data.

However, there is a slight increase in loss of 0.4 at 15𝑡ℎ epoch during training due to overfitting, except this, the curve is visualized 
as a smooth curve. The difference between training and validation loss is minimum, which means that our model achieves best results 
for unseen data.

The performance of the proposed model is also assessed by dividing the dataset into 70% training data and 30% validation data 
as shown in Fig. 4(b). While, using 70% training data, training loss of the model ranges from 0.84 to 0.07. Although, there is an 
abrupt change in loss function during epochs 3 to 12 on both training and validation data. The curve becomes smooth after epoch 
15, which dictates well learning adaptability of the model. At 30𝑡ℎ epoch, 𝑙𝑜𝑔_𝑙𝑜𝑠𝑠 of the FractalNet method on training set is same 
as the loss on validation set. It can be seen that irrespective of increasing the ratio of training of the model, it performs better on 
validation data in both cases and continue to minimize loss at later epochs.

Furthermore, AUC-ROC and PR-AUC curves of the proposed model are also examined with existing SMOTE and Near Miss 
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sampling technique. AUC-ROC score with SMOTE method is 0.761 and with Near Miss undersampling AUC-ROC is 0.58 which is 
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Fig. 4. log_loss of FractalNet model on different data splitting ratios.

Fig. 5. AUC-ROC curve of FractalNet model with SMOTE and HOUBC.

Fig. 6. PR-AUC curve of proposed FractalNet model with SMOTE and HOUBC.

quite low as shown in Fig. 5(a) and Fig. 5(b). Similarly, AUC-ROC is 0.921 when applying HOUBC method for sampling as displayed 
in Fig. 5(c). PR-AUC without HOUBC technique is shown in Fig. 6(a) and Fig. 6(b) whose value is 0.77 and 0.67 for the proposed 
model. On the other side, PR-AUC gives the score of 0.904 with HOUBC on validation dataset, which means that the proposed model 
gives outstanding results with HOUBC sampling technique as displayed in Fig. 6(c).

The proposed model is employed for the enhanced performance in terms of electricity theft detection thereby not majorly focusing 
on the computational cost. The computational cost of FractalNet is reduced by using it with light boosting method to learn from 
mistakes and give accurate results. It also has reduced the burden of manual feature extraction as FractalNet have the capability to 
extract the features with less computational cost. Although, FractalNet being deep learning model has computational time complexity 
of 1.5 h because of hardware constraints i.e., unavailability of graphical processing unit. The main aim of ETD is to perform accurate 
prediction i.e., false positive rate rather than computational complexity of the models.

3.6. Simulation settings for benchmark methods

The performance of the proposed model is compared with benchmark models for ETD. The benchmarks used for comparison 
are DenseNet, W&D CNN [3], CNN-LSTM [6], GRU [9], hybrid LSTM [23], XGBoost and SVM. We set generic parameters of the 
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traditional models and proposed model at the values where it performs best at training. Extensive simulations are performed to 
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Table 2

Hyperparameters of benchmark methods.

Hyperparameters setting

Methods Input data Parameters setting

XGBoost 1-D Learning rate: 0.01, Maximum depth: 9, 
Number of trees: 1000, Min child wgt: 10

SVM 1-D C: 1.0, gamma: 0.1

CNN-LSTM 1-D, 2-D N (layers): 10, Number of units: 30, Leaky 
ReLU-alpha: 0.001, Dropout: 0.1

LSTM-MLP 1-D N (layers): 4, Number of units: 256, LSTM 
layers: 512, MLP layers: 512, Dropout: 0.1

DenseNet-FCN 2-D N (layers): 67, Number of filters: 64, 
Kernel size: 3, Activation function: Leaky 
ReLU, Dropout: 0.1, Pooling: max, 
Strides: 2

GRU 1-D N (layers): 10, Number of units: 30, Leaky 
ReLU-alpha: 0.001, Dropout: 0.1

Fig. 7. Comparison between TPR and FPR for all models.

Fig. 8. Results for PR-AUC curve comparison of all models.

find the appropriate values of hyperparameters on which proposed model performs the best. Specifically, we do not employ any 
mechanism to tune the hyperparameters of the proposed solution because it is a deep neural network, which requires extensive 
time to find optimal hyperparameters’ values. Therefore, the proposed solution is trained and tested on its best hyperparameters’ 
configuration where it efficiently minimizes the loss and improves the ETD results using real EC data. The same strategy is applied 
to the benchmark methods. The hyperparameter settings of the benchmarks are given in Table 2.

3.7. Comparison and discussion

In this section, we compare the proposed model with widely adopted and most recent ETD methods mentioned in the literature. 
For a fair comparison, the proposed preprocessing steps are applied to all models and the performances of the models are evaluated 
using SGCC dataset. AUC-ROC score of the proposed model is 0.921 as shown in Fig. 7. Whereas, DenseNet, W&D CNN and CNN-

LSTM have AUC-ROC score ranges between 0.78-0.82 with less FPR. However, other models such as XGBoost, GRU and LSTM have 
a high FPR with AUC-ROC score of 0.65-85. The reason is that hybrid models show improved performance as compared to single 
classification models. The probability curve of our proposed model covers more area by learning from past mistakes and gives better 
results. It is also observed in Fig. 8 that the PR-AUC value of our proposed model is approximately 1, as compared to other models. 
9

This means that the proposed model has the capability to accurately detect fair consumers despite of the unusual changes in EC. 
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Fig. 9. Comparison between precision and recall based on PR-AUC for all models.

Table 3

Comparison of the proposed model with benchmarks based on seven performance metrics.

Metrics DenseNet W&D CNN CNN-LSTM GRU Hybrid-LSTM XGBoost SVM Proposed Model

AUC-ROC 0.841 0.802 0.906 0.748 0.866 0.752 0.658 0.921

MCC 0.902 0.803 0.817 0.748 0.732 0.756 0.678 0.942

F1-score 0.924 0.823 0.901 0.784 0.869 0.762 0.648 0.933

Precision 0.892 0.84 0.870 0.788 0.849 0.793 0.688 0.942

Recall 0.903 0.861 0.905 0.808 0.826 0.752 0.667 0.961

PR-AUC 0.844 0.846 0.853 0.908 0.812 0.756 0.652 0.904

Accuracy 0.958 0.865 0.906 0.848 0.866 0.804 0.783 0.962

Moreover, other models have PR-AUC scores ranging between 0.7-0.85, except the SVM model, whose performance is worst in terms 
of precision and recall. It can be seen from AUC-ROC and PR-AUC results that our model performs the best by accurately detecting 
electricity theft and honest cases. Bar chart in Fig. 9 briefly describes that the SVM does not perform well on the imbalanced dataset. 
Even though, balanced data is given to improve its performance ability; however, it still gives underrated performance because of 
high dimensional data. Table 3 shows that the proposed model achieves 0.921, 0.942, 0.933, 0.942, 0.961, 0.904 and 0.962 for 
AUC-ROC score, MCC score, F1-score, precision, recall, PR-AUC score and accuracy, respectively. Besides this, other existing models 
perform well in terms of precision whose values range between 0.70-0.85. Nonetheless, our proposed model outperforms all these 
models.

4. Conclusion and future work

This paper presents a unique sampling technique, HOUBC to sample the data so that both honest and electricity theft cases are 
equally learned by supervised machine learning methods. This paper also demonstrates the usage of a new deep learning model, 
FractalNet with LightGBM for ETD. In general, the proposed model mainly consists of STL method that separates seasonality and 
trend in customer EC patterns. FractalNet module performs further feature extraction and learns those features. Finally, LightGBM is 
used to give final classification results and to boost weak learners. We conduct comprehensive simulations on realistic smart meters’ 
data provided by SGCC. The simulations show that the proposed model outperforms existing methods such as W&D CNN, DenseNet, 
CNN-LSTM, hybrid LSTM, GRU, XGBoost and SVM in terms of low FPR and high TPR. Our proposed solution can be generally 
applied to other scenarios, especially for industrial or economic applications. For future work, we plan to reduce computational 
complexity of the proposed model and then compare its computational complexity with the benchmark methods. We also plan to 
detect electricity theft using datasets from different countries by the proposed scheme to determine its resilience and efficacy in the 
electricity distribution system.

Additional information

No additional information is available for this paper.

CRediT authorship contribution statement

All authors listed have significantly contributed to the investigation, development and writing of this article.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
10

influence the work reported in this paper.



Heliyon 9 (2023) e18928A. Naeem, N. Javaid, Z. Aslam et al.

Data availability

Data included in article/supplementary material/referenced in this article.

References

[1] Y. Gao, B. Foggo, N. Yu, A physically inspired data-driven model for electricity theft detection with smart meter data, IEEE Trans. Ind. Inform. 15 (2019) 
5076–5088.

[2] T.B. Smith, Electricity theft: a comparative analysis, Energy Policy 32 (2004) 2067–2076.

[3] Z. Zheng, Y. Yang, X. Niu, H.-N. Dai, Y. Zhou, Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids, IEEE Trans. Ind. 
Inform. 14 (2018) 1606–1615.

[4] M.A. de Souza, J.L. Pereira, G.D.O. Alves, B.C. de Oliveira, I.D. Melo, P.A. Garcia, Detection and identification of energy theft in advanced metering infrastruc-

tures, Electr. Power Syst. Res. 182 (2020) 1–12.

[5] S.K. Singh, R. Bose, A. Joshi, Entropy-based electricity theft detection in AMI network, IET Cyber-Phys. Syst. Theory Appl. 3 (2017) 99–105.

[6] M. Hasan, R.N. Toma, A.-A. Nahid, M. Islam, J.-M. Kim, Electricity theft detection in smart grid systems: a CNN-LSTM based approach, Energies 12 (2019) 
3310–3322.

[7] Y. Liu, T. Liu, H. Sun, K. Zhang, P. Liu, Hidden electricity theft by exploiting multiple-pricing scheme in smart grids, IEEE Trans. Inf. Forensics Secur. 15 (2020) 
2453–2468.

[8] M. Adil, N. Javaid, U. Qasim, I. Ullah, M. Shafiq, J.G. Choi, LSTM and bat-based RUSBoost approach for electricity theft detection, Appl. Sci. 10 (12) (2020) 
4378–4399.

[9] Q. Tao, F. Liu, Y. Li, D. Sidorov, Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional GRU, IEEE Access 7 (2019) 
76690–76698.

[10] Z. Aslam, N. Javaid, A. Ahmad, A. Ahmed, S.M. Gulfam, A combined deep learning and ensemble learning methodology to avoid electricity theft in smart grids, 
Energies 13 (21) (2020) 5599–5623.

[11] V.B. Krishna, R.K. Iyer, W.H. Sanders, ARIMA-based modeling and validation of consumption readings in power grids, in: International Conference on Critical 
Information Infrastructures Security, vol. 9578, 2015, pp. 199–210.

[12] M.S. Saeed, M.W. Mustafa, U.U. Sheikh, T.A. Jumani, N.H. Mirjat, Ensemble bagged tree based classification for reducing non-technical losses in Multan electric 
power company of Pakistan, Electronics 8 (860) (2019) 1–18.

[13] G. Micheli, E. Soda, M.T. Vespucci, M. Gobbi, A. Bertani, Big data analytics: an aid to detection of non-technical losses in power utilities, Comput. Manag. Sci. 
16 (2019) 329–343.

[14] R. Punmiya, S. Choe, Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing, IEEE Trans. Smart Grid 10 
(2019) 2326–2329.

[15] J. Nagi, K.S. Yap, S.K. Tiong, S.K. Ahmed, M. Mohamad, Nontechnical loss detection for metered customers in power utility using support vector machines, IEEE 
Trans. Power Deliv. 25 (2009) 1162–1171.

[16] J. Nagi, K.S. Yap, S.K. Tiong, S.K. Ahmed, F. Nagi, Improving SVM-based nontechnical loss detection in power utility using the fuzzy inference system, IEEE 
Trans. Power Deliv. 26 (2011) 1284–1285.

[17] S.K. Singh, R. Bose, A. Joshi, Entropy-based electricity theft detection in AMI network, IET Cyber-Phys. Syst. Theory Appl. 3 (2018) 99–105.

[18] A. Maamar, K. Benahmed, A hybrid model for anomalies detection in AMI system combining k-means clustering and deep neural network, Comput. Mater. 
Continua 60 (1) (2019) 15–39.
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