DOI: 10.24996/ijs.2023.64.6.37

ISSN: 0067-2904

On Subspace Codisk-Cyclicity

Zeana Z. Jamil^{1*}, Nuha H. Hamada²

¹Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq ²Department of Software Engineering, College of Engineering, Al Ain University, Abu Dhabi, UAE

Received: 3/10/2022 Accepted: 8/12/2022 Published: 30/6/2023

Abstract.

Let $\mathcal N$ be a subspace of an infinite dimensional complex separable on a Hilbert space $\mathcal H$. The operator $T\in\mathcal B(\mathcal H)$ is said to be $\mathcal N$ -codisk-cyclic, if there is a nonzero vector y in $\mathcal H$, then $\mathcal N\cap \{\beta T^ny\colon \beta\in\mathbb C, |\beta|\geq 1, n\in\mathbb N\}$ is dense in $\mathcal N$. This paper, introduces the properties of the concepts $\mathcal N$ -codisk-cyclic and $\mathcal N$ -codisk-cyclic transitive. The existence of a subspace codisk-cyclic operator on n-dimensional complex Hilbert space is illustrated and a criterion of $\mathcal N$ -codisk-cyclic operator in infinite dimensional is obtained.

Keywords: Codisk-cyclic operators, Hilbert spaces, Codisk -cyclic transitive, dense sets.

حول المؤثرات الفضاء الجزئى القرصى المشترك

زينة زكي جميل 1*، نهى حامد حمادة 2

أقسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد: العراق هندسة البرمجيات، كلية الهندسة، جامعة العين، ابوظبي، الامارات العربية المتحدة

الخلاصه

 $T\in\mathcal{H}$ ليكن \mathcal{H} فضاء جزئي من فضاء غير منته البعد قابل للفصل عقدي هلبرت \mathcal{H} . يقال للمؤثر \mathcal{H} انه مؤثر قرصي مشترك من النمط \mathcal{H} إذا وجد متجه غير صفري \mathcal{H} في \mathcal{H} بحيث انه المجموعة \mathcal{H} \mathcal{H} \mathcal{H} انه مؤثر قرصي مشترك من النمط \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} انه مؤثر قرصي مشترك من النمط \mathcal{H} إذا وجد متجه غير صفري \mathcal{H} في \mathcal{H} بحيث انه المجموعة \mathcal{H} انه مؤثر قرصي مشترك من النمط \mathcal{H} إذا وجد متجه غير صفري \mathcal{H} انه المؤثر على المؤثر

 ${\mathcal N}$ تكون كثيفة في

هذا البحث يتناول خواص المؤثرات القرصية المشتركة وخواص المؤثرات القرصية المشتركة المتعدية. يتم توضيح وجود مؤثر قرصي مشترك فضاء جزئي في فضاء هيلبرت المركب ذي الأبعاد n ويتم الحصول على معيار مؤثر قرصي مشترك من النمط $\mathcal N$ في الأبعاد اللانهائية.

1. INTRODUCTION

Let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators on a separable infinite dimensional Hilbert space $\mathcal{H}, T \in \mathcal{B}(\mathcal{H})$ is said to be hypercyclic operator, if the orbit of T with a nonzero vector y in \mathcal{H} , then orbit $(T, y) := \{T^n y : n \ge 0\}$ is dense in \mathcal{H} . Thus y is said to be a hypercyclic vector for T [1]

^{*}Email: nuha.hamada@aau.ac.ae

The motivation of the studying of the scalar multiples of an orbit is due to the example of Rolewicz [2]. The operator T is called a supercyclic operator, if there exists a nonzero vector y where the cone generated by orbt(T,y) is dense in \mathcal{H} its definition is created by Hilden and Wallen in 1974 [3] Hypercyclicity are extensively studied by many researchers, for more detail see [1] [4].

Because the operator λB ; $|\lambda| \le 1$ is not hypercyclic, where B is the backward shift operator on $\ell^p(\mathbb{N})$, one may wonder if there is an operator T such that its disk or co-disk orbital is dense in \mathcal{H} . The codisk-cyclicity concepts was presented by Jamil, 2002 [5]. The operator $T \in B(\mathcal{H})$ is a codisk-cyclic operator if there is a nonzero vector $y \in \mathcal{H}$, such that the codisk orbit, $C\mathbb{D}orbt(T,y) := \{\beta T^n y : \beta \in \mathbb{C}, |\beta| \ge 1, n \in \mathbb{N}\}$ is dense in \mathcal{H} , that vector y is said to be codisk-cyclic for T [5] Recently, several authors [6] [7] have studied a codisk-cyclic operators.

In 2010, Jamil in [8] shown that, if the $C\mathbb{D}orbt(T,y)$ is somewhere dense, then it is everywhere dense, that is closure of $int(C\mathbb{D}orbt(T,y)) \neq \emptyset$, then T must be codisk-cyclic. Hence, to discuss codisk-cyclicity for closed sets M, it must have empty interior, e.g., M is a nontrivial subspace.

The concepts of subspaces codisk-cyclicity and codisk – transitivity are presented in this paper. We give an example to ensure that not every subspace codisk-cyclic operator is codisk-cyclic. Some necessary and sufficient conditions of subspace codisk-transitive operators are investigated. Moreover, a subspace codisk-cyclic criterion is established, and discussed when these two concepts (subspaces codisk-cyclicity and codisk – transitivity) are equivalence. We will abbreviate the set $\{z \in \mathbb{C} : |z| \ge 1\}$ by \mathbb{B}^c , $\{z \in \mathbb{C} : |z| \le 1\}$ by \mathbb{D} and $\mathbb{N} \cup \{0\}$ by \mathbb{N}_0 .

2. Subspace Codisk-Cyclic

In this section, we introduce a subspace codisk-cyclic operator and study some of its properties.

Definition 2.1. Let \mathcal{N} be a nontrivial subspace of \mathcal{H} . A subspace codisk-cyclic operator T for $\mathcal{N}(\mathcal{N} - \text{codisk-cyclic})$ that means, there is a non-zero $y \in H$, such that $\mathcal{N} \cap C\mathbb{D}orb(T, y)$ is dense in \mathcal{N} . This vector y is said to be a subspace codisk-cyclic vector for T.

Let us denote the set of all \mathcal{N} -codisk-cyclic vectors for T by

 $C\mathbb{D}(T,\mathcal{N}) := \{ y \in H : \mathcal{N} \cap \beta orb(T,y) \text{ is dense in } \mathcal{N} ; \beta \in \mathbb{B}^c \}.$

and the set of all \mathcal{N} -codisk-cyclic operators by

 $C\mathbb{D}(\mathcal{H}, \mathcal{N}) := \{ T \in B(\mathcal{H}) : \mathcal{N} \cap \beta orb(T, y) \text{ is dense in } \mathcal{N}; y \in \mathcal{H} \text{ and } \beta \in \mathbb{B}^c \}.$

In general, the subspace codisk-cyclicity does not imply codisk-cyclicity as shown in the next example.

Remark 2.2. Let $T \in B(\mathcal{H})$ be a codisk-cyclic operator and y be a codisk-cyclic vector. Let $I \in B(\mathcal{H})$ be the identity operator. Hence, $I \oplus T \in B(\mathcal{H} \oplus \mathcal{H})$ is $\{0\} \oplus \mathcal{H}$ – codisk-cyclic operator for the subspace codisk-cyclic vector $0 \oplus y$. This is due to, the fact that $I \oplus T|_{\{0\} \oplus \mathcal{H}}$ is codisk-cyclic operator, where $\{0\} \oplus \mathcal{H}$ is $I \oplus T$ - invariant subspace. Note that, $I \oplus T$ is not codisk-cyclic.

Remark 2.3. Let y be a codisk-cyclic vector for $T \in B(\mathcal{H})$. Assume that $F \in B(\mathcal{H})$ is nonzero with closed range of \mathcal{N} . If $S \in B(\mathcal{H})$ satisfies SF = FT, then one can easily prove that S is \mathcal{N} -codisk-cyclic with \mathcal{N} -codisk-cyclic vector Fy.

Now, we prove that every n-dimensional Hilbert space contains \mathcal{N} - codisk-cyclicity.

Proposition 2.4. Every complex finite dimensional Hilbert space has a subspace codisk-cyclic operator.

Proof. Since any two n-dimensional complex Hilbert spaces are isomorphic, then it is enough to show the existence of any complex n-dimensional operator.

Let $\mathcal{N} = \{\hat{y}: \hat{y} = (a, 0, ..., 0); \hat{y} \in \mathbb{C}_n\}$ be a subspace of \mathbb{C}_n ; $n \in \mathbb{N}$ and Tx = kx; $x \in \mathbb{C}_n$, $k \in \mathbb{C}$, such that |k| < 1. Then let x = (1,0, ..., 0). Thus,

 $\mathcal{C}\mathbb{D}(T,x)\cap\mathcal{N}=\{(\beta k^n,0,...,0)\colon |\beta|\geq 1, n\geq 0\}.$

Let $\hat{z} = (b, 0, ..., 0) \in \mathcal{N}$ and let us choose an $n \in \mathbb{N}$, such that $|k^n| \le |b|$, then $\hat{z} = \left(\left(\frac{b}{k^n}\right)k^n, 0, ..., 0\right) \in C\mathbb{D}(T, x) \cap \mathcal{N}$. Hence T is \mathcal{N} -codisk-cyclic operator.

Proposition 2.5. If $T \in B(H)$, \mathcal{N} is a non-zero subspace of H, then $C\mathbb{D}(T,\mathcal{N}) = \bigcap_k \left(\bigcup_{\beta \in \mathbb{D}} \bigcup_n T^{-n}(\beta V_k) \right)$.

Proof: Let $\{V_k\}_{k=1}^{\infty}$ be a countable basis for the relative topology on $\mathcal{N}. x \in C\mathbb{D}(T, \mathcal{N})$ if and only if, for all k larger than zero, there exist $n \in \mathbb{N}$, and $\alpha \in \mathbb{B}^c$ such that $\alpha T^n x \in V_k$, if and only if $x \in \cap_k (\bigcup_{\beta \in \mathbb{D}} \bigcup_n T^{-n}(\beta V_k))$.

3. Subspace Codisk-Cyclic transitive

In this section, we aim to introduce the subspace Codisk – cyclic transitive and study some of its properties.

Definition 3.1. Let \mathcal{N} be a nonzero subspace of \mathcal{H} . The operator $T \in B(\mathcal{H})$ is \mathcal{N} – codisk transitive, if for each nonempty relatively open set V, U in \mathcal{N} , there is $n \in \mathbb{N}_0$ and $\alpha \in \mathbb{B}^c$, such that $U \cap T^n(\alpha V)$ has a nonempty relatively open set of \mathcal{N} .

Proposition 3.2: If an operator T is \mathcal{N} —codisk transitive, then for any nonempty relatively open sets $V, U \subseteq \mathcal{N}$, there are $n \in \mathbb{N}_0$ and $\alpha \in \mathbb{B}^c$, such that $U \cap T^n(\alpha V)$ is non-empty and \mathcal{N} is invariant under T^n .

Proof: Since T be \mathcal{N} - codisk-cyclic transitive and U and V be non-empty relatively open sets of \mathcal{N} , then Definition 3.1 implies that, there exists $n \in \mathbb{N}_0$ and $\alpha \in \mathbb{B}^c$, such that $U \cap T^n(\alpha V)$ has a nonempty relatively open set of \mathcal{N} . Then $U \cap T^n(\alpha V) \neq \emptyset$. Thus $V \cap T^{-n}\left(\frac{1}{\alpha}U\right) \neq \emptyset$, say that Y.

Now, let x in \mathcal{N} . Since $Y\subseteq T^{-n}\left(\frac{1}{\alpha}U\right)$, hence $T^n(\alpha Y)\subseteq U\subseteq \mathcal{N}$. Take x_0 in Y, then $T^n(\alpha x_0)\in \mathcal{N}$. Since Y is nonempty relatively open set in \mathcal{N} and $x\in \mathcal{N}$, thus for small enough r>0, we get, $x_0+rx\in Y$, thus $T^n(\alpha x_0)+r\alpha T^n(x)\in T^n(\alpha Y)\subseteq \mathcal{N}$. This leads to $T^n(x)\in \mathcal{N}$. Therefore, $T^n(\mathcal{N})\subseteq \mathcal{N}$. The converse of the Proposition 3.2 is not true unless T is open mapping or has inverse on \mathcal{N} . In fact, since $T^n|\mathcal{N}:\mathcal{N}\to\mathcal{N}$ is bounded and U is relatively open in \mathcal{N} , hence $T^{-n}\left(\frac{1}{\alpha}U\right)$ is relatively open set in \mathcal{N} , thus $V\cap T^{-n}\left(\frac{1}{\alpha}U\right)$ is relatively open set in \mathcal{N} . The following result is done

Proposition 3.3. The following statements are equivalent, where $T \in B(\mathcal{H})$ is open mapping or bijective on a nonzero subspace \mathcal{N} of \mathcal{H} :

1) The operator T is \mathcal{N} -codisk transitive.

- any nonempty relatively open sets $V, U \subseteq \mathcal{N}$, there are $n \in \mathbb{N}_0$ $\alpha \in \mathbb{B}^c$, such that $U \cap T^n(\alpha V)$ is a nonempty and $T^n(\mathcal{N}) \subseteq \mathcal{N}$.
- 3) For all non-empty relatively open sets $V, U \subseteq \mathcal{N}$, there exist $n \in \mathbb{N}_0$ $\alpha \in \mathbb{B}^c$, such that $U \cap T^n(\alpha V)$ is a non-empty relatively open set of \mathcal{N} .

Now we turn our attention to discuss the necessary condition for an operator to be -codisk transitive.

Lemma 3.4. Let \mathcal{N} be a nonzero subspace of \mathcal{H} , and $\{V_i\}$ be a countable open basis for the relative topology of \mathcal{N} . If $T \in B(H)$ is a \mathcal{N} – codisk transitive, then $\bigcap_{i=1}^{\infty} \bigcup_{\alpha \in \mathbb{R}^{C}} \bigcup_{n=0}^{\infty} T^{n}(\alpha V_{j}) \bigcap \mathcal{N}$

$$\bigcap_{j=1}^{\infty} \bigcup_{\alpha \in \mathbb{B}^c} \bigcup_{n=0}^{\infty} T^n(\alpha V_j) \bigcap \mathcal{N}$$

is a dense subset of \mathcal{N} .

Proof: By Definition 3.1, for each j and, there exist $n_{j,k} \in \mathbb{N}_0$ and $\alpha \in \mathbb{B}^c$, such that the set $T^{n_{j,k}}(\alpha V_j) \cap V_k$ has a nonempty relatively open set. Hence the set

$$A_{j} := \bigcup_{\alpha \in \mathbb{B}^{c}} \bigcup_{k=1}^{\infty} \left(T^{n_{j,k}} (\alpha V_{j}) \bigcap V_{k} \right)$$

has a nonempty relatively open set in \mathcal{N} , say \widehat{A}_{i} .

Moreover, each \widehat{A}_l is dense of \mathcal{N} , since it intersects each B_k . Thus, by using Baire Category theorem, we get,

$$\bigcap_{j=1}^{\infty} \bigcup_{\alpha \in \mathbb{B}^{c}} \bigcup_{n=0}^{\infty} T^{n}(\alpha V_{j}) \bigcap \mathcal{N} \supseteq \bigcap_{j=1}^{\infty} \left(\bigcup_{\alpha \in \mathbb{B}^{c}} \bigcup_{k=1}^{\infty} T^{n_{j,k}} \left(\alpha V_{j} \right) \bigcap V_{k} \right)$$

$$= \bigcap_{j=1}^{\infty} A_{j} \supseteq \bigcap_{j=1}^{\infty} \widehat{A}_{j},$$

is a dense subset of \mathcal{N} .

Clearly, the following Proposition is implied from combining Lemma 3.4 and Proposition 2.5.

Proposition 3.5: If $T \in B(\mathcal{H})$ is an open mapping (or bijective) \mathcal{N} – codisk transitive, then T is \mathcal{N} -codisk-cyclic operator.

Proposition 3.6: Let $T \in B(\mathcal{H})$ and \mathcal{N} be a nonempty subspace of H such that:

- 1) T is an open mapping or bijective on \mathcal{N} .
- 2) There are dense sets Y, X in \mathcal{N} and S is an operator on \mathcal{N} (not need to be bounded), such that $S(Y) \subset Y$ and $TS = I_Y$.
- 3) There is a sequence $\{n_k\}$ in \mathbb{N} , such that,
- a) $\lim_{n \to \infty} \inf ||T^{n_k} x|| = 0$ for all $x \in X$.
- b) $\lim_{n\to\infty}\inf \|T^{n_k}x\| \|S^{n_k}y\| = 0$ for all $x \in X, y \in Y$.

Then T is \mathcal{N} - codisk-cyclic transitive, hence T is a \mathcal{N} -codisk-cyclic operator.

Proof: Let V and U be two relatively open sets in \mathcal{N} . Since Y and X are dense sets in \mathcal{N} , then from the condition (2), there are $x \in X \cap V$ and $y \in Y \cap U$, such that for some sequence $\{n_k\}$ in N and $0 < \mathcal{E} < 1$,

$$||T^{n_k}x|| < \frac{\varepsilon}{2} \dots (I)$$

$$||T^{n_k}x|| ||S^{n_k}y|| < \frac{\varepsilon}{4} \dots (II)$$

If $||T^{n_k}x|| \neq 0$, put $c = 2 ||T^{n_k}x||$. Thus, 0 < c < 1. Take $u = x + cS^{n_k}y$, and $\alpha = \frac{1}{c}$. Hence by the equation (II), $||u - x|| = ||cS^{n_k}y|| < \frac{\varepsilon}{2}$. Therefore, $u \in V$.

Now, since $T^{n_k}u = T^{n_k}x + cy$, thus, $\|\alpha T^{n_k}u - y\| = \frac{1}{c}\|T^{n_k}x\| < 1$.

Then, $\alpha T^{n_k}u \in U$. Therefore, $U \cap T^{n_k}(\alpha V)$ is a nonempty relatively open set of \mathcal{N} .

Now, if $||T^{n_k}x|| = 0$, then choose 0 < c < 1 small enough, such that $c||S^{n_k}y|| < \frac{1}{2}$, and let $\alpha = \frac{1}{c}$. Thus, $||u - x|| < \frac{1}{2}$ and $||\alpha T^{n_k}u - y|| < 1$. Hence, $U \cap T^{n_k}(\alpha V)$ is a nonempty relatively open set of \mathcal{N} .

4-Conclusions:

A bounded linear operator T on subspace, say \mathcal{N} , of an infinite dimensional complex separable Hilbert space \mathcal{H} is said to be \mathcal{N} -codisk-cyclic if satisfy:

$$\mathcal{N} \cap \{\beta T^n y : \beta \in \mathbb{C}, |\beta| \ge 1, n \in \mathbb{N}\},\$$

is dense in \mathcal{N} , for some nonzero vector y in \mathcal{H} . This paper, presented two new concepts, \mathcal{N} -codisk-cyclic and \mathcal{N} -codisk-cyclic transitive. We prove that their existence of a \mathcal{N} -codisk-cyclic operator on n-dimensional complex Hilbert space, also prove a criterion of \mathcal{N} -codisk-cyclic operator in infinite dimensional. Finally, we discussed the relation between these two concepts.

Reference

- [1] K. Grosse-Erdmann and A. Peris, Linear Chaos, Universitext, 2011.
- [2] S. Rolewicz, "On orbits of elements," Studia Math, vol. 32, pp. 17-22, 1969.
- [3] H. M. Hilden and L. J. Wallen, "Some cyclic and non-cyclic of certain operators," *Indiana Univ. Math. J*, vol. 23, pp. 557-565, 1974.
- [4] N. H. Hamada, "On supercyclicity criteria," *International Journal of Pure and Applied Mathematics*, vol. 101, no. 3, pp. 401-405, 2015.
- [5] Z. Z. Jamil, Cyclic Phenomena of operators on Hilbert space, Thesis, University of Baghdad, 2002.
- [6] Z. Z. Jamil, "On Hereditarily Codisk-cyclic Operators," Baghdad Sci. J., vol. 19, no. 2, pp. 3-9, 2022.
- [7] Y. Wang and Z. Hong-Gang, "Disk-cyclic and codisk-cyclic weighted pseudo-shifts," Bulletin of the Belgian Mathematical Society-Simon Stevin, vol. 25, no. 2, pp. 209-224, 2018.
- [8] Z. Z. Jamil, "G- Cyclicity and Somewhere Dense," Baghdad Science Journal, vol. 7, no. 2, pp. 1053-1055, 2010.