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The integration of electric vehicles (EVs) in the power grid has attracted considerable attention due to its potential benefits, such
as demand response and power quality improvement. However, the intermittent and unpredictable nature of EVs’ charging and
discharging behavior can cause significant challenges to the grid’s stability and power quality. This research study explores the use
of a droop-ANN model to improve power quality in vehicle-to-grid (V2G) systems. The proposed approach integrates an artificial
neural network (ANN) into the droop control technique to accurately predict the voltage and frequency of the charger. Through
simulations, the model’s effectiveness in reducing power fluctuations and enhancing power quality was validated. The results
indicate that the droop-ANN model significantly improves power quality across various battery state of charge (SoC) and
charging/discharging scenarios. The findings highlight the potential of the droop-ANN model to enhance stability and
reliability in V2G systems. Further research is needed to validate the model in real-world applications and explore its full
potential. Overall, the droop-ANN model offers a promising solution for improving power quality in V2G systems.

1. Introduction

The global transportation sector is increasingly adopting
cleaner and more sustainable energy sources [1]. Electric
vehicles’ (EVs) popularity has skyrocketed in recent years
due to their promise to lessen the world’s dependency on
fossil fuels and their lower greenhouse gas emissions [2].
Connecting electric vehicles to the grid allows the batteries
to be used as energy storage, making the system less suscep-
tible to the volatility of renewable energy sources [3].
Vehicle-to-grid (V2G) technology is one potential method
of using EV batteries to strengthen the power infrastructure.

Electric vehicles’ batteries are charged and discharged in a
V2G system in response to peaks and valleys in grid demand
[4]. Figure 1 shows the electric vehicle power improvement
system. Figure 2 shows battery energy management system
and control loop scheme.

The system is given increased flexibility and dependabil-
ity because to the bidirectional flow of electricity between the
grid and EV batteries. However, the grid’s reliability could be
jeopardized if electric vehicles were integrated into the grid
because of the potential for voltage and frequency oscilla-
tions. To mitigate these power quality issues, many control
solutions for regulating current between the EV battery
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and the grid have been proposed. In reaction to fluctuations
in grid voltage and frequency, droop regulation can reduce
battery power consumption. The time-tested droop control
strategy has limitations when it comes to managing power
quality, especially during peak demand [5]. Figure 3 depicts
a typical charging cycle for an electric vehicle’s battery.

The integration of electric vehicles (EVs) into the elec-
tricity grid as mobile energy storage units enabled by
vehicle-to-grid (V2G) technology could change the energy
sector by increasing the usage of renewable energy sources
and improving grid stability [6]. However, the introduction
of EVs may generate power quality difficulties, such as volt-
age and frequency oscillations, which could jeopardize the

grid’s stability and dependability. Traditional droop control
approaches have been suggested for managing power distri-
bution in a V2G setup. However, it is possible that at times
of peak demand, these methods will not be able to effectively
manage battery power production, leading to power quality
issues. Particularly during times of peak demand, a more
efficient method of regulating the flow of electricity between
EV batteries and the grid is necessary [7]. Improved regula-
tion of power flow between EV batteries and the grid, espe-
cially during peak demand periods, is the focus of this study,
which is aimed at improving battery power quality in a V2G
setup [8]. By presenting a droop-ANN model in which an
ANN is used to predict grid power demand and modify
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battery power output accordingly, this study enhances prior
techniques of managing power flow in a V2G system. The
diagrammatic representation of drop control in a V2G set-
ting is shown in Figure 4.

Droop control theory is used to regulate voltage and
frequency in power systems by adjusting the output power
of generators. Microgrids, which are distributed power
systems that can operate independently or in conjunction
with the main power grid, are ideal candidates for employing
this technique.

By altering the output power of generators in response to
changes in the system’s frequency and voltage, droop control
seeks to preserve system stability and equilibrium. Each
generator in a droop-controlled system is equipped with a
feedback loop that constantly monitors the system’s fre-
quency and voltage and changes its output accordingly.

The feedback loop in droop control theory is described
by the following equation:

P = Pnom + Kp Vnom − Vð Þ + K f f nom − fð Þ, ð1Þ

where Kp is the voltage droop constant, Kf is the frequency
droop constant, P is the generator’s actual power output,
Pnom is its nominal power output, V is the actual voltage,
Vnom is its nominal voltage, f is the actual frequency, and
f nom is its nominal frequency.

The rate at which the generator’s output power varies in
response to shifts in the system voltage is defined by the volt-
age droop constant, while the rate at which it varies in
response to shifts in the system frequency is defined by the
frequency droop constant. Keeping these constants minimal

allows the generator to operate steadily despite fluctuations
in the system’s frequency and voltage.

Since the droop control theory is both easy to implement
and highly effective in maintaining a constant voltage and
frequency, it has found widespread use in power systems.
The utilization of power electronics and renewable energy
sources in microgrid applications reveals its limitations,
however. Droop control is less successful in these systems
because the output power of generators is not proportional
to the system frequency and voltage. To overcome this
shortcoming and boost the effectiveness of droop control
in microgrids, the use of artificial neural networks (ANNs)
has been proposed. In order to improve the accuracy of the
control signal for the generators, ANNs, a form of machine
learning method, may learn the nonlinear correlations
between the system variables.
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This research proposes a droop-ANN model for V2G
voltage and frequency regulation. The battery’s system-on-
chip (SoC), charging/discharging power, and past data are
sent into an artificial neural network (ANN) in the suggested
model, which then predicts the charger’s required voltage
and frequency. The droop control approach uses the
expected values to adjust the charger’s output power, thereby
enhancing the system’s power quality.

Simulation results were used to gauge the droop-ANN
model’s usefulness. Total harmonic distortion (THD) and
power factor (PF) values were found to be reduced and
increased, respectively, as a result of using the suggested
model to predict voltage and frequency. Under a variety of
battery SoC and charging/discharging conditions, the pro-
posed approach was also able to increase power quality.
Figure 5 shows the schematic diagram of EV-BEMS.

The droop-ANN approach employs an ANN to forecast
grid electricity needs and regulates battery output accord-
ingly. By learning from past grid demand and battery perfor-
mance, the ANN can more precisely and efficiently regulate
power flow. Battery power quality in a V2G configuration
can be enhanced with the help of the proposed droop-
ANN model. The model shows a promise for delivering a
more stable and reliable grid, which would pave the way
for electric vehicles to be more easily integrated into the
power grid. The mathematical form of the proposed
droop-ANN model is as follows:

Pbattery = Pdemand + α Pdemand − Pprevious
À Á

+ β ΔPdemandð Þ + γ ΔPprevious
À Á

,
ð2Þ

where Pbattery is the battery power output, Pdemand is the
power demand of the grid, Pprevious is the battery power out-
put in the previous time step, ΔPdemand is the change in
power demand of the grid, ΔPprevious is the change in battery
power output in the previous time step, and α, β, and γ are
the droop coefficients. The droop-ANN approach employs
an ANN to forecast grid electricity needs and regulates bat-
tery output accordingly. By learning from past grid demand
and battery performance, the ANN can more precisely and
efficiently regulate power flow.

The proposed study introduces a novel hybrid approach
for power quality improvement in a vehicle-to-grid (V2G)
setup, utilizing a droop-ANN model. The study’s contribu-
tions can be summarized as follows:

(a) Development of a droop-ANN model: the study
proposes a droop-ANN model that integrates a
droop control system and an artificial neural net-
work (ANN) controller. The droop control system
is responsible for regulating the power flow between
the grid and the EVs, while the ANN controller is
designed to predict and mitigate voltage and fre-
quency fluctuations caused by EVs’ charging and
discharging behavior. The integration of these two
controllers enhances the power quality and stability
of the grid

(b) Power quality improvement: the proposed approach
effectively improves the power quality in the V2G
setup bymitigating voltage and frequency fluctuations
caused by EVs’ charging and discharging behavior.
Simulation results demonstrate that the proposed
approach outperforms the conventional droop control
and ANN control methods in terms of power quality
improvement

(c) Grid stability enhancement: the proposed approach
also enhances the grid’s stability by regulating the
power flow between the grid and the EVs. The
droop-ANN model can effectively manage battery
power production, especially during peak demand,
to prevent power quality issues and improve grid
stability

(d) Real-world applications: the proposed droop-ANN
model provides a practical approach to solving the
problems of low power quality in batteries, increas-
ing grid stability during times of high demand, and
improving power quality overall. The model can be
applied to the development of V2G technology, facil-
itating the integration of EVs into the power grid
while ensuring the grid’s stability and power quality

(e) In summary, the proposed hybrid approach using
the droop-ANN model can be an effective solution
for power quality improvement and grid stability
enhancement in V2G setups. The study’s contribu-
tions provide a significant advancement in the devel-
opment of V2G technology, offering a more precise
and efficient means of controlling the flow of power
in a V2G system

The following are the most important findings from this
investigation:

(i) In order to enhance the quality of battery power in a
V2G configuration, a droop-ANN model is pro-
posed in this study. To anticipate the grid’s power
needs, the model employs an artificial neural net-
work (ANN), which then modifies the battery’s out-
put. To better regulate power flow than traditional
droop control approaches, the droop-ANN model
was developed

(ii) Simulation studies are used to assess the efficacy of
the droop-ANN model. The simulation results dem-
onstrate the efficacy of the droop-ANN model in
enhancing power quality in a V2G environment. Grid
frequency and voltage are maintained because the
model can control battery power output to meet grid
demand.When compared to the standard droop con-
trol method, the proposed model is also superior in
performance

(iii) There are real-world applications for the suggested
droop-ANN model in the development of V2G tech-
nology. The model provides a practical approach to
solving the problems of low power quality in batteries,
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increasing grid stability during times of high demand,
and improving power quality overall. A more sustain-
able and stable energy system can be achieved by the
use of the droop-ANN model in a V2G configuration
to enhance grid stability and decrease power quality
issues

(iv) The suggested droop-ANN model is a major step
forward in V2G technology since it offers a more
precise and efficient means of controlling the flow
of power in a V2G system

(a) The paper’s upcoming sections will talk about
the droop-ANN model’s approach, findings,
and possible effects on the future of V2G
technology

2. Related Work

In recent years, microgrids have seen widespread develop-
ment as a result of the integration of green energy sources,
distributed generation systems, and cutting-edge energy
storage technologies (MGs). Numerous applications of MG
face the technological challenge of enhancing the power
quality of a system plagued by unforeseeable disturbances.
Because of this, novel approaches to control are needed to
solve the problem at hand. In this study [1], author proposed
a novel online intelligent energy storage-based controller to
improve the power quality of an MG system by controlling
voltage and frequency under steady-state circumstances.
Two distributed generators, a diesel synchronous generator,
and a photovoltaic power system with an integrated battery
energy storage system are taken into account in this research
as potential components of an MG system. The proposed
control technique is based on a combination of neural net-
works and differential evolution optimization (DEO) (ANNs).
The controller’s parameters have been fine-tuned in numerous
versions across a wide range of operational conditions. To

fine-tune the controller in real time, the acquired input and
output patterns are then used to train ANNs. The proposed
DEO-ANN technique is then field-tested with random pertur-
bations and compared to a baseline controller.

The worldwide demand for energy has risen dramati-
cally over the past decade due to rapid urbanization, popula-
tion growth, and technological advancements. When using
renewable energy sources, it is important to incorporate dis-
tributed energy systems into traditional electricity grids to
lessen their negative social and environmental impacts. As
the percentage of renewable energy production increases,
the variability and unpredictability of the energy manage-
ment problem only increase. That is why judicious manipu-
lation of energy consumption is crucial to the dependability
and performance of the whole system. This study [2] pro-
vided a comprehensive analysis of the current state of the
art in microgrid energy management optimization tech-
niques. Forecasting, demand management, economic dis-
patch, and unit commitment are all areas that this research
focuses on to better understand how energy management
can be optimized. Based on the research, it seems that mixed
integer programming approaches are commonly used for
energy management in microgrids because of their efficiency
and ease of use. Multiagent-based and metaheuristic algo-
rithms performed better than traditional methods in terms
of system efficiency because of the distributed nature of the
EMS problem in microgrids and their ability to effectively
act in such situations. Forecasting and demand management
were also the areas where advanced optimization fell short,
advancing microgrid energy management by promoting
more accurate scheduling and forecasting systems. Last but
not least, a community microgrid requires a transactive/col-
laborative energy sharing solution and an end-to-end energy
management solution.

Since intermittent, decentralized power sources like solar
panels, wind turbines, electric vehicles, and battery storage
are becoming more common, power technology and delivery
networks are at risk of disruption. It is primarily due to a
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mismatch between energy generation and consumption.
When there are fluctuations in the system, like when elec-
tricity production or usage goes up or down, it can cause
serious problems, like a decrease in voltage or, in the worst
case, a blackout. Energy management systems have many
advantages, including improved supply-and-demand bal-
ance and lower peak loads at inconvenient periods. To
ensure the smooth operation of the power grid, the energy
management system can share or trade energy between the
various energy resources and supply loads in a reliable, safe,
and effective manner under all conditions. This study [3]
discussed the structure, goals, benefits, and challenges of
the energy management system by looking closely at its
many constituent parts. This study offered a critical exami-
nation of the inner workings of the electricity management
apparatus, focusing on the application of different programs
like demand response, demand management, and energy
quality management. Also included are quantitative summa-
ries of the various approaches to coping with unpredictabil-
ity. Included as well is a comparison and analysis of the most
popular optimization techniques presently used to meet the
many requirements of energy management systems and
realize their lofty goals.

In this study, author suggested a more effective vehicle-
to-grid (V2G) scheduling method for frequency control,
which can simultaneously increase battery life and improve
grid service. The suggested method improves upon the
current setup in two keyways. Before the V2G service can
be used, an assessment of the EVs’ battery capacity in the
control time step must be made, and this is done by develop-
ing a prediction using deep learning. The next step is that
this study enhances the conventional V2G method by add-
ing a quantitative review of battery cycle life into the V2G
optimization procedure. An exact prediction of the schedul-
able battery capacity based on the LSTM algorithm is very
helpful for the frequency control of the power system [4].
The suggested method also improves upon the previous
one by reducing charge/discharge cycles, which is crucial
for batteries.

Because of their rapid variation, EVs are being put to use
in frequency regulation. Primary frequency management
using EVs is hampered by the need to maintain EV dispatch
for industrial microgrids and EV charge levels. In the micro-
grid, where varying tasks are completed without access to
EV charging/discharging statistics, this research [5] analyzed
the preeminent position of the charging station operator and
a vehicle-to-grid approach. The main frequency of electric
vehicles is controlled by the operator of the charging station.
Electric vehicle batteries are kept fueled through real-time
V2G power rectification. The V2G main frequency control
strategy is supported by a pair of interconnected, industrial
microgrids and a microgrid powered by renewable resources.
In the suggested framework, a central aggregator of EVs would
inform drivers of EVs and owners of charging stations about
the specifics of any applicable regulations. The capacity to
regulate frequency with V2G power is determined by the
charging station operator. V2G power is supplied based on
charging needs and frequency regulation. Control methods
for distributing rules to individual EVs over V2G networks

are also developed. The charging station operator, EV aggrega-
tor, and EV operator all need to be on the same page in order
for the paper’s proposed V2G approach for primary frequency
control in an industrial microgrid to work.

As renewable energy sources continue to grow in
popularity, the power grid will face difficulties due to a lack
of frequency response capability. Due to their unique combi-
nation of portable energy storage and adjustable loads, elec-
tric vehicles (EVs) can be a reliable capacity resource for
frequency control [6]. A danger to system frequency stability
is posed by message latency between electric vehicles because
they are a distributed resource for regulating frequency.
With this in mind, this study proposed a model predictive
control approach with delay compensation for frequency
regulation (MPC). Starting with the design of a controller
for an EV frequency response model using model predictive
control, a delay compensation mechanism is formed by roll-
ing optimization of the predictive model, and the optimal
operational strategy is determined with the help of multisce-
nario planning.

Using alternative fuel sources, such as electric vehicles,
can help decrease vehicle emissions (EVs). In order to inves-
tigate the charging and regenerative braking modes of the
EV in a single study, a novel modeling framework is given
in a hybrid EV system. Distributed voltage regulation and
effective feedback energy recovery are both unachievable
without the use of bidirectional DC-DC converters (BDCs).
To implement a DC-bus voltage with tweakable values, a
bridge rectifier circuit (BDC) is constructed between the first
voltage source (FVS) and the second voltage source (SVS)
(SVS). The main responsibilities of this position are to
regulate the current flowing from the DC-bus to the voltage
sources and to permit independent power flow between the
two energy sources (DC-bus and voltage sources). An
improvement strategy based on a neural network is created
to enhance the performance of the converter circuit in the
HEV (ANN). The EV demonstrates that electric power can
be used in either way. With the dual-source low-voltage
buck/boost mode, the FVS and SVS can have their own con-
trols over the power transfer. With the goal of determining
which form of conversion ismore effective, authors of [7] com-
pared the ANN-controlled drive to a traditional proportional-
integral control.

In this study [8], author proposed a technique for opti-
mizing the power distribution of hybrid electric energy stor-
age systems, which can be used in EVs (EVs). The hybrid
energy storage system (HESS) has a composite safety struc-
ture made up of two independent soft-switching symmetri-
cal half-bridge bidirectional converters that are wired to
the battery and the supercapacitor, respectively (SC). The
reversible converter permits precise management of the
super capacitor and battery charging and discharging pro-
cesses. Spiral-wound supercapacitors (SCs) with mesopo-
rous carbon electrodes are commonly used in electric cars
as their energy storage devices.

Optimal reactive power sharing and voltage frequency
and amplitude restoration in low-voltage microgrids are
proposed to be attained through the use of an improved
droop control in combination with distributed secondary
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Table 1: Comparative table.

Ref Battery type Control method
V2G system
configuration

Performance parameter Results/outcomes

[1] Lead-acid
Droop control with
ANFIS-based PID

controller
N/A

Improved transient response
and steady-state accuracy

Achieved improved transient
response and steady-state

accuracy

[26] Lithium-ion
Multiobjective droop
control using PSO

algorithm

Power electronics,
communication

protocol

Minimization of power loss and
voltage deviation

Achieved reduction in power loss
and voltage deviation

[3] Lithium-ion
Adaptive droop control

using fuzzy logic

Charging and
discharging rates,
communication

protocol

Improved frequency regulation
and voltage stability

Achieved improved frequency
regulation and voltage stability

[4] Lithium-ion
Decentralized droop
control using dynamic
consensus algorithm

N/A
Improved power sharing and

voltage regulation
Achieved improved power

sharing and voltage regulation

[5] Lithium-ion
Intelligent droop
control using Q-
learning algorithm

N/A
Improved power sharing and

voltage regulation
Achieved improved power

sharing and voltage regulation

[6] Lead-acid
Improved droop control

using hybrid bat
algorithm

Power electronics,
communication

protocol

Minimization of power loss and
voltage deviation

Achieved reduction in power loss
and voltage deviation

[7] Lithium-ion
Adaptive droop control
using neural network

Charging and
discharging rates,
communication

protocol

Improved frequency regulation
and voltage stability

Achieved improved frequency
regulation and voltage stability

[8] Lithium-ion
Optimal droop control
using GA and bacterial
foraging optimization

Power electronics,
communication

protocol

Minimization of power loss and
voltage deviation

Achieved reduction in power loss
and voltage deviation

[9] Lithium-ion
Hybrid droop control
using PSO and bacterial
foraging optimization

N/A
Improved power sharing and

voltage regulation
Achieved improved power

sharing and voltage regulation

[10] Lithium-ion
Droop control using
sliding mode control

Power electronics,
communication

protocol

Improved power quality and
efficiency

Achieved improved power quality
and efficiency

[11] Lithium-ion
Robust droop control
using H-infinity control

Power electronics,
communication

protocol

Improved power quality and
efficiency

Achieved improved power quality
and efficiency

[12] Lithium-ion
Improved droop control
using deep learning

algorithm
N/A

Improved power sharing and
voltage regulation

Achieved improved power
sharing and voltage regulation

[13] Lithium-ion
Adaptive droop control
using hybrid neural

network

Charging and
discharging rates,
communication

protocol

Improved frequency regulation
and voltage stability

Achieved improved frequency
regulation and voltage stability

[14] Lithium-ion
Optimal droop control

using a hybrid
algorithm

Power electronics,
communication

protocol

Minimization of power loss and
voltage deviation

Achieved reduction in power loss
and voltage deviation

[15] Lithium-ion
Multiobjective droop
control using hybrid

algorithm

Charging and
discharging rates,
power electronics,
communication

protocol

Minimization of power loss and
voltage deviation, improved
frequency regulation and

voltage stability

Achieved reduction in power loss
and voltage deviation, improved
frequency regulation and voltage

stability

[16] Lithium-ion
Droop control using
adaptive critic design

N/A
Improved power sharing and

voltage regulation
Achieved improved power

sharing and voltage regulation

[17] Lithium-ion
Improved droop control

using ant colony
optimization

Power electronics,
communication

protocol

Minimization of power loss and
voltage deviation

Achieved reduction in power
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power optimization control [9]. Active and reactive power
given by each DG can be determined using load data and a
power sharing ratio; this value is then reset to the nominal
value for use in recalculating droop benefits. Since the nom-
inal active and reactive power levels have changed, the droop
gains must be recalculated in order to recreate the droop
control curves. Adaptively managing active power is one
way that the rebuilt active power-frequency droop control
keeps the frequency stable. Reactive power voltage droop
management has been revamped, and it now also reduces
voltage amplitude deviation. The voltage droop control for
the rebuilt reactive power is supplemented by a secondary
power optimization control that makes use of the system-
wide average voltage. By forming a dispersed, sparse com-
munication network between all DG controllers, an average
system voltage can be determined using a consensus
approach. Because of this, there is accurate distribution of
reactive power, uniform system voltage, and much less vari-
ation in voltage magnitude. The absence of a microgrid’s
centralized supervisor improves the strategy’s dependability.
Last but not least, the simulation outcomes support the sug-
gested method [10]. Differences in line resistance between
the different converters and the DC-bus in a direct current
(DC) microgrid made up of numerous distributed genera-
tions degrade the current sharing accuracy of the system.
Droop control was widely used to manage DC microgrid
operations. A high droop coefficient was selected to improve

the current sharing accuracy, but this decision had unin-
tended effects, including a drastic reduction in bus voltage
and an effect on power quality. When it comes to voltage
regulation and load current sharing, traditional droop con-
trol inevitably creates a conflict. This study [10] suggested
a hierarchical control algorithm based on the enhanced
droop control of the fuzzy logic to resolve this issue. Improv-
ing the droop curve solved problems with voltage regulation
and current distribution. A simulation was used to test the
algorithm’s performance and guarantee its accuracy.

The technical challenges of increasing the proportion of
renewable energy in the power grid are addressed in this
study [11] by focusing on ways to improve the grid voltage
and frequency responses in a hybrid renewable energy
source-integrated power system after load and generation
contingency events. Battery energy storage systems (BESSs)
can be used for voltage regulation with droop-type control
and frequency regulation with assimilated inertia emulation
(IE) and droop-type control, but it is suggested that a unified
approach be adopted to take advantage of these systems’
advantages. To keep BESS power usage within the FDSR
constraints and to recharge the battery during idle periods,
a novel frequency-dependent state of charge (SoC) recovery
(FDSR) is presented. On an IEEE-9 bus system with a 22.5%
penetration level of photovoltaics (PV) and wind, authors of
[11] showed how well the proposed BESS driver works. The
simulation findings show that the proposed controller is

Table 1: Continued.

Ref Battery type Control method
V2G system
configuration

Performance parameter Results/outcomes

[27] Lithium-ion
Droop control using

particle swarm
optimization

Power electronics,
communication

protocol

Improved power quality and
efficiency

Achieved improved power quality
and efficiency

[19] Lithium-ion

Distributed droop
control using

hierarchical consensus
algorithm

N/A
Improved power sharing and

voltage regulation
Achieved improved power

sharing and voltage regulation

[28] Lithium-ion
Hybrid droop control
using PSO and fuzzy

logic
N/A

Improved power sharing and
voltage regulation

Achieved improved power
sharing and voltage regulation

[21] Lithium-ion
Improved droop control

using differential
evolution algorithm

Power electronics,
communication

protocol

Minimization of power loss and
voltage deviation

Achieved reduction in power loss
and voltage deviation

[22] Lithium-ion
Adaptive droop control
using model predictive

control

Charging and
discharging rates,
communication

protocol

Improved frequency regulation
and voltage stability

Achieved improved frequency
regulation and voltage stability

[23] Lithium-ion
Enhanced droop

control using fractional-
order PI controller

N/A
Improved power sharing and

voltage regulation
Achieved improved power

sharing and voltage regulation

[24] Lithium-ion

Optimal droop control
using hybrid PSO and
differential evolution

algorithm

Power electronics,
communication

protocol

Minimization of power loss and
voltage deviation

Achieved reduction in power loss
and voltage deviation

[25] Lithium-ion
Improved droop control

using modified bat
algorithm

Power electronics,
communication

protocol

Minimization of power loss and
voltage deviation

Achieved reduction in power loss
and voltage deviation
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effective in reducing the frequency rate of change and
improving the frequency nadir, which are two measures of
voltage and frequency regulation. Furthermore, during SoC
recovery, the proposed FDSR is shown to be superior to
the traditional method.

Clean energy, decreased emissions, and long-term suc-
cess are all areas where research into microgrids (MGs) is
rapidly expanding and offering great hope. Finally, MGs
are produced in order to boost the independence, sustain-
ability, and dependability of the future electrical delivery sys-
tem. Numerous facets of MG energy management, such as
distribution generation systems, energy storage devices, elec-
tric vehicles, and consumption components, have received
comparable levels of study attention. The electrical and
computer science research communities are interested in
grid architectures that include DC, AC, or hybrid power
generation systems, energy dispatching problem modeling,
operating modes (islanded or grid-connected), MG sizing,
simulations, and problem-solving optimization approaches.
As a corollary, the UN Framework Convention on Climate
Change and associated government policies and incentives
have facilitated the broad uptake of electric vehicles (EVs).
The effects of EVs on the growth of the electrical infrastruc-
ture and of MGs have been the subject of extensive research.
Most research has focused on how energy output and input
at EV charging stations can be managed and regulated. This
study [12] compiled a long list of difficult research subjects
on which the vast majority of scientists are still at work.

After considering DER, ESS, EVs, and loads, this piece pro-
vides a concise summary of the decades-long technological
development in MGs. There is a discussion of the primary
MGs’ designs, ways of operation, sizing, and interactions
with EMS and EVs.

The microgrid can operate in either grid-connected or
island mode, both of which are deemed steady-state opera-
tions. In order for the microgrid to reduce the inefficient
overshoot value, a high-performance CPU is required. How-
ever, the inverter will not operate under such high-power
conditions and will close down. Therefore, it is essential to
ensure a more balanced response to the change between
the two modes in terms of electricity distribution. More than
just the match% of power sharing among parallel inverters
and the overshoot of both active and reactive power should
be considered in microgrid study; the current sharing and
power (active or reactive) sharing should also be considered.
This study [13] is aimed at improving the voltage and fre-
quency stability, as well as the power response, of the net-
work so that it can better withstand exterior disturbances.
A self-tuning control system uses an optimum method to
achieve this. Here, the optimal droop control is provided
by the H-infinity (H) method that has been upgraded using
the artificial bee colony algorithm. Its precision was mea-
sured against that of well-established algorithms like particle
swarm optimization and artificial bee colony models.

Microgrids are crucial for the use of renewable energy in
the fight against climate change (MG). Although AC micro-
grids predominate in today’s power grid, both DC power
production and DC load demand are forecast to soar in
the not-too-distant future. Because of this, AC/DC-mixed
microgrids will need to be created (HMG). Despite
improved theoretical efficiency and minimized AC/DC/AC
conversion losses, there is a substantial danger towards sys-
tem stability in an HMG due to uncertain loading, grid

Table 2: Parameter value.

Parameter Description Value

Vg tð Þ Grid voltage waveform 120Vrms

f Grid frequency 50Hz

η Charging efficiency 0.95

Iref Reference current for charger 30A

k Scaling factor for PFC output to
charger current

1.2

PFC output Output waveform of PFC circuitry Sinusoidal

Charger type Level 2 AC charger —

Table 3: Parameter settings.

Parameter Description Value

Vg Grid voltage 120V

Ri Internal resistance of the battery 0.1 ohm

Xc Coupling reactance 1 ohm

Kdroop Droop coefficient 0.1

Start

Monitor EV plug in

EV plugged in?

Input: Base load
charging and discharging profile

Droop control

Artificial neural network based
prediction

Prediction of cost
state of charge

End

Yes

No

Figure 6: Proposed flow of study.
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outages, and the intermittent nature of renewables. As a
result, there is a growing requirement to comprehend the
inner workings of HMG and learn to keep it tightly regu-
lated. In this study [14], author analyzed the various strate-
gies that have been put forth in recent years to address the
issues plaguing HMG. Power flow analysis, power sharing
(energy management), local and global control of DGs, and
the complexity of HMG’s protection strategies are the four
pillars upon which this paper rests. During the critical anal-
ysis stage, the validation test procedure is also reviewed crit-
ically. Based on a study of the relevant literature, it is clear
that MILP is commonly used for HMG supervisory control,

while modifying bidirectional converter control is the most
common approach to achieving effective power sharing.

Smart grids are a possibly exciting challenge for the
foreseeable future if they are managed effectively. One of
the most important aspects of making use of the energy
resources spread across a network is improving power qual-
ity (PQ), which has become a hot subject in recent scientific
literature. This study [15] is aimed at suggesting a practical
solution to some of the more common and potentially haz-
ardous PQ issues and voltage sags in light of the increasing
popularity of electric cars. The feasibility of the vehicle-to-
grid (V2G) function as a means of compensating for PQ

i. Initialize the battery output voltage Vi to the grid voltage Vg.
ii. Calculate the power output Pi of each battery using the droop control method equations.
iii. If the power output Pi is positive, the battery is charging. If Pi is negative, the battery is discharging.
iv. Check the state of charge (SoC) of each battery. If the SoC is below a certain threshold, the battery is not allowed to discharge further.
v. If multiple batteries are connected to the grid, adjust the droop coefficient Kdroop to distribute the power among the batteries based on
their SoC.
vi. Repeat steps 2-5 until the desired power output is achieved.

Algorithm 1: Droop control method algorithm.

Start

Frequency detection

Frequency modulation
locking

Whether the frequency deviation exceeds
the grid deviation

Energy storage unit
primary frequency

modulation

f < 0, df/dt < 0
or

df/dt > 0
No

Frequency recovery
period

Frequency deterioration
period Virtual droop control

Frequency deviation

Energy storage primary
frequency modulation

ends

End

Yes

Yes

No

Figure 7: Proposed working flow of droop control.

10 International Journal of Energy Research



interruptions will be discussed, along with the results of an
extensive energy and power study.

“Smart cities” need ICT to operate (ICT). A smart city
requires smart technology. Implementing many smart sys-
tems helps create ecologically friendly, high-quality urban
areas. Electric cars are becoming more popular for transit
system reliability and sustainability. EV use has grown, mak-
ing charging systems and peak load prediction harder.
Leaders must assess the scenario. Creative solutions exist.
These use automata models, AI, and IoT. Electric vehicle
ownership and use has grown. Charging many electric cars
at once harms power infrastructure. Transformers can lose
energy, spike, and heat up at full load. These issues require
energy control [16]. A machine learning-based charge man-
agement system can guide electric vehicles (EVs) to charging
stations using conventional, rapid, and V2G charging tech-
nologies (ML). Charging, high voltage, load changes, and
power loss will cost less, comparing ML methods: deep neu-
ral networks (DNNs), K-nearest neighbors (KNNs), long
short-term memory (LSTMs), random forests (RFs), support
vector machines (SVMs), and decision trees (DTs) (DT).
According to the data, LSTM may be able to command EVs.

Microgrids are power systems with multiple, indepen-
dently operable generators, or “gensets,” and each of which

is connected to a storage device and either DC or a mixed
demand. Microgrids on campuses represent an important
category of loads. Common features of school microgrids
include distributed generation resources, energy storage,
and electric vehicles. The main goal of the microgrid is to
provide perpetually available, low-cost electricity. Advanced
energy management system (AEMS) ensures constant elec-
tricity to the microgrid. In recent years, researchers have

Start

Frequency detection

Frequency modulation
locking

Whether the frequency deviation exceeds
the grid deviation

Energy storage unit
primary frequency

modulation

f < 0, df/dt < 0
or

df/dt > 0
No

Frequency recovery
period

Frequency deterioration
period Virtual droop control

Testing
data

ANN
controller 2

Load
predictive

control

ANN
controller 1

PWM

Training data

Frequency deviation

Energy storage primary
frequency modulation

ends

End

Yes

Yes

No

Figure 8: Proposed ANN-based droop control.

Table 4: Parameters used in the droop-ANN model.

Parameter Description Value

Vg Grid voltage 120V

Ri Internal resistance of the battery 0.1 ohm

Xc Coupling reactance 1 ohm

Kdroop Droop coefficient 0.1

X Input vector size 10

Y Output vector size 1

H Number of hidden layers 2

Neurons Number of neurons per hidden layer 10

Learning rate Rate of adjustment to the weight matrix 0.01
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done a plethora of studies on the topic of microgrid optimi-
zation, including reviews of energy sustainability, demand
response strategies, control systems, energy management
systems, and a wide range of optimization techniques. In this
study [17], author took a close look at the status of micro-
grids in higher education. This review of the related litera-
ture looks at a wide range of topics, including objective

functions, renewable energy sources, and problem-solving
techniques.

Microgrids are groups of generators, typically green
energy sources, that work together to supply energy to con-
sumers [18]. Microgrids are decentralized power systems
that use their own decentralized resources to power a broad
area. Distributed energy sources like solar panels, wind

i. The following algorithm outlines the Droop-ANN model:
ii. Initialize the droop coefficient Kdroop to a default value.
iii. Measure the grid voltage Vg and the internal resistance Ri of each battery.
iv. Initialize the input vector X with the current and past power outputs of the battery, as well as other relevant inputs.
v. Initialize the weight matrix W with random values.
vi. Initialize the activation function f() and the learning rate.
vii. Calculate the output voltage Vi of each battery using the droop control method equations.
viii. Feed the output voltage Vi of each battery into the ANN.
xi. Calculate the predicted power output Y of each battery using the ANN equations.
x. Adjust the droop coefficient Kdroop based on the predicted power output Y.
xi. Repeat steps 6-9 until the desired power output is achieved.

Algorithm 2: Hybrid droop-ANN model algorithm.
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Figure 9: SoC (proposed method).
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turbines (microturbines), fuel cells, batteries (energy storage
systems), hybrid generators like combined heat and power
(CHP), and synchronous generators are the primary focus
of a microgrid. Except for synchronous and combined heat
and power generators, it is common knowledge that this
produces DC electricity. That is why a microgrid typically
has both AC and DC connections. A mixed microgrid is
the term for this setup. In addition to these sources, manage-
ment systems, which regulate the microgrid, are required to
reap the benefits of each generator’s output power. Micro-
grids’ management strategies should allow them to serve

their essential function even when disconnected from the
main grid. To achieve this goal, two overarching control
structures have been considered, one of which is more
appropriate for use under different microgrid operating cir-
cumstances. If the microgrid is linked to the larger power
grid, the larger grid is responsible for ensuring the reliability
of the network’s voltage and frequency, while the microgrid
serves as an auxiliary component in meeting peak demand.

Due to climate change and the resulting focus on the
green transition, the structure and characteristics of power
networks around the world are rapidly changing. Microgrids
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make it possible to use smaller, locally made and stored
components like solar cells and batteries in the electrical
grid. This type of microgrid necessitates the use of sophisti-
cated management techniques to maintain stable levels of
electrical output, frequency, voltage, and current. Artificial
neural networks (ANNs) are suggested as a potential option
for microgrid control using ML. The study [19] goal is to
develop a simulation of a hybrid microgrid run by a central-
ized planner based on artificial neural networks and then
compare its efficiency to that of a traditional power manage-
ment system using a power flow algorithm. In the end, this
study set out to assess the future viability of ANNs in micro-
grid administration and to pinpoint the challenges they face.
A Simulink model of a microgrid system was created at the
start of the investigation; it included solar panels, a battery,
an electric vehicle, and both constant and variable loads.
The power flow algorithm was created after running a
simulation of the microgrid using standard solar and load
formulas. An artificial neural network was simultaneously
developed and trained using the simulated results from the
baseline instance. Both administration schemes were put

through their paces under typical conditions, outside of the
standard irradiance, and with an added burden.

In this study [20], author suggested a more effective
vehicle-to-grid (V2G) scheduling method for frequency con-
trol, which can simultaneously increase battery life and
improve grid service. The suggested method improves upon
the current setup in two keyways. Before the V2G service
can be used, an assessment of the EVs’ battery capacity in
the control time step must be made, and this is done by
developing a prediction using deep learning. Incorporating
a quantitative evaluation of battery cycle life into the V2G
optimization process is another way in which this study
advances previous methods for achieving V2G optimization.
An exact prediction of the schedulable battery capacity based
on the LSTM algorithm is very helpful for the frequency
control of the power system. The suggested method also
improves upon the previous one by reducing charge/dis-
charge cycles, which is crucial for batteries.

A microgrid (MG) is a small-scale power system that
uses energy management software and devices to make a
collection of loads and distributed generators act as a singu-
lar, controllable entity with respect to the larger power grid.
Research into MG is now fundamental to understanding
how energy is distributed via smart grids and other means.
Technology advancements, such as power electronics, are
essential to the success of MG’s renewable energy sources
(RESs). The broad range of power quality (PQ) incidents is
a direct result of this production inconsistency. For this rea-
son, the authors have developed guidelines and strategies in
recent years to lessen the blow. Over the past few years,
numerous methods and guidelines have been suggested to
mitigate PQ issues brought on by MG integration. Although
each of these methods has been studied extensively, until
now, no comprehensive summary comparing them has been
given. The goal of this study [21] was to fill this information
gap by comparing and contrasting the current problems,
approaches, and benchmarks for PQ in MGs. Here, authors
had a close look at voltage sag, voltage spike, voltage and
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current harmonics, system unbalances, and variations as
some of the most significant causes of subpar MG output
quality. When new technologies coupled with MGs emit
harmonics in the 2-150 kHz region, they trigger a hitherto
unreported phenomenon known as supraharmonic (SH)
emission. This discussion centers on the nature, history,
and extent of SH and how these factors can be measured.

Storing energy for later use is one of the most efficient
ways to improve the stability, efficiency, and security of a
power system. This is important for developing cutting-
edge energy utilization and the energy Internet. In this man-
ner, energy storage is expected to support distributed power
and the microgrid through multifunctional coordination,
open sharing, and flexible trading of energy output and con-
sumption. New technological developments in the rapidly
expanding battery energy storage sector hold potential for
multiobjective cooperation in large-scale integration and
distributed applications. As a crucial component of electric-
ity grid management, utility control centers have adopted
real-time energy management systems (EMS) of a battery
energy storage system (BESS). This study [22] analyzed the
current state of development of a BESS and introduced
potential application scenarios, such as the reduction of
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Table 5: Simulation details and parameters.

Simulation parameter Value

Grid voltage 220Vrms

Grid frequency 50Hz

Battery capacity 40 kWh

Charging power range 5 kW-15 kW

Discharging power range -5 kW till -15 kW

ANN model architecture Feedforward

Number of hidden layers 2

Number of neurons per
hidden layer

10

Activation function Sigmoid

Learning rate 0.01

Number of epochs 100

Training dataset size 1000 samples

Testing dataset size 500 samples

Performance metric Root-mean-squared error (RMSE)
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power output fluctuations, the adoption of an output plan
from the perspective of renewable energy generation, the
alteration of power grid frequencies, the optimization of
power flows from the perspective of power transmission,
and the use of a distributed and mobile energy storage sys-
tem from the perspective of power distribution.

An increase in renewable energy sources and the number
of electric cars (EVs) highlight the significance of economic
dispatch (ED) in the pursuit of lower CO2 emissions [23].
The increasing dynamic load from electric vehicles (EVs)
may lead to a tendency in the future of ED towards reducing
costs wherever possible. Vehicle-to-grid technology offers a
path towards realizing this impact (V2G). The judgement
matrix method simplifies the multiobjective function based
on EVs and hybrid renewable sources in terms of economic
dispatch and emission minimization to a single overall aim
[24]. This study [25] investigated whether and to what extent
integrating V2G technology into ED can help us achieve three
main goals of lowering operational costs, pollution costs, and
carbon emissions. Particle swarm optimization and artificial
bee colony algorithms, for example, have many applications
in management. Many different case studies are used to put
the proposed models through their paces. The results of the
simulation verify the better performance of the EV-based
microgrid (MG) model in the coordinated charging and dis-
charging mode, which is crucial to the economic viability of
any microgrid’s operations [26, 27].

The rapid rise in energy usage means that traditional gener-
ators will not be able to keep up with the world’s growing appe-
tite for electricity. Renewable energy sources, such as solar and
wind, have already proven their worth and safety for the planet.
Putting together power from a wide variety of renewable
resources such as wind turbines, solar PV and other renewable
alternatives, ocean, wave, and geothermal energy into a singular
grid is a novel concept [28, 29]. However, despite being the best
choice for meeting rising energy demands, renewable, long-
lived power sources are not yet ready for widespread deploy-
ment due to their inherent unpredictability. Due to the intrinsic
unpredictability of solar and wind within the conventional grid
system and the typical standalone framework, integrating them
into the current energy system can present significant technical
challenges. Because of the technical and monetary challenges of
maintaining a stable, reliable, and cost-effective energy infra-
structure, it is essential to perform a comprehensive literature
review on the efficient hybridization of renewable energy
sources. This study [30, 31] explored some of the potential dif-
ficulties that could emerge from combining a photovoltaic plant
with a wind power station to generate electricity for the tradi-
tional grid or a standalone system [32].

Now that we have entered the electric vehicle (EV) era, it
is crucial that authors do not forget about EVs’ potential
contribution to auxiliary services through vehicle-to-grid
(V2G) technology, which allows the grid to benefit from
EVs’ on-board batteries. Frequency control, frequency con-
tingency, inertia, and voltage regulation are just a few of
the auxiliary services that most EVs offer. There has been a
plethora of studies done to determine the optimal method
of administration for e-vehicle ancillary services (EVASs)
[33, 34]. This study [35] offered a thorough analysis of the
different strategies proposed for managing EVs when they
are used to provide secondary or tertiary services. The
research here uses both a theme and a historical approach.
The advantages and disadvantages of these control methods
are outlined, and it is made abundantly obvious in the over-
view where the most research into EVAS is needed. Future
researchers working on V2G controls for grid provision of
EVASs will find this study to be a reliable reference point
and practical framework. Using V2G, future networks can
increase their use of renewable energy sources and improve
their impact on the ecosystem.

This paper [36] focuses on the development of an adap-
tive droop-based control strategy for DC microgrids with
multiple battery energy storage systems. The study proposes
a control algorithm that optimizes the power sharing and
voltage regulation among the batteries in the microgrid.
The approach aims to enhance the overall stability and

Table 6: State of charge to enhance power quality.

Battery SoC
(%)

Charging power
(kW)

Discharging power
(kW)

Droop control method
(V)

Droop-ANN method
(V)

Improvement
(%)

20 10 -5 227.5 229.1 0.7

40 -8 12 228.2 227.8 0.2

60 15 -20 229.6 229.3 0.1

80 -12 18 228.5 228.1 0.2

Table 7: RMSE and MAE for ANN quality prediction.

Metric Droop control method Droop-ANN method

RMSE 0.082 0.034

MAE 0.053 0.025

Table 8: Comparison of total harmonic distortion (THD).

Charger output THD-droop control THD-droop-ANN

Voltage 2.1% 0.9%

Current 3.5% 1.6%

Table 9: Comparison of power factor (PF).

Charger output PF-droop control PF-droop-ANN

Voltage 0.87 0.93

Current 0.92 0.96
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efficiency of the microgrid, particularly in the presence of
variable power generation and load demand.

This research [37] addresses the prediction of voltage
instability caused by transient faults in power networks. The
study introduces an optimal instantaneous prediction method
that considers the dynamic behavior of generators. The pro-
posed approach is aimed at enhancing the ability to predict
voltage instability and improve the overall reliability of power
networks by accounting for the transient behavior of genera-
tors during fault conditions.

This paper [38] presents a comparative study on dual
two-level voltage source inverters and their virtual inertia
emulation capabilities. The research investigates the perfor-
mance of different control strategies for emulating virtual
inertia in power systems using these inverters. The study
compares the effectiveness of various control methods and
assesses their impact on the stability and dynamic response
of power systems.

This study [39] focuses on the analysis of load frequency
stability in time-delayed multiarea power systems with
electric vehicle (EV) aggregators. The research utilizes the
Bessel-Legendre inequality and model reconstruction tech-
nique to investigate the stability characteristics and control
requirements of power systems with EV aggregators. The
objective is to enhance the stability and performance of the
power system with the integration of EV aggregators.

This paper [40] investigates the impact of electric vehicle
(EV) aggregators with time-varying delays on the stability of

a load frequency control system. The study analyzes the
dynamics and stability properties of the power system when
EV aggregators are integrated. The research is aimed at pro-
viding insights into the potential challenges and control
strategies required to maintain stability in power systems
with EV aggregators.

This research [41] focuses on the computation of delay
margin for load frequency control systems with plug-in
electric vehicles (EVs). The study investigates the impact of
communication delays in power systems with EVs and
proposes a method to determine the delay margin, which
represents the maximum allowable communication delay
while maintaining system stability. The research is aimed
at providing guidance for designing and implementing load
frequency control systems with EV integration. The compar-
ison of previous studies with their battery types, control
methods, performance parameters, and results are given in
Table 1.

Battery power quality improvement in a vehicle-to-grid
setup using the Droop-ANN Model is the center of the com-
parative studies in this investigation. To determine the most
efficient means of improving power quality in V2G systems,
the studies compare various battery types, control techniques,
V2G system configurations, and performance parameters. In
light of the findings of these analyses, it is clear that
Lithium-ion batteries are the best option for V2G systems
due to their high energy density, low self-discharge rate, and
extended cycle life. Power quality regulation in V2G systems
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is found to be best served by the Droop control technique in
conjunction with an Artificial Neural Network (ANN). In
addition, the comparative studies emphasize the significance
of the V2G system design, with a modular system proving to
be the most efficient for enhancing power quality. Using a
variety of performance parameters, including voltage regula-
tion and power factor, the comparative studies show that the
suggested method improves power quality in V2G systems.
In sum, the comparative studies enlighten future research
and development in this field by revealing the best method
for enhancing battery power quality in V2G systems.

3. Methodology

Electric vehicles (EVs) have become increasingly popular in
recent years as a means of reducing greenhouse gas emis-
sions and improving air quality. With the growth in EV
adoption, there has been a corresponding interest in utilizing
EV batteries as a form of mobile energy storage for the elec-
tricity grid through vehicle-to-grid (V2G) technology. How-
ever, the integration of EVs into the grid presents a number
of challenges, including power quality issues that can arise
due to fluctuations in battery power output. Conventional
droop control methods have been proposed for regulating
power flow in a V2G setup, but these methods may not
effectively regulate battery power output during periods of
high demand, leading to instability in the grid. Therefore,
this study proposes an improved droop-ANN model that
can regulate power flow more effectively and improve bat-
tery power quality in a V2G setup, addressing a key chal-
lenge in the integration of EVs into the electricity grid.
Figure 6 shows the proposed flowchart of the current study.

3.1. V2G Setup and Components. The V2G setup used in this
study consists of electric vehicles (EVs) with bidirectional
chargers connected to the grid. The EV batteries can be
charged from the grid during periods of low demand and
discharge back to the grid during periods of high demand,
providing a form of mobile energy storage.

The bidirectional charger can be modeled as follows:

Vc tð Þ = Vg tð Þ + 1
2

� �
∗ sin 2πf tð Þ, ð3Þ

where VcðtÞ is the charger voltage, VgðtÞ is the grid voltage, f
is the frequency of the grid, and t is the time. The charger volt-
age follows the grid voltage, with a sinusoidal waveform added
to account for the voltage ripple introduced by the charger.

The power flow between the EV battery and the grid can
be modeled using the following equation:

Pbattery = η ∗ Pcharger, ð4Þ

where Pbattery is the battery power output, Pcharger is the char-
ger power input, and η is the charging efficiency.

The bidirectional charger model used in this study is a
simplified model that captures the basic behavior of a typical
EV charger. Depending on the battery’s current charge and
the grid’s current demand, the charger can either charge

the EV battery from the grid or discharge the battery to
the grid.

It is possible to describe the charger’s voltage with the
following equation:

VBC tð Þ = Vg tð Þ + 1
2

� �
∗ sin 2πf tð Þ ð5Þ

where VBCðtÞ is the charger voltage, VgðtÞ is the grid volt-
age, f is the frequency of the grid, and t is the time. The volt-
age ripple introduced by the charger, which might be
induced by switching components and other nonideal
behavior, is represented by the expression ð1/2Þ ∗ sin ð2ftÞ.

It is possible to model the charger’s power input as

Pcharger =Vc tð Þ ∗ Icharger tð Þ, ð6Þ
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where IchargerðtÞ is the charger current that can be adjusted by
the charger circuitry to maintain a constant battery voltage
when charging or discharging. Losses during charging can
be taken into account by including the charger efficiency
(denoted by η) which acts as a scaling factor.

The charger current can be described using the following
equation:

Icharger tð Þ = Iref + k ∗ Ipfc tð Þ: ð7Þ

IpfcðtÞ is the output of the power factor correction (PFC)
circuit at time, t, Iref is the reference current, and k is a scal-
ing factor that relates the PFC output to the charger current.
The PFC circuitry is used to improve the power quality of
the charger output, eliminating harmonic distortion and
enhancing the power factor. Table 2 shows the parametric
table.

3.2. Droop Control Method. Power transfer from the EV bat-
tery to the grid can be regulated using standard droop control
techniques. The droop control strategy modifies the battery’s
power output in response to the frequency delta between the
grid and the reference. How quickly the battery’s power output
shifts in response to a change in frequency is defined by a
parameter called the droop coefficient, or K. The droop
equation can be written as

Pbattery = Pref + K ∗ f ref − fð Þ, ð8Þ

where the real grid frequency is f , the reference frequency is
f ref , and the reference power output is Pref . Battery charging
and discharging in a V2G system is managed using the droop
control method. The power is distributed across several batte-
ries according to their distinct state of charge (SoC) using a
control approach that makes advantage of a droop character-
istic. A voltage droop, which is what is used to implement the
droop feature, is defined as

Vi =Vg −
Ri

Xc

� �
∗

Pi

Vg

 !
, ð9Þ

where Vi is the output voltage of the ith battery, Vg is the grid
voltage, Ri is the internal resistance of the ith battery, Xc is the
coupling reactance between the battery and the grid, and Pi is
the power output of the ith battery. To implement the droop
control method, a droop coefficient ðKdroopÞ is introduced,
which determines the level of voltage droop. The power output
of each battery is controlled by adjusting its output voltage

using the droop characteristic. The power output ðPiÞ of the
ith battery is given by

Pi =
Kdroop
Ri

� �
∗ Vi −Vg

À Á
: ð10Þ

The following table lists the parameters used in the droop
control method equations as shown in Table 3.

Figure 7 shows the proposed model flow of droop con-
trol method.

3.3. Droop-ANN Model. To improve the performance of the
droop control method, this study proposes a droop-ANN
model that uses an artificial neural network (ANN) to pre-
dict the power demand of the grid and adjust the battery
power output accordingly. The droop-ANN model can be
expressed as

Pbattery = Pdemand + α Pdemand − Pprevious
À Á

+ β ΔPdemandð Þ + γ ΔPprevious
À Á

,
ð11Þ

where Pdemand is the power demand of the grid, Pprevious is the
battery power output in the previous time step, ΔPdemand is
the change in power demand of the grid, ΔPprevious is the
change in battery power output in the previous time step,
and α, β, and γ are the droop coefficients. The droop-ANN
model uses the ANN to predict the power demand of the
grid, which is then used to adjust the battery power output.
By learning from past grid demand and battery perfor-
mance, the ANN can more precisely and efficiently regulate
power flow. The suggested ANN-based droop control model
is depicted in Figure 8.

The droop-ANN model is an advancement on the classic
droop control method implemented in V2G systems. For
better power quality and stability in the V2G system, it
combines the droop control method with an artificial neural
network (ANN).

The droop control method equations and the ANN are
the two mainstays of the droop-ANN model. As was previ-
ously mentioned, the equations utilized in the droop control
method are identical to those used in the classic droop con-
trol method. Changing the droop coefficient (Kdroop) affects
the voltage output (Vi) from each battery:

Vi =Vg −
Ri

Xc

� �
∗

Kdroop
Ri

� �
∗ Vi −Vg

À Á
⋯ , ð12Þ

Table 10: Results of power quality improvement with varying SoC.

SoC
level

RMSE
(voltage)

RMSE
(frequency)

MAE
(voltage)

MAE
(frequency)

THD
(voltage)

THD
(current)

PF
(voltage)

PF
(current)

20% 0.0425 0.0083 0.0279 0.0047 1.2% 1.6% 0.94 0.96

50% 0.0368 0.0071 0.0246 0.0042 1.1% 1.4% 0.92 0.95

80% 0.0321 0.0061 0.0212 0.0038 0.9% 1.1% 0.91 0.94
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where Vi is the output voltage of the ith battery, Vg is the
grid voltage, Ri is the internal resistance of the ith battery,
Xc is the coupling reactance between the battery and the
grid, and Kdroop is the droop coefficient.

The output voltage of each battery is then fed into the
ANN, which is used to predict the future power output of
the battery. The ANN takes the current and past power out-
puts of the battery, as well as other relevant inputs, as its
input and produces the predicted power output as its output.
The ANN equations can be written as

Y = f X ∗Wð Þ⋯ , ð13Þ

where Y is the expected power output.
The present and historical battery power outputs, along

with any other relevant inputs, make up the input vector X.
The activation function f ðÞ is defined in terms of the

weight matrix W. The following Table 4 details the droop-
ANN model’s input parameters.

3.4. Performance Metrics

3.4.1. Root-Mean-Squared Error (RMSE). The root-mean-
squared error (RMSE) is the average error of the model
and is calculated by squaring the MSE. It is often employed
as a tool for assessing the severity of prediction errors.

3.5. State of Charge Calculation. Maintaining the battery’s
SoC in a vehicle-to-grid (V2G) arrangement is crucial for
peak performance and extended battery life. The SoC is the
percentage of the battery’s overall capacity that has been
used to store energy. The following equation can be used
to determine the SoC:

SoC = Ecurrent
Emax

� �
∗ 100⋯ , ð14Þ

where Ecurrent is the amount of energy currently stored in the
battery and Emax is the maximum amount of energy that the
battery can store.

The battery’s stored energy is utilized to run the load
during the discharge phase. The following equation can be
used to get the total energy output:

Edischarge = Pload ∗ t⋯ , ð15Þ

where Pload is the load’s power usage and t is the discharge
time.

During the charging procedure, the battery is recharged
with energy from the grid. Here’s an equation for determin-
ing the imposed energy cost:

Echarge = η ∗ Pcharger ∗ t⋯ , ð16Þ
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Table 11: Active power (P) results.

Time P droop control P ANN droop control

00 : 00 5.5 6.0

01 : 00 5.3 5.8

02 : 00 5.2 5.7

03 : 00 5.1 5.6

04 : 00 5.0 5.5

05 : 00 5.2 5.7

06 : 00 5.4 5.9

07 : 00 5.6 6.1

08 : 00 5.8 6.3

09 : 00 6.0 6.5
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where Q is the battery’s capacity, Pcharger is the charger’s
output power, and t is the time required to fully charge the
battery.

The V2G system can stabilize power output and prolong
the life of the battery by constantly monitoring and control-
ling the SoC and discharge/charge calculations.

4. Results and Discussion

The results and discussions section presents and discusses
the study’s findings and its interpretation. We evaluate the
proposed droop-ANN model’s ability to improve power
quality in a V2G setup using a bidirectional charger. We
contrast our results with the conventional droop control
approach and discuss the significance of our findings for
future study. The purpose is to gain understanding of the
effectiveness of the proposed approach and its potential to
enhance power quality in V2G environments.

To improve power quality in a V2G system with a bidi-
rectional charger, the droop-ANN model proposes using an
ANN. In order to maintain grid compatibility and battery
capacity, the model employs droop control, which adjusts
the charger’s output voltage and frequency. Based on the
battery’s SoC and charging/discharging power, an artificial
neural network (ANN) model is integrated into the droop
control strategy to more accurately predict the required out-
put voltage and frequency of the charger.

The proposed droop-ANN model can be expressed
mathematically as follows:

Vcharger =Vgrid − k1 ∗ ΔP − k2 ∗ Δf

+ k3 ∗ANN SoC, Pcharging, Pdischarging
À Á

⋯ ,
ð17Þ

where Vcharger is the output voltage of the charger, Vgrid is
the grid voltage, k1 is the droop coefficient for power, ΔP
is the difference between the charging/discharging power
and the reference power, k2 is the droop coefficient for fre-
quency, Δf is the difference between the grid frequency
and the reference frequency, k3 is the scaling factor for the
ANN output, SoC is the state of charge of the battery,
Pcharging is the power supplied to the battery during charging,
Pdischarging is the power discharged from the battery during
discharging, and ANN is the artificial neural network model.
Figure 9 displays the charge state when the suggested
approach is used.

Figure 22: V2G operation vs. grid-alone operations.
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The state of charge (SoC) calculated with the new
approach is displayed in Figure 9. It is a chart depicting
the battery SoC over time, and it shows how well the pro-
posed technique works to keep the battery SoC constant.

The droop-ANN model employs an ANN that can be
optimized via a backpropagation technique after being
trained on a dataset of historical observations. The battery’s
system-on-chip (SoC), charging/discharging power, and the
charger’s target output voltage and frequency serve as inputs
to the ANN model. The droop control approach takes
advantage of the charger’s projected voltage and frequency,
which are output by the ANN model. A graphical represen-
tation of the charger’s voltage output during charging and
discharging activities is presented in Figure 10. The charger’s
current output during charging and discharging is depicted
in a graph (shown in Figure 11) in the accompanying text.
Figure 12 is a graph depicting the battery cell’s temperature
as a function of time. Battery cell temperature distribution is
depicted in three dimensions on the cell temperature con-
tour 3D map, seen in Figure 13.

By dampening power oscillations and guaranteeing steady
operation of the grid and the battery, the suggested droop-
ANN model improves power quality in a V2G arrangement.
Mean-squared error (MSE), root-mean-squared error (RMSE),
mean absolute error (MAE), coefficient of determination

(R-squared), and percentage error are all useful measures of
a model’s performance. Figure 14 is a graph that shows the
state of charge (SoC) prediction error (RMSE) of the proposed
droop-ANN method compared to the conventional droop
control method. The lower the RMSE value, the better the
accuracy of the SoC prediction. The simulation parameters
are summarized in Table 5. Moreover, Table 6 shows the state
of charge to enhance power quality.

In Table 6, we experiment with different values of state
of charge (SoC), charging power (CP), and discharging
power (DP) for the battery to determine how well the sug-
gested droop-ANN model improves power quality. The volt-
ages generated by the conventional droop control method
and the proposed droop-ANN technique are compared.
According to the numbers, using the suggested method can
improve power quality by as much as 0.7%.

Table 7 displays a comparison of the RMSE and MAE
between the conventional droop control method and the
proposed droop-ANN method. Compared to the conven-
tional droop management approach, the results show that
the proposed droop-ANN model significantly reduces the
error in voltage prediction, resulting in smaller RMSE and
MAE values. This demonstrates that the ANN model can
correctly estimate the voltage and frequency produced by
the charger.
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Total harmonic distortion (THD) is compared in Table 8
for both traditional droop management and the new droop-
ANN approach. The results show that the THD in the char-
ger’s voltage and current outputs are greatly reduced using
the droop-ANN approach, improving power quality.

Power factor (PF) is compared in Table 9 for the tradi-
tional droop control approach and the suggested droop-
ANN method. The results show that the charger’s voltage
and current outputs benefit greatly from the proposed
model. This shows that the power quality provided by the
suggested model is superior to that provided by the standard
droop control approach.

Figure 15 shows control of charging and discharging
using ANN. Collectively, the findings prove the efficacy of
the proposed droop-ANN model in enhancing V2G power
quality. Lower THD and higher PF values are the outcome
of the model’s improved accuracy in predicting voltage and
frequency. Under a variety of battery state of charge (SoC)
and charging/discharging conditions, the suggested model
is also able to improve power quality. Figure 16 shows the
improved quality of the battery in terms of cycle, which is
a graph showing the battery cycle life improvement using
the proposed method compared to the conventional droop
control method. Figure 17 shows the battery capacity, which

is a graph that shows the battery capacity improvement
using the proposed method compared to the conventional
droop control method.

The results indicate that the proposed droop-ANN
model is effective in improving power quality even under
varying battery SoC levels. The model adjusts the charging/
discharging of EV batteries in response to grid frequency
changes and helps maintain grid stability.

Table 9 shows the results of power quality improvement
with varying SoC levels. The RMSE and MAE values indicate
that the proposed droop-ANN model accurately predicts
voltage and frequency values, even under different SoC
levels. The THD and PF values also demonstrate that the
proposed model significantly improves power quality, even
under varying battery SoC levels.

The results indicate that the proposed droop-ANN model
can be applied to different SoC levels without compromising
power quality. This is significant as it allows for greater flexi-
bility in the use of EV batteries in V2G systems. As the grid
frequency fluctuates, the suggested model can automatically
adjust the charging and discharging of EV batteries to keep
the grid stable and improve power quality.

To improve power quality in a V2G configuration, the
suggested droop control ANN model adjusts the charging
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and discharging of EV batteries in response to variations in
grid frequency. For accurate predictions of future grid volt-
age and frequency, this approach combines droop control
with ANNs.

The model utilizes a droop control technique to precisely
regulate the charging and discharging of EV batteries in
response to fluctuations in grid frequency. The droop con-
trol method is frequently used in power systems because it
allows active and reactive power to be shared between
numerous sources. In the V2G system, electric vehicle
(EV) batteries serve as both a load and a source of power,
with charging and discharging controlled by the droop con-
trol method in response to fluctuations in grid frequency.

The model’s artificial neural network component is used
to extrapolate future values for the grid’s voltage and fre-
quency from existing data. The ANN learns to create fore-
casts by looking at historical data on grid voltage and
frequency. The ANN is then used to adjust the charging/dis-
charging of EV batteries in response to predicted values of
grid voltage and frequency.

The proposed droop control ANN model has many
advantages over more traditional approaches to droop con-
trol. First, the model can accurately regulate the charging
and discharging of EV batteries by making accurate predic-
tions of grid voltage and frequency values based on historical

data. The model may also stabilize the electrical system by
balancing the charging and discharging of EV batteries in
response to changes in grid frequency.

The study concludes that the suggested droop control
ANN model can effectively improve power quality in a
V2G setting. The model can accurately anticipate the voltage
and frequency of the grid, allowing for real-time adjustments
to the charging and discharging of EV batteries in response
to frequency changes. Regardless of the battery’s charge
level, the gadget is able to maintain a steady power quality.

For ease of reference, “P” in these tables stands for active
power and “Q” for reactive power. The results of the
conventional droop control approach are displayed in the
“Droop Control” column, while those of the suggested droop
control ANN model are displayed in the “ANN Droop
Control” column.

Tables 10 and 11 show that, like the conventional droop
control method, the droop control ANN model is able to
keep active and reactive power levels stable. This demon-
strates that the suggested approach may successfully main-
tain power quality by controlling the charging and
discharging of EV batteries in response to variations in grid
frequency.

Grid voltages with and without V2G operation are com-
pared in Figure 18. With V2G operation, the grid system’s
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voltage profile is nearly constant, but without V2G opera-
tion, the voltage profile varies widely. This suggests that
V2G operation can aid in maintaining a more consistent
voltage profile for the grid and minimizing voltage varia-
tions. The voltage response to the battery’s SoC is shown
in Figure 19 for both the droop control and the droop-
ANN control methods. At low SoC levels, the droop-ANN
control approach is able to better regulate voltage than the
droop control method. A significant voltage droop is
observed with the droop control method at low SoC levels,
which can lead to instability. The droop-ANN control
method, on the other hand, keeps the voltage profile gener-
ally constant throughout all SoC levels.

Improvements in battery quality as a function of cycle
count are depicted in Figure 20 using the droop control
method and the droop-ANN control approach. Battery qual-
ity is clearly maintained more effectively by the droop-ANN
control approach than by the droop control method. While
battery quality degrades dramatically with increasing cycle
counts in the droop control approach, it remains reasonably
stable in the droop-ANN control method.

Figure 21 contrasts droop control versus droop-ANN
control with regard to total harmonic distortion (THD) of
voltage and current. The droop-ANN control approach is
clearly superior to the droop control method in terms of
THD reduction. The droop control method shows a higher
THD value, whereas the droop-ANN control method main-
tains a relatively low THD value. Figure 22 compares V2G
operation with grid-alone operation. It can be observed that
V2G operation provides better voltage regulation and
reduced THD compared to grid-alone operation.

Figure 23 shows the impact of battery quality on the
vehicle. Poor battery quality has the potential to significantly

reduce the vehicle’s performance. When comparing the per-
formance of two batteries, a high-quality battery will always
perform better. The impact of the vehicle on the electricity
system is seen in Figure 24. The vehicle’s functioning has a
major impact on the voltage profile of the grid. The vehicle’s
charging and discharging activities produce voltage fluctua-
tions in the grid system.

Figure 25 shows how the quality of the batteries affects
the V2G configuration. It is evident that battery quality has
a significant impact on the V2G system’s performance. A
high-quality battery has better V2G performance than a
low-quality battery as shown in Figure 26. In Figure 27, we
see a three-dimensional illustration of how battery quality
impacts the V2G setup. It is self-evident that greater battery
quality improves the efficiency of the V2G configuration.
The impact of battery quality on the V2G setup and vehicle
is depicted in a three-dimensional graphic (see Figure 28).
The V2G setup’s output current increases as the battery’s
health and charging progress. Figure 29 is a three-
dimensional figure showing the relationship between battery
quality, battery cycle, and output current. Better batteries
improve both the V2G setup and the vehicle’s performance.

In conclusion, the droop-ANN control approach outper-
formed the conventional droop control method in terms of
voltage regulation, total harmonic distortion, and battery qual-
ity. Voltage on the grid could be stabilized with the use of V2G
technology by providing reactive power. Low-quality batteries
had a negative impact on the functionality of both the V2G
system and the vehicle. Future studies should investigate
how different battery chemistries and system configurations
might affect the V2G system’s performance.

Several previous research have investigated the potential
of droop control approaches for improving power quality in
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V2G systems. Although these studies have used conven-
tional droop control strategies, neither machine learning
nor predictive modeling has been incorporated. However,
the proposed droop control ANN model integrates droop
control with ANN techniques to allow for more nuanced
regulation of EV battery charging and discharging. This
approach outperforms traditional droop control in a num-
ber of respects, including more accurate predictions of grid
voltage and frequency values and better regulation of EV
battery charging and discharging. Similar to the proposed
model, the charging and discharging of EV batteries in a
V2G system were regulated using a hybrid droop control
and fuzzy logic technique by Liu et al. [42]. Instead, the sug-
gested droop management ANN model uses an ANN to pre-
dict values on the grid’s voltage and frequency, allowing for
more nuanced management over the EV battery’s charging
and discharging. Yang et al. [43] implemented a distributed
droop control method to enhance power quality in a V2G
setup. While similar to other work in its use of a droop con-
trol scheme, this study’s lack of ML techniques results in less
accurate predictions of grid voltage and frequency. Finally,
the droop control ANN model provides an innovative
approach to improving V2G power quality. By precisely con-
trolling the charging and discharging of EV batteries using
droop control and ANN techniques, the model helps protect
grid stability and enhance power quality. Table 12 compares
the proposed droop control ANN model to two previous
studies. Moreover, Table 13 summarizes the advantages and
limitations of the proposed study and prior studies.

The results of the simulations reveal that the proposed
droop-ANN model for enhancing power quality in a V2G
system is effective at reducing power fluctuations and
providing dependable grid and battery operation. The
simulation results demonstrate that the proposed model sig-
nificantly reduces the errors in voltage and frequency predic-
tion, leading to lower total harmonic distortion (THD) and
higher power factor (PF) values, in comparison to the stan-
dard droop control method. Tables 7 and 8 show the results
of both methods in terms of THD and PF. Droop-ANN
reduces the total harmonic distortion (THD) of the charger’s
voltage and current outputs from 2.1% to 0.9% and 3.5% to

1.6%, respectively. The charger’s PF is increased from 0.87 to
0.93 in terms of voltage and current outputs and from 0.92
to 0.96 as a result of the proposed model. The effectiveness
of the proposed droop-ANN model is evaluated using a
variety of performance metrics, including mean-squared error
(MSE), root-mean-squared error (RMSE), mean absolute
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Figure 29: Impact of vehicle on grid.

Table 12: Reactive power (Q) results.

Time Q droop control Q ANN droop control

00 : 00 2.0 2.2

01 : 00 1.9 2.1

02 : 00 1.8 2.0

03 : 00 1.7 1.9

04 : 00 1.6 1.8

05 : 00 1.8 2.0

06 : 00 1.9 2.1

07 : 00 2.0 2.2

08 : 00 2.1 2.3

09 : 00 2.2 2.4
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error (MAE), coefficient of determination (R-squared), and
percentage error. Table 5 demonstrates that the proposed
method can boost power quality by as much as 0.7%. The
results of the simulations show that the power quality is
enhanced over a wide variety of battery state of charge and
charging/discharging situations, further supporting the valid-
ity of the proposed method. As shown in Table 5, we adjust
the battery state of charge (SoC), charging power (CP), and
discharging power (DP) to test the performance of the pro-

posed droop-ANN model. After charging and discharging
the SoC, the table shows the resulting power quality improve-
ment. The results show that the suggested model can improve
power quality by as much as 0.7%. Root-mean-squared error
and mean-squared error were used to evaluate the droop-
ANN model’s ANN component. Table 6 demonstrates that
the RMSE and MAE values achieved with the proposed
droop-ANNmodel are significantly lower than those obtained
with the conventional droop control strategy. The proposed

Table 13: ANN model for droop control compares to two prior studies.

Study Approach Advantages Limitations

Proposed study Droop control ANN
More accurate predictions of grid voltage and

frequency values, better regulation of EV battery
charging/discharging

Requires training of the ANN, may have
higher implementation costs

[5]
Hybrid droop

control and fuzzy
logic

Can regulate EV battery charging/discharging,
helps maintain grid stability

Does not incorporate machine learning
techniques, may not be as precise as droop

control ANN model

[8]
Distributed droop

control
Can improve power quality in V2G setups

Does not incorporate machine learning
techniques, may not be as precise as droop

control ANN model
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Figure 30: Proposed system vs. existing system.
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methodology reduces power spikes and stabilizes the battery’s
operation to increase its storage capacity and service life. The
simulation results demonstrate that the proposed droop-
ANN model can improve power quality in a V2G setting.
The proposed model is a suitable alternative to the conven-
tional droop control strategy since it enhances power quality
in a wide range of battery state of charge (SoC) and charg-
ing/discharging settings. The proposed model keeps the grid
reliable while increasing the battery’s lifespan and capacity.

Figure 30 illustrates a comparison between the existing
benchmarked system, as described in reference [5], and the
proposed system. The comparison is based on voltage read-
ings over time, along with the harmonic components of the
voltage signal. In the upper subplot, the blue curve repre-
sents the voltage readings of the existing benchmarked sys-
tem, while the red dashed curve represents the voltage
readings of the proposed system. The x-axis represents time,
and the y-axis represents voltage. The plot shows the varia-
tions in voltage over time for both systems. In the lower sub-
plot, the green curve represents the harmonic components of
the voltage signal for the existing benchmarked system, and
the magenta dashed curve represents the harmonic compo-
nents of the voltage signal for the proposed system. The x
-axis represents time, and the y-axis represents the magni-
tude of the harmonic components. The plot shows the pres-
ence and magnitude of harmonic distortion in the voltage
signal for both systems. By comparing the voltage curves
and harmonic components of the existing benchmarked
system with the proposed system, we can observe the differ-
ences in voltage stability and harmonic distortion reduction
achieved by the proposed system. The comparison of the
proposed system with the existing benchmarked work [5]
serves to validate the effectiveness of the proposed approach
in improving power quality and reducing harmonic distor-
tion. The plotted curves provide visual evidence of the
improvements achieved by the proposed system, demon-
strating its potential for enhancing voltage stability and
reducing harmonic distortion in practical applications.

5. Conclusions

In order to improve power quality in a V2G setting, this
study recommends a droop-ANN model. The proposed
approach employs an ANN model, which is then incorpo-
rated into the droop control technique, to produce precise
predictions for the charger’s voltage and frequency. Using
simulation findings, we validated the proposed model and
found that it significantly reduces power fluctuations while
simultaneously enhancing power quality. The proposed
model was also successful in enhancing power quality under
a wide range of battery state of charge (SoC) and charging/dis-
charging situations. The findings of this research lend support
to the hypothesis that the droop-ANN model can effectively
improve V2G power quality. The model’s enhanced accuracy
in predicting voltage and frequency results in reduced THD
and increased PF values. The proposed methodology is also
effective in boosting power quality across a wide range of
battery SoC and charging/discharging scenarios. There are,
nevertheless, certain gaps in this investigation. Although

simulations were used to validate the proposed model, their
results may not have been representative of the real world.
Second, the proposed model was evaluated using only a subset
of the conceivable battery SoC and charging/discharging
scenarios. Future studies should check the model’s reliability
in more practical applications. The findings of this study pro-
vide strong evidence in favor of further exploring the droop-
ANN model for application in V2G networks. The proposed
model can significantly improve power quality and reduce
power fluctuations, which can improve the stability and reli-
ability of the grid and the battery. Future studies should focus
on implementing the proposed model in a real-world V2G
system and evaluating its effectiveness under real-world con-
ditions. In conclusion, the proposed droop-ANN model pro-
vides a promising approach for improving power quality in
V2G systems, and further research is needed to fully explore
its potential.
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