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A B S T R A C T

This research manuscript is devoted to investigate a smoking tobacco cancer model by applying some advanced
techniques based on second derivative. The snuffing class is included in the construction of our model. The
stability of the spread of the cancer disease due to tobacco is examined using the reproductive number
concept. It is also advisable to look into the many scenarios in which the infectious classes might decline
or vanish. Researchers calculated the reproductive number to create projections for the future. It hardly
guarantees a thorough investigation, though. In light of this, the concept of strength number and the study
of second derivatives for mathematical models are recommended using Laypunove functions to get more
detailed information for future predictions. As a result, we investigate the proposed model using the second
derivative technique to compute strengthen number. By calculating the aforesaid number, future proposals can
be predicted. Finally, we make an effort to examine the proposed model under fractional order derivative to
present some graphical simulations using different fractional order. In this regard, some numerical tools are
utilized to approximate the proposed model for graphical investigations.

Introduction

The use of tobacco dates back more than 4000 years. It was used by Native Americans as a narcotic drug. In 1493, Christopher Columbus
returned it to Europe. Europe experienced a rapid growth of tobacco smoking during the 16th and 17th centuries. Annual tobacco consumption
in the United States rose from 5 billion in 1905 to 17 and 90 billion in 1915 and 1925, respectively. As the harmful effects of tobacco became
more widely known in the 1950s. Therefore in that time, anti-tobacco activities were launched. Around the same time, cigarette producers began
producing filter cigarettes in an effort to reduce the negative effects of those campaigns. The 1970s is considered the introduction of lite cigarettes,
which contained less nicotine and tar than filter cigarettes. In 1939, Muller published the pioneering research on the epidemiological association
between smoking cigarettes and lung cancer (see [1]). After Muller’s findings proved the cause-and-effect relationship between cigarette smoking
and lung cancer in the 1950s, large case-control studies were carried out in the United States and Great Britain (we refer [2,3]). In 1964, a report
published [4] which concluded that smoking cigarettes was the main contributing factor to lung cancer in men. In 1980, a similar partnership
amongst women was also founded.

Lung cancer is the leading cause of cancer-related death worldwide. More than 160,000 fatalities from lung cancer have been reported in the US
in 2007 and more than a million deaths from the disease worldwide. According to [5], smoking is the main risk factor for lung cancer. The body’s
immune system may get weakened by the poisons in cigarette smoke, making it more challenging to eradicate cancer cells. As a result, cancer
cells continue to multiply. Smoke from cigarettes contains poisons that can alter or harm a cell’s DNA. According to [6–8], smokers have a 30-fold
increased risk of developing cancer than nonsmokers. According to estimates, one-third of people are smoking in most of the developed countries
around the world. In addition, the number of women who smoke is also day by day increasing. One-third of all adult fatalities are expected to
be caused directly by tobacco smoking by 2025, when 10 million deaths are expected. Large cohort studies have demonstrated the link between
smoking and lung cancer [9,10]. Additionally, it is believed that smoking cigarettes accounts for between 70 and 80 percent of women’s and
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nearly 90 percent of men’s chance of developing lung cancer. It is estimated that smoking causes about 90% of lung cancer fatalities. Compared to
non-smokers, lifelong smokers have a 20–40 times increased risk of developing lung cancer. In the US, lung cancer is the cause of 26% and 31%
of all cancer-related deaths in men and women, respectively. Overall, only 15% of people survive for five years, and only 42% do so for one year.
Lung cancer claims more lives than prostate, breast, colon, and pancreatic cancers combined, we refer about the detail [11].

Woloshin and his co-authors have presented the health risks connected to smoking status in a fresh context. For males 60 years of age and older
who smoke, the death rate from lung cancer is equal to the death rate from heart disease. After the age of 50, it is ten times more likely to die
from prostate or colon cancer. For women who smoke, the risk of dying from lung cancer surpasses the chance of dying from breast cancer after
the age of 40 [12]. Lung cancer and chronic obstructive pulmonary disease (COPD) are both made worse by a range of defective cells, cytokines,
and growth factors that are produced as a result of smoking tobacco. Inflammation may encourage lung cancer in a variety of different ways. For
instance, inflammatory cells’ reactive nitrogen or oxygen species may bind to DNA and result in genetic alterations [13,14]. Patients who smoke
after receiving cancer treatment face extra difficulties. Giving up smoking reduces the likelihood of developing recurring lung cancer and may
increase the survival time of cancer patients. To save lives and reduce the risks associated with smoking, doctors should emphasize the benefits of
quitting to both healthy individuals and cancer patients.

Here, it is remarkable that the technique of epidemiology is used to identify the root causes of diseases and other health issues in populations. In
epidemiology, the population is the patient, and people are viewed as a whole. The said branch tremendously attracted the attention of researchers
during last several decades. Different diseases have been modeled using various concepts of mathematics. Because, mathematical models are
powerful tools increasingly used to describe real-world problems. For instance, we refer some applications of mathematical models as [15,16],
and [17]. For recent work in epidemiology, we refer [18]. Numerous mathematical models for the transmission of the disease have been used to
predict future patterns of spread with some effectiveness. The main objective is to comprehend the asymptotic spread so that measures can be
implemented to combat and control viral infection and dissemination. To better comprehend these models, a number of mathematical ideas have
been developed. Here, we refer some useful studies like [19–21].

During the modeling process, partial differential equations or ordinary differential equations have been used by mathematicians to transform the
observable data into mathematical equations. In this regards, recently researchers have increasingly considered fractional order derivatives instead
of traditional. Because the said operators with different kinds of kernels have the ability to model the real-world problems with more realistic
way as compared to integer order. Some recent investigations are refereed here as [22–26]. The generated equation system, whether linear or
nonlinear, is subjected to further investigation. In the preliminary study, equilibrium points (endemic and disease-free) were sought (see [27]).
Following this analysis, a stability study that takes into account both global and asymptotic global stability is typically carried out to identify the
circumstances under which the infectious classes will either increase, decrease, or remain constant (we refer [28,29]). If the spread will remain
stable or not depends on the reproduction number, which can be computed in a variety of ways, such as by estimating the subsequent matrix
generation. Finally, the study of the sign for the associated Lyapunov function’s first derivative is undertaken to give a thorough grasp of the
stability. Although thousands of articles have been written on the issue and similar analysis have been conducted, not much has changed since the
concept of reproductive number was originally put forth. For some more details reader should read the work published in [29,30].

It has been noted that the fundamental reproduction number is insufficient for forecasting the future dynamics of detail transmission. As a result,
some researchers have demonstrated that a different metric known as the strengthen number can aid in future prediction more. Additionally, the
Lyapunov function’s second derivative test might inform us of the specific transmission dynamics. In this study, we compute the second derivative
test of the Lyapunov function and strengthen number for our suggested model which has been updated form of the model studied in [31] as

𝑑𝑃
𝑑𝑡

= 𝛬 −
𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) + 𝛿1 𝑇 + 𝛿∗2 𝐶 − 𝜇 𝑃 ,

𝑑𝐼𝐿
𝑑𝑡

=
𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) − 𝛽2 𝐼𝐿 𝐼𝐶 − (𝛼1 + 𝛿3 + 𝛾1 + 𝜇)𝐼𝐿,

𝑑𝐼𝐶
𝑑𝑡

= 𝛽2 𝐼𝐿 𝐼𝐶 − 𝛼2 𝐼𝐶 − (𝛾2 + 𝜇)𝐼𝐶 + 𝛼1 𝐼𝐿,

𝑑𝐼
𝑑𝑡

= 𝛼2𝐼𝐶 − (𝛼3 + 𝛾3 − 𝜇)𝐼,

𝑑𝑇
𝑑𝑡

= 𝛿3 𝐼𝐿 − 𝛿4 𝑇 − (𝛿1 + 𝜇)𝑇 + 𝛼3 𝐼 − 𝛿5 𝑇 ,

𝑑𝐶
𝑑𝑡

= 𝛿4 𝑇 − 𝛿∗2 𝐶 − 𝜇 𝐶,

𝑑𝑅
𝑑𝑡

= 𝛿5 𝑇 − 𝜇𝑅, (1)

where 𝑁(𝑡) is the total size individuals in community at time 𝑡, i.e., 𝑁(𝑡) = 𝑃 (𝑡) + 𝐼𝐿(𝑡) + 𝐼𝐶 (𝑡) + 𝐼(𝑡) + 𝑇 (𝑡) + 𝐶(𝑡) + 𝑅(𝑡). Here to be noted that the
ariables and parameters in our proposed model are non-negative. We consider the following conditions for our proposed model (1)

𝑃 (0) = 𝑃 0 ≥ 0, 𝐼𝐿(0) = 𝐼0𝐿 ≥ 0, 𝐼𝐶 (0) = 𝐼0𝐶 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0,

𝑇 (0) = 𝑇 0 ≥ 0, 𝐶(0) = 𝐶0 ≥ 0, 𝑅(0) = 𝑅0 > 0.
(2)

In addition, the variable, parameters involve in our proposed model and their physical description is given in Table 1.
It is remarked that the flow chart of the model described in Fig. 1 for further better understanding. Additionally, it has recently been discovered

hat fractional calculus significantly and more sophisticatedly models the majority of real-world issues. According to studies, fractional-order models
o better at describing memory in biological and epidemiological systems than conventional integral-order models. Therefore, in order to understand
ur proposed model, it is important to reformulate the previous model to the fractional order model. A significant amount of work has been done
sing the aforementioned notions. Citations for some commonly used works in this regard include [32–35], and [36]. Different varieties of fractional
ifferential operators have recently been introduced. The aforementioned operators are increasingly being employed to look into various issues
n the actual world. Some outstanding findings are cited as [37,38]. There are various advantages of fractional order operators over traditional
lassical order. For instance fractional differential operators have greater degree of freedom and they permit to describe a real world phenomenon
ith more sophisticated form. Another one is that long and short memory characteristics are also nicely explained by using the aforesaid area as
2

ompared to integer order. The models involve fractional derivatives with local or nonlocal kernels describe the results in global ways because
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Table 1
Nomenclatures and their physical description of the model (1).
Nomenclature Description

𝑃 (𝑡) The Susceptible class
𝐼𝐿(𝑡) The Latently infected class
𝐼𝐶 (𝑡) The Chronically infected class without treatment
𝐼(𝑡) The Infectious class without treatment
𝑇 (𝑡) The Infectious class with treatment
𝐶(𝑡) The Cancer infectious class
𝑅(𝑡) The Recovered population
𝛬 Population size
𝛽1 Disease transmission coefficient from 𝐼𝐿
𝛽2 transmission coefficient from 𝐼𝐿 to 𝐼𝐶
𝛿1 Rate of transferring from 𝐼 to 𝑇
𝛿∗2 Rate of transferring of from 𝐶 to 𝑃
𝛿3 Fraction of TB infective that move from 𝐼𝐿 to 𝑇 class
𝛿4 Fraction of TB infective that move from 𝑇 to 𝐶 class
𝛿5 Fraction of TB infective that move from 𝑇 to 𝑅 class
𝜇 Death rate in all compartment
𝛼1 The Rate at which individual leave 𝐼𝐿 and enter to 𝐼𝐶 class
𝛼2 The transferring of individuals from 𝐼𝐶 to 𝐼 class
𝛼3 The Rate at which individual leave 𝐼 and enter to 𝑇 class
𝛾1 , 𝛾2 , 𝛾3 Disease induced death rate in 𝐼𝐿 , 𝐼𝐶 , 𝐼 respectively

Fig. 1. Flow chart for our model (1).

such operators are global in nature, while intiger order are local in nature. The most significant features of fractional calculus is complete spectrum
representation of a function to whom it applied which contains the corresponding integer counter part as a special case. We refer some usefulness
of the said area in [39–41]. A popular topic of study at the moment is the study of biological models under fractional order derivatives. Fractional
calculus is a powerful tool that researchers are employing to examine biological issues. For some important contributions, see [40,42–44]. The
applicability of fractional calculus and its sibilance can be further studied in [44,45], and [46].

Here we state researchers have used various techniques to compute the basic thresholds number also called fundamental reproductive number.
For instance authors [47] used procedure based on next-generation matrix to compute the basic reproduction number in ecological epidemiology
model. In the same way other researchers have used various tools to calculate the aforementioned number, we refer [48–52]. Recently researchers
have investigated that the said number cannot detect comprehensively about the future of a transmission dynamics. Therefore, they have introduced
another quantity called strengthen number using the second derivative roles. The new number has the ability that it tells us about the future of a
transmission dynamics in detailed way. Some real contribution in this regard, we refer as [53]. Also, the Lyapunov functions plays a vital role in
constructive study on epidmology. Therefore recently, a survey of constructing Lyapunov functions for mathematical models in population biology
has been investigated in [54]. For further frequent results [55]. We will also attempt to investigate our proposed model (1) under the concept
of fractional order derivatives, which is inspired by the applications of fractional calculus. We will create a numerical program using the Euler
technique to simulate the outcomes graphically for various fractional orders.

Organization of manuscript: The part first ‘‘Introduction’’ of the paper is devoted to a detailed introduction. The second portion ‘‘Preliminaries’’
is devoted to basic results. In addition, the part ‘‘Boundedness, Positivity of Solution, and Equilibrium Points’’ contains some fundamental results
about the proposed model. Moreover Section ‘‘Main Results’’ contains main results which has some subsections further. Also, we present numerical
results and simulations using traditional order model ‘‘Numerical Presentations and Discussion’’. The portion ‘‘Fractional Order Model and Numerical
Simulations’’ contains fractional order model and its numerical investigations. Additionally, the paper is wind of with a brief conclusion in
‘‘Conclusion’’.
3
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Preliminaries

Here, we recollect some definitions which are needed for fractional part.

Definition 1 ([46]). For a function 𝑃 ∶ + →  and 𝜚 ∈ (0, 1], the left Caputo fractional derivative of order 𝜚 of the function 𝑃 is defined as

𝐶𝐷𝜚
𝑡 𝑃 (𝑡) =

1
𝛤 (𝑛 − 𝜚) ∫

𝑡

0
𝑃 (1)(𝜍)(𝑡 − 𝜍)−𝜚𝑑𝜍.

In the same way, the corresponding Riemann–Liouville fractional integral associated with the power-law kernel is defined as

𝐼𝜚𝑡 𝑃 (𝑡) =
1

𝛤 (𝜚) ∫

𝑡

0
(𝑡 − 𝜍)𝜚−1𝑃 (𝜍)𝑑𝜍.

In addition, the given theorem is also important to convert fractional differential problem to fractional integral problem.

Theorem 2 ([46]). Let 𝑃 ∈ 𝐶[0, 𝜏], then the solution of the problem if 𝛹 ∶ [0, 𝜏] ×+ → 

𝐶𝐷𝜚
𝑡 𝑃 (𝑡) = 𝛹 (𝑡, 𝑃 (𝑡)), 𝜚 ∈ (0, 1],

𝑃 (0) = 𝑃0 > 0

is given by

𝑃 (𝑡) = 𝑃0 + ∫

𝑡

0

(𝑡 − 𝜍)𝜚−1

𝛤 (𝜚)
𝛹 (𝜍, 𝑃 (𝜍))𝑑𝜍. (3)

Boundedness, positivity of solution, and equilibrium points

Find out the first derivative of 𝑁(𝑡) and using plugging the values from the model (1), we obtain
𝑑𝑁
𝑑𝑡

= 𝛬 − 𝜇𝑁 − 𝛾1 𝐼𝐿 + 𝛼1 𝐼𝐶 − 𝛾2 𝐼𝐶 − 𝛾3 𝐼.

By under the concentration assumptions, the parameters and the variables are non-negative, so the last equation can simply rewrite as
𝑑𝑁
𝑑𝑡

+ 𝜇𝑁 ≤ 𝛬.

One can reach to the solution with concern condition has the form

0 < 𝑁(𝑡) ≤ 𝛬
𝜇

+𝑁(0) 𝑒−𝜇 𝑡. (4)

The term 𝑒−𝜇 𝑡 tends to zero as time increases without bound. As how much time increases, (4) implies that the total population in community is
bounded by 𝛬

𝜇 . From the above scenario, we claim the positively invariant biologically feasible region of proposed model has the form

𝛺 =
{

(

𝑃 , 𝐼𝐿, 𝐼𝐶 , 𝐼, 𝑇 , 𝐶,𝑅
)

∈ 7
+
|

|

|

0 < 𝑁(𝑡) ≤ 𝛬
𝜂

}

.

ext, we deals with positivity of the solution of the proposed model under consideration. By picking the first equation of the model under
onsideration, which for all 𝑡 ≥ 0, has the form

𝑑𝑃
𝑑𝑡

= 𝛬 −
𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) + 𝛿1 𝑇 + 𝛿∗2 𝐶 − 𝜇 𝑃 ,

≥ −
𝛽1
𝑁

log𝑃 − 𝜇 𝑃

≥ −
𝛽1
𝑁

( sup
𝑡∈𝐷𝑃

log |𝑃 |) − 𝜇 sup
𝑡∈𝐷𝑃

|𝑃 |

≥ −

[

𝛽1
𝑁

( sup
𝑡∈𝐷𝑃

| log𝑃 | + 𝜇 sup
𝑡∈𝐷𝑃

|𝑃 |)

]

≥ −
[

𝛽1
𝑁

(‖ log𝑃‖∞ + 𝜇‖𝑃‖∞)
]

.

Integrating this subject to the initial conditions (2) has the form

𝑃 (𝑡) ≥ 𝑃 0 exp−(𝜇+
𝛽1
𝑁 )𝑡 +

𝛽1
𝜇𝑁 + 𝛽1

, for all 𝑡 ≥ 0.

oving on the same line, one can verifies the positivity of the remaining solutions of the proposed system.

isease-free equilibrium

Initially we interest to determine the equilibrium states of the proposed model. The primary possible nontrivial condition of the given model is
hat when there is no contamination of the smoking disease in a the population. This state of the system called the disease free state. This state
4
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is obtained by treating the infectious classes set to zero in the given model. It is straight forward to verify that the disease free state, 0, of model
(1) is given by 0 = (𝛬∕𝜇, 0, 0, 0, 0). Since all classes other than the susceptible class are zero in this case, it turns out 𝑁 = 𝑆0. We derive endemic
equilibrium points as

𝛬 −
𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) + 𝛿1 𝑇 + 𝛿∗2 𝐶 − 𝜇 𝑃 = 0

𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) − 𝛽2 𝐼𝐿 𝐼𝐶 − (𝛼1 + 𝛿3 + 𝛾1 + 𝜇)𝐼𝐿 = 0

𝛽2 𝐼𝐿 𝐼𝐶 − 𝛼2 𝐼𝐶 − (𝛾2 + 𝜇)𝐼𝐶 + 𝛼1 𝐼𝐿 = 0

𝛼2𝐼𝐶 − (𝛼3 + 𝛾3 − 𝜇)𝐼, = 0

𝛿3 𝐼𝐿 − 𝛿4 𝑇 − (𝛿1 − 𝜇)𝑇 + 𝛼3 𝐼 − 𝛿5 𝑇 = 0

𝛿4 𝑇 − 𝛿∗2 𝐶 − 𝜇 𝐶 = 0

𝛿5 𝑇 − 𝜇𝑅 = 0. (5)

hen the endemic equilibrium points are

𝑃 ∗ =
−2𝛽1
𝜇𝑁

(

𝑃 ∗𝐼𝐿∗ − 1
𝑃 ∗𝐼𝐿∗ + 1

)

+ 𝑅∗

𝛿5

(

𝛿1 +
𝛿2∗

𝛿2∗ + 𝜇

)

𝐼𝐿
∗ =

2𝛽1𝜁1
𝑁𝜁2

(

𝛼1 + 𝛿3 + 𝜇 + 𝛾1 + 𝛽2𝐼𝐶 ∗)

𝐼𝐶
∗ = 1

𝛽2

(

2𝛽1𝜁1
𝑁𝜁2𝐼𝐿∗ − 𝛼1 − 𝛿3 − 𝜇 − 𝛾1

)

𝐼∗ =
𝛼2𝐼𝐿∗ (𝛼1 + 𝛽2𝐼𝐶 ∗)

(

𝛼2 + 𝛾2 + 𝜇
) (

𝛼3 + 𝛾3 − 𝜇
)

𝑇 ∗ =
𝐼𝐿∗ (𝛿3 + 𝛼2𝛼3

(

𝛼1 + 𝛽2𝐼𝐶 ∗))

(

𝛼2 + 𝛾2 + 𝜇
) (

𝛼3 + 𝛾3 − 𝜇
) (

2𝛿4 − 𝜇 + 𝛿5
)

𝑅∗ =
𝛿5𝐼𝐿∗ (𝛿3 + 𝛼2𝛼3

(

𝛼1 + 𝛽2𝐼𝐶 ∗))

𝜇
(

𝛼2 + 𝛾2 + 𝜇
) (

𝛼3 + 𝛾3 − 𝜇
) (

2𝛿4 − 𝜇 + 𝛿5
)

𝐶∗ =
𝐼𝐿∗ (𝛿3 + 𝛼2𝛼3

(

𝛼1 + 𝛽2𝐼𝐶 ∗))

(

𝛼2 + 𝛾2 + 𝜇
) (

𝛼3 + 𝛾3 − 𝜇
) (

2𝛿4 − 𝜇 + 𝛿5
) (

𝛿2∗ + 𝜇
) , (6)

where

𝜁1 =
𝛼2 + 𝛾2 + 𝜇
𝛼1 + 𝛽2𝐼𝐶 ∗ − 1

𝑃 ∗𝐼𝐶 ∗ ,

𝜁2 =
𝛼2 + 𝛾2 + 𝜇
𝛼1 + 𝛽2𝐼𝐶 ∗ + 1

𝑃 ∗𝐼𝐶 ∗ .

asic reproduction number

Here, we discuss the stability of the possible equilibrium states of the proposed model. To start with, we consider it advantageous to determine
he threshold quantity 0. For this purpose, we exploit the so-called next generation method [47]. To proceed further, we take into account the
nfectious classes in the proposed model and consider the following sub-system

𝑑𝐼𝐿
𝑑𝑡

=
𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) − 𝛽2 𝐼𝐿 𝐼𝐶 − (𝛼1 + 𝛿3 + 𝛾1 + 𝜇)𝐼𝐿,

𝑑𝐼𝐶
𝑑𝑡

= 𝛽2 𝐼𝐿 𝐼𝐶 − 𝛼2 𝐼𝐶 − (𝛾2 + 𝜇)𝐼𝐶 + 𝛼1 𝐼𝐿,

𝑑𝐼
𝑑𝑡

= 𝛼2𝐼𝐶 − (𝛼3 + 𝛾3 − 𝜇)𝐼,

𝑑𝐶
𝑑𝑡

= 𝛿4 𝑇 − 𝛿∗2 𝐶 − 𝜇 𝐶. (7)

Following, we find the necessary matrices for the computation of the threshold quantity. Matrices required for this situation are

𝐹 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛽1𝑃
𝑁(𝑃𝐼𝐿+1)

− 𝛽2𝐼𝐶 −𝛽2𝐼𝐿 0 0

𝛽2𝐼𝐶 𝛽2𝐼𝐿 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, and 𝑉 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑚1 0 0 0
−𝛼1 𝑚2 0 0
0 −𝛼2 𝑚3 0
0 0 0 𝑚4

⎤

⎥

⎥

⎥

⎥

⎦

.

where

𝑚1 = 𝛼1 + 𝛿3 + 𝜇 + 𝛾1, 𝑚2 = 𝛼2 + 𝛾2 + 𝜇, 𝑚3 = 𝛾3 + 𝛼3 − 𝜇,
5
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and 𝑚4 = 𝜇 + 𝛿∗2 under the fact 𝑁 = 𝑆0. The multiplicative inverse of the matrix 𝑉 has the form

𝑉 −1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0
1
𝑚1

1
𝛼1

0 0
𝛼1𝛼2
𝑚1𝑚2

𝛼2
𝑚2

1 0

− 𝛼1𝛼2
𝑚1𝑚2

− 𝛼2
𝑚2

−1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Consequently the next generation matrix, 𝐹𝑉 −1, for the sub-model (7) is calculated as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑃𝛽1
𝐼𝐿𝑃𝑁+𝑁 − 𝐼𝐶𝛽2 −

𝐼𝐿𝛽2
𝑚1

− 𝐼𝐿𝛽2
𝛼1

0 0

𝐼𝐶𝛽2 +
𝐼𝐿𝛽2
𝑚1

𝐼𝐿𝛽2
𝛼1

0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (8)

Next with the help of (𝐹𝑉 −1 −𝜆𝐼 = 0). The basic reproduction parameter, 𝐑𝟎 is the dominant eigenvalue of the next generation matrix (7) and has
the form described in (9) as

𝐑𝟎 = 1
2𝛼1𝑚1𝑁

(

𝑚1𝛼1𝛽1 +𝑁(𝑚1𝐼𝐶𝛼1 + 𝐼𝐿(𝛼1 + 𝑚1))𝛽2

+
√

(𝛽12𝛼12𝑚1
2 + 2𝛼1𝑚1𝑁(𝐼𝐶𝑚1𝛼1 + 𝐼𝐿(−𝑚1 + 𝛼1))𝛽1𝛽2 +𝑁2(𝐼𝐶𝑚1𝛼1 + 𝐼𝐿(𝑚1 + 𝛼1))2𝛽22)

)

. (9)

Discussion in the following sections will reflect the vital role of the basic reproduction parameter 𝐑𝟎 in the description of the dynamics of the
disease modeled by the system in (1). In Fig. 2, we present 3 D profile of basic reproductive number.

Main results

Here the first part of our main results has presented which consisted on further subsections.

Computation of strengthen number

In thousands of research paper author’s have been used the reproductive number (see [48–52]) in epidemiological modeling with a few
achievements and high limitations. While this idea has been used to decide either or not the spread will be serious, a few extraordinary shortcomings
have been studied. Here we remark that researchers considered the mentioned value is a unique quantity that can be computed by using various
strategies. Also it has been showed that reproduction number is a function of time not a fixed value. Further, the said number cannot predict
about the waveness in the transmission dynamics of the disease. Therefore some alternate quantity is needed to overcome the above shortcomings.
Recently, authors [53] introduced strength number to predict wave and future dynamics of the transmission dynamics. Therefore, we derive strength
number associated to 𝑃𝐼𝐿𝐼𝐶𝐼𝑇𝑅𝐶.

𝜕2

𝜕𝐼2𝐿

𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) = −𝛽1

(

1
𝑁𝑃𝐼2𝐿

+ 1
𝑁2𝐼𝐿

)

< 0.

Further, we have

F =
⎡

⎢

⎢

⎣

0

−
(

𝛽1

(

1
𝑁𝑃𝐼2𝐿

+ 1
𝑁2𝐼𝐿

))

⎤

⎥

⎥

⎦

,

nd

H−1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐴2𝐴3
𝐴1𝐴2𝐴3+𝐴2𝐼𝐿𝛽2𝐴3

0 0

− 𝐴3𝛼2
𝐴1𝐴2𝐴3+𝐴2𝐼𝐿𝛽2𝐴3

𝐴1𝐴3+𝐼𝐿𝛽2𝐴3
𝐴1𝐴2𝐴3+𝐴2𝐼𝐿𝛽2𝐴3

0

0 0 𝐴1𝐴2+𝐼𝐿𝛽2𝐴2
𝐴1𝐴2𝐴3+𝐴2𝐼𝐿𝛽2𝐴3

⎤

⎥

⎥

⎥

⎥

⎦

,

where

𝐴1 = −(𝛼2 − 𝛾2 − 𝜇)

𝐴2 = −(𝛼3 − 𝛾3 + 𝜇)

𝐴3 = −𝛿∗2 + 𝜇.

Using Mathematica program for finding det(FH−1 − 𝜆𝐼) = 0. The resultant strength number take the form

ℜ𝑆 = −
𝑁𝛽1 + 𝐼𝐿𝑃𝛽1
𝐴1𝐼𝐿2𝑃𝑁2

< 0.

𝑆 < 0 leads to best result that will more affirmed using different analysis comprising in finding local maxima and local minima and inflection
oint. Best conclusion can be get, when the obtaining strength number is less than zero, That it will further be affirmed using an alternative
nalysis comprising in establishing the local minima, local maxima, and inflection points. In this manner, having negative strength number means
hat the model 𝑃𝐼𝐿𝐼𝐶𝐼𝑇𝑅𝐶 will have a solitary magnitude, either greatest or maximum point with infectious points indicating a single infection
ill diminish quickly from the decease free equilibrium and with renewal process the contamination will raise after a minimum point and afterward
e balanced or stop later on. This will be affirmed while concentrating on indication of second derivative of infectious classes.
6
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F

T

Fig. 2. Three dimensional plots of the basic reproduction number versus various parameters of the model (1).

irst derivative test for Lyaponove

heorem 3. For endemic Lyaponove function [54] {𝑃 , 𝐼𝐿, 𝐼𝐶 , 𝐼, 𝑇 , 𝑅, 𝐶}, one has is  < 0, when 𝐑𝟎 > 0, then ∗ of proposed model is globally
asymptotically stable [55].

Proof. Let Lyaponove function be defined as

(𝑃 ∗, 𝐼∗𝐿, 𝐼
∗
𝐶 , 𝐼

∗, 𝑇 ∗, 𝑅∗, 𝐶∗) =
(

𝑃 − 𝑃 ∗ − 𝑃 ∗ log 𝑃 ∗

𝑃

)

+
(

𝐼𝐿 − 𝐼∗𝐿 − 𝐼∗𝐿 log
𝐼∗𝐿
𝐼𝐿

)

+
(

𝐼𝐶 − 𝐼∗𝐶 − 𝐼∗𝐶 log
𝐼∗𝐶
𝐼𝐶

)

+
(

𝐼 − 𝐼∗ − 𝐼∗ log 𝐼∗

𝐼

)

+
(

𝑇 − 𝑇 ∗ − 𝑇 ∗ log 𝑇 ∗

𝑇

)

+
(

𝑅 − 𝑅∗ − 𝑅∗ log 𝑅∗

𝑅

)

+
(

𝐶 − 𝐶∗ − 𝐶∗ log 𝐶∗)

.

7
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P

F

Differentiate both side with respect to 𝑡, we get

𝑑
𝑑𝑡

= 𝑃 ′
(

𝑃 − 𝑃 ∗

𝑃

)

+ 𝐼 ′𝐿

( 𝐼𝐿 − 𝐼∗𝐿
𝐼𝐿

)

+ 𝐼 ′𝐶

( 𝐼𝐶 − 𝐼∗𝐶
𝐼𝐶

)

+ 𝐼 ′
(

𝐼 − 𝐼∗

𝐼

)

+ 𝑇 ′
(

𝑇 − 𝑇 ∗

𝑇

)

+ 𝑅′
(

𝑅 − 𝑅∗

𝑅

)

+ 𝐶 ′
(

𝐶 − 𝐶∗

𝐶

)

.

ut 𝑃 ′, 𝐼 ′𝐿, 𝐼
′
𝐶 , 𝐼

′, 𝑇 ′, 𝑅′, 𝐶 ′., from (1), one has

𝑑
𝑑𝑡

=
(

𝛬 −
𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) + 𝛿1𝑇 + 𝛿∗2𝐶 − 𝜇𝑃
)(

𝑃 − 𝑃 ∗

𝑃

)

+
(

𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) − 𝛽2𝐼𝐿𝐼𝐶 − (𝛼1 + 𝛿3 + 𝛾1 + 𝜇)𝐼𝐿

)( 𝐼𝐿 − 𝐼∗𝐿
𝐼𝐿

)

+
(

𝛽2𝐼𝐿𝐼𝐶 − 𝛼2𝐼𝐶 − (𝛾2 + 𝜇)𝐼𝐶 + 𝛼1𝐼𝐿
)

( 𝐼𝐶 − 𝐼∗𝐶
𝐼𝐶

)

+
(

𝛼2𝐼𝐶 − (𝛼3 + 𝛾3 − 𝜇)𝐼
)

(

𝐼 − 𝐼∗

𝐼

)

+
(

𝛿3𝐼𝐿 − 𝛿4𝑇 − (𝛿1 + 𝜇)𝑇 + 𝛼3𝐼 − 𝛿5𝑇
)

(

𝑇 − 𝑇 ∗

𝑇

)

+
(

𝛿4𝑇 − 𝛿∗2𝐶 − 𝜇𝐶
)

(

𝐶 − 𝐶∗

𝐶

)

+
(

𝛿5𝑇 − 𝜇𝑅
)

(

𝑅 − 𝑅∗

𝑅

)

.

Replace 𝑃 = 𝑃 − 𝑃 ∗, 𝐼𝐿 = 𝐼𝐿 − 𝐼∗𝐿, 𝐼𝐶 = 𝐼𝐶 − 𝐼∗𝐶 , 𝐼 = 𝐼 − 𝐼∗, 𝑇 = 𝑇 − 𝑇 ∗, 𝑅 = 𝑅 − 𝑅∗, 𝐶 = 𝐶 − 𝐶∗.
By long algebraic manipulation and rearranging the positive, negative terms we get

𝑑
𝑑𝑡

= 𝑁
(

𝑃 − 𝑃 ∗

𝑃

)

−
𝛽1
𝑁

log
(

(𝑃 − 𝑃 ∗)(𝐼𝐿 − 𝐼∗𝐿) + 1
)

(

𝑃 − 𝑃 ∗

𝑃

)

+ 𝛿1
(

𝑇 − 𝑇 ∗)
(

𝑃 − 𝑃 ∗

𝑃

)

+ 𝛿∗2
(

𝐶 − 𝐶∗)
(

𝑃 − 𝑃 ∗

𝑃

)

−
𝜇
𝑃

(

(𝑃 − 𝑃 ∗)2

𝑃

)

+
𝛽1

𝑁𝐼𝐿
log

(

(𝑃 − 𝑃 ∗)(𝐼 − 𝐼∗) + 1
)

(

𝑃 − 𝑃 ∗

𝑃

)

(𝐼𝐿 − 𝐼∗𝐿)

− 𝛽2
⎛

⎜

⎜

⎝

(

𝐼𝐿 − 𝐼∗𝐿
)2

𝐼𝐿

⎞

⎟

⎟

⎠

(

𝐼𝐶 − 𝐼∗𝐶
)

−
⎛

⎜

⎜

⎝

(

𝐼𝐿 − 𝐼∗𝐿
)2

𝐼𝐿

⎞

⎟

⎟

⎠

(

𝛼1 + 𝛿3 + 𝛾1 + 𝜇
)

+ 𝛽2
⎛

⎜

⎜

⎝

(

𝐼𝐶 − 𝐼∗𝐶
)2

𝐼𝐶

⎞

⎟

⎟

⎠

(

𝐼𝐿 − 𝐼∗𝐿
)

−
⎛

⎜

⎜

⎝

(

𝐼𝐶 − 𝐼∗𝐶
)2

𝐼𝐶

⎞

⎟

⎟

⎠

(

𝛾2 + 𝛼2
)

+ 𝜇
⎛

⎜

⎜

⎝

(

𝐼𝐶 − 𝐼∗𝐶
)2

𝐼𝐶

⎞

⎟

⎟

⎠

+ 𝛼1

((

𝐼𝐶 − 𝐼∗𝐶
)

𝐼𝐶

)

(

𝐼𝐿 − 𝐼∗𝐿
)

+ 𝛼2

(

𝐼 − 𝐼∗

𝐼

)

(

𝐼𝐶 − 𝐼∗𝐶
)

−
(

𝐼 − 𝐼∗

𝐼

)

(

𝛾3 + 𝛼3
)

+ 𝜇
(

(𝐼 − 𝐼∗)2

𝐼

)

+ 𝛿3

(

𝑇 − 𝑇 ∗

𝑇

)

(

𝐼𝐿 − 𝐼∗𝐿
)

−
(

(𝑇 − 𝑇 ∗)2

𝑇

)

(

𝛼1 + 𝛿4 + 𝛿5
)

+ 𝜇
(

(𝑇 − 𝑇 ∗)2

𝑇

)

+ 𝛼3

(

𝑇 − 𝑇 ∗

𝑇

)

(

𝐼 − 𝐼∗
)

+ 𝛿4

(

𝐶 − 𝐶∗

𝐶

)

(

𝑇 − 𝑇 ∗) −
(

(𝐶 − 𝐶∗)2

𝐶

)

(

𝜇 + 𝛿∗2
)

+ 𝛿2

(

𝑅 − 𝑅∗

𝑅

)

(

𝑇 − 𝑇 ∗) − 𝜇
(

(𝑅 − 𝑅∗)
𝑅

)

.

or simplicity we let 𝑑
𝑑𝑡 = 𝜉1 − 𝜉2, such that

𝜉1 = 𝑁
(

𝑃 − 𝑃 ∗

𝑃

)

+ 𝛿1
(

𝑇 − 𝑇 ∗)
(

𝑃 − 𝑃 ∗

𝑃

)

+ 𝛿∗2
(

𝐶 − 𝐶∗)
(

𝑃 − 𝑃 ∗

𝑃

)

+
𝛽1

𝑁𝐼𝐿
log

(

(𝑃 − 𝑃 ∗)(𝐼 − 𝐼∗) + 1
)

(

𝑃 − 𝑃 ∗

𝑃

)

(𝐼𝐿 − 𝐼∗𝐿)

+ 𝛽2
⎛

⎜

⎜

⎝

(

𝐼𝐶 − 𝐼∗𝐶
)2

𝐼𝐶

⎞

⎟

⎟

⎠

(

𝐼𝐿 − 𝐼∗𝐿
)

+ 𝜇
⎛

⎜

⎜

⎝

(

𝐼𝐶 − 𝐼∗𝐶
)2

𝐼𝐶

⎞

⎟

⎟

⎠

+ 𝛼1

((

𝐼𝐶 − 𝐼∗𝐶
)

𝐼𝐶

)

(

𝐼𝐿 − 𝐼∗𝐿
)

+ 𝛼2

(

𝐼 − 𝐼∗

𝐼

)

(

𝐼𝐶 − 𝐼∗𝐶
)

𝜇
(

(𝐼 − 𝐼∗)2

𝐼

)

+ 𝛿3

(

𝑇 − 𝑇 ∗)
(

𝐼𝐿 − 𝐼∗
)

+ 𝜇
(

(𝑇 − 𝑇 ∗)2
)

8
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+ 𝛼3

(

𝑇 − 𝑇 ∗

𝑇

)

(

𝐼 − 𝐼∗
)

+ 𝛿4

(

𝐶 − 𝐶∗

𝐶

)

(

𝑇 − 𝑇 ∗) + 𝛿2

(

𝑅 − 𝑅∗

𝑅

)

(

𝑇 − 𝑇 ∗)

𝜉2 =
𝛽1
𝑁

log
(

(𝑃 − 𝑃 ∗)(𝐼𝐿 − 𝐼∗𝐿) + 1
)

(

𝑃 − 𝑃 ∗

𝑃

)

+
𝜇
𝑃

(

(𝑃 − 𝑃 ∗)2

𝑃

)

+ 𝛽2
⎛

⎜

⎜

⎝

(

𝐼𝐿 − 𝐼∗𝐿
)2

𝐼𝐿

⎞

⎟

⎟

⎠

(

𝐼𝐶 − 𝐼∗𝐶
)

+
⎛

⎜

⎜

⎝

(

𝐼𝐿 − 𝐼∗𝐿
)2

𝐼𝐿

⎞

⎟

⎟

⎠

(

𝛼1 + 𝛿3 + 𝛾1 + 𝜇
)

+
⎛

⎜

⎜

⎝

(

𝐼𝐶 − 𝐼∗𝐶
)2

𝐼𝐶

⎞

⎟

⎟

⎠

(

𝛾2 + 𝛼2
)

+
(

𝐼 − 𝐼∗

𝐼

)

(

𝛾3 + 𝛼3
)

+
(

(𝑇 − 𝑇 ∗)2

𝑇

)

(

𝛼1 + 𝛿4 + 𝛿5
)

+
(

(𝐶 − 𝐶∗)2

𝐶

)

(

𝜇 + 𝛿∗2
)

.

Hence we get the result that if 𝜉1 < 𝜉2 this yields 𝑑
𝑑𝑡 < 0. But 𝜉1 − 𝜉2 = 0,

if 𝑃 = 𝑃 − 𝑃 ∗, 𝐼𝐿 = 𝐼𝐿 − 𝐼∗𝐿, 𝐼𝐶 = 𝐼𝐶 − 𝐼∗𝐶 , 𝐼 = 𝐼 − 𝐼∗, 𝑇 = 𝑇 − 𝑇 ∗, 𝑅 = 𝑅 − 𝑅∗, 𝐶 = 𝐶 − 𝐶∗ which implies that 𝑑
𝑑𝑡 = 0.

We concluded the largest compact invariant set for the proposed model in

{(𝑃 ∗, 𝐼∗𝐿, 𝐼
∗
𝐶 , 𝐼

∗, 𝑇 ∗, 𝑅∗, 𝐶∗) ∈ ℧ ∶ 𝑑
𝑑𝑡

= 0}

s the point 𝐸∗, of endemic equilibrium. Using the concept applied in [56], one has 𝐸∗ is globally asymptotically stable in the ℧, if 𝜉1 < 𝜉2. □

Second derivative of Lyapunov

While the indication of the first derivative of a Lyapunov function assists with valuing the stability, one ought to take note of that, analysis
of first derivative of a given function cannot completely assist to understand the variabilities of the function under study. Further investigation
are expected to every one of the particularities of the varieties. We subsequently present an analysis of second derivative of the related Lyapunov
function of our new model.

𝑑
𝑑𝑡

= 𝑃 ′
(

1 − 𝑃 ∗

𝑃

)

+ 𝐼 ′𝐿

(

1 −
𝐼∗𝐿
𝐼𝐿

)

+ 𝐼 ′𝐶

(

1 −
𝐼∗𝐶
𝐼𝐶

)

+ 𝐼 ′
(

1 − 𝐼∗

𝐼

)

+ 𝑇 ′
(

1 − 𝑇 ∗

𝑇

)

+ 𝑅′
(

1 − 𝑅∗

𝑅

)

+ 𝐶 ′
(

1 − 𝐶∗

𝐶

)

.

𝑑2
𝑑𝑡2

=
(

𝑃 ′

𝑃

)2
𝑃 ∗ +

(

𝐼 ′𝐿
𝐼𝐿

)2

𝐼∗𝐿 +

(

𝐼 ′𝐶
𝐼𝐶

)2

𝐼∗𝐶 +
(

𝐼 ′

𝐼

)2
𝐼∗ +

(

𝑇 ′

𝑇

)2
𝑇 ∗ +

(

𝑅′

𝑅

)2
𝑅∗ +

(

𝐶 ′

𝐶

)2
𝐶∗

+ 𝑃 ′′
(

1 − 𝑃 ∗

𝑃

)

+ 𝐼 ′′𝐿

(

1 −
𝐼∗𝐿
𝐼𝐿

)

+ 𝐼 ′′𝐶

(

1 −
𝐼∗𝐶
𝐼𝐶

)

+ 𝐼 ′′
(

1 − 𝐼∗

𝐼

)

+ 𝑇 ′′
(

1 − 𝑇 ∗

𝑇

)

+ 𝑅′′
(

1 − 𝑅∗

𝑅

)

+ 𝐶 ′′
(

1 − 𝐶∗

𝐶

)

.

Put 𝑃 ′′, 𝐼 ′′𝐿 , 𝐼
′′
𝐶 , 𝐼

′′, 𝑇 ′′, 𝑅′′, 𝐶 ′′ in the above equation, where

𝑃 ′′ = −𝛽1

(

(𝑃𝐼 ′𝐿 + 𝐼𝐿𝑃 ′)
𝑁(𝑃𝐼𝐿 + 1)

)

− 𝛽1𝑁
′𝑙𝑜𝑔

(

𝑃𝐼𝐿 + 1
)

− 𝜇𝑃 ′ + 𝛿1𝑇
′ + 𝛿∗2𝐶

′

𝐼 ′′𝐿 = 𝛽1

(

(𝑃𝐼 ′𝐿 + 𝐼𝐿𝑃 ′)
𝑁(𝑃𝐼𝐿 + 1)

)

+ 𝛽1𝑁
′𝑙𝑜𝑔

(

𝑃𝐼𝐿 + 1
)

− 𝛽2
(

𝐼𝐿𝐼
′
𝐶 + 𝐼𝐶𝐼

′
𝐿
)

− 𝐼 ′𝐿(𝛼1 + 𝛿3 + 𝜇 + 𝛾1)

𝐼 ′′𝐶 = 𝛽2
(

𝐼𝐿𝐼
′
𝐶 + 𝐼𝐶𝐼

′
𝐿
)

− 𝛼2𝐼
′
𝐶 − 𝐼 ′𝐶

(

𝛾2 + 𝜇
)

+ 𝛼1𝐼
′
𝐿

𝐼 ′′ = 𝛼2𝐼
′
𝐶 − 𝐼 ′

(

𝛼3 + 𝛾3 − 𝜇
)

𝑇 ′′ = 𝛿3𝐼
′
𝐿 − 𝛿4𝑇

′ −
(

𝛿1 − 𝜇
)

𝑇 ′ + 𝛼3𝐼
′ − 𝛿5𝑇

′

𝑅′′ = 𝛿5𝑇
′ − 𝜇𝑅′

𝐶 ′′ = 𝛿4𝑇
′ + 𝛿∗2𝐶

′ − 𝜇𝐶 ′.

We have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

𝑑2
𝑑𝑡2

=
(

𝑃 ′

𝑃

)2
𝑃 ∗ +

(

𝐼 ′𝐿
𝐼𝐿

)2
𝐼∗𝐿 +

(

𝐼 ′𝐶
𝐼𝐶

)2
𝐼∗𝐶 +

(

𝐼 ′

𝐼

)2
𝐼∗ +

(

𝑇 ′

𝑇

)2
𝑇 ∗ +

(

𝑅′

𝑅

)2
𝑅∗ +

(

𝐶′

𝐶

)2
𝐶∗

+
(

1 − 𝑃 ∗

𝑃

)

(

−𝛽1

(

(𝑃𝐼 ′𝐿+𝐼𝐿𝑃
′)

𝑁(𝑃𝐼𝐿+1)

)

− 𝛽1𝑁 ′ log
(

𝑃𝐼𝐿 + 1
)

− 𝜇𝑃 ′ + 𝛿1𝑇 ′ + 𝛿∗2𝐶
′
)

+
(

1 −
𝐼∗𝐿
𝐼𝐿

)

(

𝛽1

(

(𝑃𝐼 ′𝐿+𝐼𝐿𝑃
′)

𝑁(𝑃𝐼𝐿+1)

)

+ 𝛽1𝑁 ′𝑙𝑜𝑔
(

𝑃𝐼𝐿 + 1
)

− 𝛽2
(

𝐼𝐿𝐼 ′𝐶 + 𝐼𝐶𝐼 ′𝐿
)

− 𝐼 ′𝐿(𝛼1 + 𝛿3 + 𝜇 + 𝛾1)
)

+
(

1 −
𝐼∗𝐶
𝐼𝐶

)

(

𝛽2
(

𝐼𝐿𝐼 ′𝐶 + 𝐼𝐶𝐼 ′𝐿
)

− 𝛼2𝐼 ′𝐶 − 𝐼 ′𝐶
(

𝛾2 + 𝜇
)

+ 𝛼1𝐼 ′𝐿
)

+
(

1 − 𝐼∗

𝐼

)

(

𝛼2𝐼 ′𝐶 − 𝐼 ′
(

𝛼3 + 𝛾3 − 𝜇
))

+
(

1 − 𝑇 ∗

𝑇

)

(

𝛿3𝐼 ′𝐿 − 𝛿4𝑇 ′ −
(

𝛿1 − 𝜇
)

𝑇 ′ + 𝛼3𝐼 ′ − 𝛿5𝑇 ′) +
(

1 − 𝑅∗

𝑅

)

(

𝛿5𝑇 ′ − 𝜇𝑅′)

+
(

1 − 𝐶∗ ) (

𝛿4𝑇 ′ + 𝛿∗𝐶 ′ − 𝜇𝐶 ′) .
9
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Similarly using the values {𝑃 ′, 𝐼 ′𝐿, 𝐼
′
𝐶 , 𝐼

′, 𝑇 ′, 𝑅′, 𝐶 ′}, one has

𝑑2
𝑑𝑡2

=

⎛

⎜

⎜

⎜

⎝

(

𝑁 − 𝛽1
𝑁 log(𝑃𝐼𝐿 + 1) + 𝛿2 𝑇 + 𝛿∗2 𝐶 − 𝜇 𝑃

)

𝑃

⎞

⎟

⎟

⎟

⎠

2

𝑃 ∗

+

⎛

⎜

⎜

⎜

⎝

(

𝛽1
𝑁 log(𝑃𝐼𝐿 + 1) − 𝛽2 𝐼𝐿 𝐼𝐶 − (𝛼1 + 𝛿3 + 𝛾1 + 𝜇)𝐼𝐿

)

𝐼𝐿

⎞

⎟

⎟

⎟

⎠

2

𝐼∗𝐿

+

(
(

𝛽2 𝐼𝐿 𝐼𝐶 − 𝛼2 𝐼𝐶 − (𝛾2 + 𝜇)𝐼𝐶 + 𝛼1 𝐼𝐿
)

𝐼𝐶

)2

𝐼∗𝐶

+

(
(

𝛼2𝐼𝐶 − (𝛼3𝛾3 − 𝜇)𝐼
)

𝐼

)2

𝐼∗ +

(
(

𝛿3 𝐼𝐿 − 𝛿4 𝑇 − (𝛿1 − 𝜇)𝑇 + 𝛼3 𝐼 − 𝛿5 𝑇
)

𝑇

)2

𝑇 ∗

+

(
(

𝛿5𝑇 − 𝜇𝑅
)

𝑅

)2

𝑅∗ +

((

𝛿4𝑇 − 𝛿∗2 𝐶 − 𝜇 𝐶
)

𝐶

)2

𝐶∗

−
(

1 − 𝑃 ∗

𝑃

)

𝛽1

(𝑃
(

𝛽1
𝑁 log(𝑃𝐼𝐿 + 1) − 𝛽2 𝐼𝐿 𝐼𝐶 − (𝛼1 + 𝛿3 + 𝛾1 + 𝜇)𝐼𝐿

)

𝑁(𝑃𝐼𝐿 + 1)

+
𝐼𝐿

(

𝑁 − 𝛽1
𝑁 log(𝑃𝐼𝐿 + 1) + 𝛿2 𝑇 + 𝛿∗2 𝐶 − 𝜇 𝑃

)

𝑁(𝑃𝐼𝐿 + 1)

)

−
(

1 − 𝑃 ∗

𝑃

)

𝛽1
(

𝑁 − 𝜇𝑁 − 𝛾1 𝐼𝐿 + 𝛼1 𝐼𝐶 − 𝛾2 𝐼𝐶 − 𝛾3 𝐼
)

log
(

𝑃𝐼𝐿 + 1
)

−
(

1 − 𝑃 ∗

𝑃

)

𝜇
(

𝑁 −
𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) + 𝛿2 𝑇 + 𝛿∗2 𝐶 − 𝜇 𝑃
)

+
(

1 − 𝑃 ∗

𝑃

)

𝛿1
(

𝛿3 𝐼𝐿 − 𝛿4 𝑇 − (𝛿1 − 𝜇)
)

𝑇

+
(

1 − 𝑃 ∗

𝑃

)

𝛿1
(

𝛼3 𝐼 − 𝛿5 𝑇
)

+
(

1 − 𝑃 ∗

𝑃

)

𝛿∗2
(

𝛿4 𝑇 − 𝛿∗2 𝐶 − 𝜇 𝐶
)

+
(

1 −
𝐼∗𝐿
𝐼𝐿

)

𝛽1

(𝑃
(

𝛽1
𝑁 log(𝑃𝐼𝐿 + 1) − 𝛽2 𝐼𝐿 𝐼𝐶 − (𝛼1 + 𝛿3 + 𝛾1 + 𝜇)𝐼𝐿

)

𝑁(𝑃𝐼𝐿 + 1)

+
𝐼𝐿

(

𝑁 − 𝛽1
𝑁 log(𝑃𝐼𝐿 + 1) + 𝛿2 𝑇 + 𝛿∗2 𝐶 − 𝜇 𝑃

)

𝑁(𝑃𝐼𝐿 + 1)

)

+
(

1 −
𝐼∗𝐿
𝐼𝐿

)

𝛽1
(

𝑁 − 𝜇𝑁 − 𝛾1 𝐼𝐿 + 𝛼1 𝐼𝐶 − 𝛾2 𝐼𝐶 − 𝛾3 𝐼
)

𝑙𝑜𝑔
(

𝑃𝐼𝐿 + 1
)

−
(

1 −
𝐼∗𝐿
𝐼𝐿

)

𝛽2𝐼𝐿
(

𝛽2 𝐼𝐿 𝐼𝐶 − 𝛼2 𝐼𝐶 − (𝛾2 + 𝜇)𝐼𝐶 + 𝛼1 𝐼𝐿
)

+
(

1 −
𝐼∗𝐿
𝐼𝐿

)

𝛽2𝐼𝐶

(

𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) − 𝛽2 𝐼𝐿 𝐼𝐶 − (𝛼1 + 𝛿3 + 𝛾1 + 𝜇)𝐼𝐿

)

−
(

1 −
𝐼∗𝐿
𝐼𝐿

)(

𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) − 𝛽2 𝐼𝐿 𝐼𝐶 − (𝛼1 + 𝛿3 + 𝛾1 + 𝜇)𝐼𝐿

)

(𝛼1 + 𝛿3 + 𝜇 + 𝛾1)

+
(

1 −
𝐼∗𝐶
𝐼𝐶

)

𝛽2𝐼𝐿
(

𝛽2 𝐼𝐿 𝐼𝐶 − 𝛼2 𝐼𝐶 − (𝛾2 + 𝜇)𝐼𝐶 + 𝛼1 𝐼𝐿
)

+
(

1 −
𝐼∗𝐶
𝐼𝐶

)

𝛽2𝐼𝐶

(

𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) − 𝛽2 𝐼𝐿 𝐼𝐶 − (𝛼1 + 𝛿3 + 𝛾1 + 𝜇)𝐼𝐿

)

− 𝛼2
(

𝛽2 𝐼𝐿 𝐼𝐶 − 𝛼2 𝐼𝐶 − (𝛾2 + 𝜇)𝐼𝐶 + 𝛼1 𝐼𝐿
)

−
(

𝛽2 𝐼𝐿 𝐼𝐶 − 𝛼2 𝐼𝐶 − (𝛾2 + 𝜇)𝐼𝐶 + 𝛼1 𝐼𝐿
) (

𝛾2 + 𝜇
)

+ 𝛼1

(

𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) − 𝛽2 𝐼𝐿 𝐼𝐶 − (𝛼1 + 𝛿3 + 𝛾1 + 𝜇)𝐼𝐿

)

+
(

1 − 𝐼∗

𝐼

)

𝛼2
(

𝛽2 𝐼𝐿 𝐼𝐶 − 𝛼2 𝐼𝐶 − (𝛾2 + 𝜇)𝐼𝐶 + 𝛼1 𝐼𝐿
)

−
(

1 − 𝐼∗

𝐼

)

(

𝛼2𝐼𝐶 − (𝛼3 + 𝛾3 − 𝜇)𝐼
) (

𝛼3 + 𝛾3 − 𝜇
)

+
(

1 − 𝑇 ∗

𝑇

)

𝛿3

(

𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) − 𝛽2 𝐼𝐿 𝐼𝐶 − (𝛼1 + 𝛿3 + 𝛾1 + 𝜇)𝐼𝐿

)

−
(

1 − 𝑇 ∗)

𝛿4
(

𝛿3 𝐼𝐿 − 𝛿4 𝑇 − (𝛿1 − 𝜇)𝑇 + 𝛼3 𝐼 − 𝛿5 𝑇
)

10
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w

a

−
(

1 − 𝑇 ∗

𝑇

)

(

𝛿1 − 𝜇
) (

𝛿3 𝐼𝐿 − 𝛿4 𝑇 − (𝛿1 − 𝜇)𝑇 + 𝛼3 𝐼 − 𝛿5 𝑇
)

+
(

1 − 𝑇 ∗

𝑇

)

𝛼3
(

𝛼2𝐼𝐶 − (𝛼3 + 𝛾3 − 𝜇)𝐼
)

−
(

1 − 𝑇 ∗

𝑇

)

𝛿5
(

𝛿3 𝐼𝐿 − 𝛿4 𝑇 − (𝛿1 − 𝜇)𝑇 + 𝛼3 𝐼 − 𝛿5 𝑇
)

+
(

1 − 𝑅∗

𝑅

)

(

𝛿5
(

𝛿3 𝐼𝐿 − 𝛿4 𝑇 − (𝛿1 − 𝜇)𝑇 + 𝛼3 𝐼 − 𝛿5 𝑇
)

− 𝜇
(

𝛿5 𝑇 − 𝜇𝑅
))

+
(

1 − 𝐶∗

𝐶

)(

𝛿4
(

𝛿3 𝐼𝐿 − 𝛿4 𝑇 − (𝛿1 − 𝜇)𝑇 + 𝛼3 𝐼 − 𝛿5 𝑇
)

+ (𝛿∗2 − 𝜇)
(

𝛿4 𝑇 − 𝛿∗2 𝐶 − 𝜇 𝐶
)

)

.

For our simplification and rearranging, we may write

𝑑2
𝑑𝑡2

= U1 − U2,

here

U1 = 𝛥′(𝑃 , 𝐼𝐿, 𝐼𝐶 , 𝐼, 𝑇 , 𝑅, 𝐶) +
𝛽1𝛽2𝐼𝐶

𝑁

(

1 − 𝑃 ∗

𝑃

)

log(𝑃𝐼𝐿 + 1)

+
𝛽1
𝑁

(

1 − 𝑃 ∗

𝑃

)

(𝛼1 + 𝛿3 + 𝜇 + 𝛾1)

+
𝛽12

𝑁2𝑃

(

1 − 𝑃 ∗

𝑃

)

log(𝑃𝐼𝐿 + 1) +
𝛽1𝜇
𝑁

(

1 − 𝑃 ∗

𝑃

)

+ 𝛽1𝑁𝜇
(

1 − 𝑃 ∗

𝑃

)

log(𝑃𝐼𝐿 + 1)

+ 𝛽1𝛾1𝐼𝐿

(

1 − 𝑃 ∗

𝑃

)

log(𝑃𝐼𝐿 + 1) + 𝛽1𝛾2𝐼𝐶

(

1 − 𝑃 ∗

𝑃

)

log(𝑃𝐼𝐿 + 1)

+ 𝛽1𝛾3𝐼
(

1 − 𝑃 ∗

𝑃

)

log(𝑃𝐼𝐿 + 1) +
𝛽1𝜇
𝑁

(

1 − 𝑃 ∗

𝑃

)

log(𝑃𝐼𝐿 + 1) + 𝑃𝜇2
(

1 − 𝑃 ∗

𝑃

)

+
𝛽12

𝑁2𝐼𝐿

(

1 −
𝐼𝐿∗

𝐼𝐿

)

log(𝑃𝐼𝐿 + 1) +
𝛽1
𝑃

(

1 −
𝐼𝐿∗

𝐼𝐿

)

+
𝛽1𝛿1𝑇
𝑁𝑃

(

1 −
𝐼𝐿∗

𝐼𝐿

)

+ 𝛿1𝛿3𝐼𝐿

(

1 − 𝑃 ∗

𝑃

)

+ 𝛿1𝛼3𝐼
(

1 − 𝑃 ∗

𝑃

)

+ 𝛿∗2𝛿4

(

1 − 𝑃 ∗

𝑃

)

+𝑁𝛽1

(

1 −
𝐼𝐿∗

𝐼𝐿

)

log(𝑃𝐼𝐿 + 1)

+ 𝛽1𝛼1𝐼𝐶

(

1 −
𝐼𝐿∗

𝐼𝐿

)

log(𝑃𝐼𝐿 + 1) + 𝛽2𝛼2𝐼𝐶𝐼𝐿

(

1 −
𝐼𝐿∗

𝐼𝐿

)

+ 𝛽2𝐼𝐶𝐼𝐿

(

1 −
𝐼𝐿∗

𝐼𝐿

)

(𝛾2 + 𝜇)

+
𝛽1𝐼𝐶
𝑁

log(𝑃𝐼𝐿 + 1) + (𝛼2𝐼𝐶 )(𝛼1 + 𝛿3 + 𝜇 + 𝛾1)
(

1 −
𝐼𝐿∗

𝐼𝐿

)

+ 𝐼𝐶 (𝛼1 + 𝛿3 + 𝜇 + 𝛾1)
(

1 −
𝐼𝐿∗

𝐼𝐿

)

+ 𝛼2𝛽2𝐼𝐶𝐼𝐿

(

1 − 𝐼∗

𝐼

)

+ 𝛼1𝛼2𝐼𝐿

(

1 − 𝐼∗

𝐼

)

+ (𝛼3 − 𝜇 + 𝛾3)2𝐼
(

1 − 𝐼∗

𝐼

)

+
𝛿1𝛽1
𝑁

(

1 − 𝑇 ∗

𝑇

)

log(𝑃𝐼𝐿 + 1)

+ 𝛿4
2𝑇

(

1 − 𝑇 ∗

𝑇

)

+ 𝛿4𝑇 (𝛿1 − 𝜇)
(

1 − 𝑇 ∗

𝑇

)

+ 𝛿4𝛿5𝑇
(

1 − 𝑇 ∗

𝑇

)

+ 𝑇 (𝛿1 − 𝜇)2
(

1 − 𝑇 ∗

𝑇

)

+ 𝑇 𝛿5(𝛿1 − 𝜇)
(

1 − 𝑇 ∗

𝑇

)

+ 𝛿3𝛿5𝐼𝐿

(

1 − 𝑅∗

𝑅

)

+ 𝛼3𝛿5𝐼
(

1 − 𝑅∗

𝑅

)

+ 𝜇2𝑅
(

1 − 𝑅∗

𝑅

)

+ 𝛿∗2𝛿4𝑇
(

1 − 𝐶∗

𝐶

)

+ 𝛿∗2𝜇𝐶
(

1 − 𝐶∗

𝐶

)

+ 𝜇2𝐶
(

1 − 𝐶∗

𝐶

)

,

nd

U2 =
𝛽12

𝑁2𝐼𝐿

(

1 − 𝑃 ∗

𝑃

)

log(𝑃𝐼𝐿 + 1) +
𝛽1
𝑃

(

1 − 𝑃 ∗

𝑃

)

+
𝛽1𝛿1𝑇
𝑁𝑃

(

1 − 𝑃 ∗

𝑃

)

+
𝛽1𝛿∗2𝐶
𝑁𝑃

(

1 − 𝑃 ∗

𝑃

)

+ 𝛽1𝑁𝐼𝐿

(

1 − 𝑃 ∗

𝑃

)

log(𝑃𝐼𝐿 + 1)

+ 𝛽1𝛼1𝐼𝐶

(

1 − 𝑃 ∗

𝑃

)

log(𝑃𝐼𝐿 + 1) + 𝜇𝛿1𝑇
(

1 − 𝑃 ∗

𝑃

)

+ 𝜇𝛿∗2𝐶
(

1 − 𝑃 ∗

𝑃

)

+
𝛽1𝛽2𝐼𝐶

𝑁

(

1 −
𝐼𝐿∗

𝐼𝐿

)

log(𝑃𝐼𝐿 + 1)

+
𝛽1
𝑁

(𝛼1 + 𝛿3 + 𝜇 + 𝛾1)
(

1 −
𝐼𝐿∗

𝐼𝐿

)

+
𝜇𝛽1
𝑁

(

1 −
𝐼𝐿∗

𝐼𝐿

)

+ 𝛿1𝛿4𝑇
(

1 − 𝑃 ∗

𝑃

)

+ 𝛿1𝑇 (𝛿1 − 𝜇)
(

1 − 𝑃 ∗

𝑃

)

+ 𝛿1𝛿5𝑇
(

1 − 𝑃 ∗

𝑃

)

+ 𝛿∗𝜇𝐶
(

1 − 𝑃 ∗)

+ 𝛽1𝜇𝑁 log(𝑃𝐼𝐿 + 1)
(

1 −
𝐼𝐿∗)

+ 𝛽1𝐼𝐿𝛾1 log(𝑃𝐼𝐿 + 1)
(

1 −
𝐼𝐿∗)
11

2 𝑃 𝐼𝐿 𝐼𝐿
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I

Table 2
Nomenclatures of (1) and numerical values.
Nomenclature Numerical values

𝑃 (0) 40
𝐼𝐿(0) 20
𝐼𝐶 (0) 15
𝐼(0) 10
𝑇 (0) 10
𝐶(0) 5
𝑅(0) 0
𝛬 0.0020
𝛽1 0.00012
𝛽2 0.0020
𝛿1 0.0032
𝛿∗2 0.00233
𝛿3 0.00462
𝛿4 0.00023
𝛿5 0.000123
𝜇 0.05
𝛼1 =0.0010
𝛼2 =0.0045
𝛼3 0.000123
𝛾1 0.007
𝛾2 0.00023
𝛾3 0.00034

+ 𝛿∗2𝐶
(

1 − 𝑃 ∗

𝑃

)

+ 𝛽1𝐼𝐿𝛾2 log(𝑃𝐼𝐿 + 1)
(

1 −
𝐼𝐿∗

𝐼𝐿

)

+ 𝛽1𝐼𝛾3 log(𝑃𝐼𝐿 + 1)
(

1 −
𝐼𝐿∗

𝐼𝐿

)

+ 𝐼𝐶𝐼𝐿
2𝛽2

2
(

1 −
𝐼𝐿∗

𝐼𝐿

)

+ 𝛼1𝐼𝐿
2𝛽2

(

1 −
𝐼𝐿∗

𝐼𝐿

)

+ 𝛽2𝐼𝐿𝐼𝐶
2 + (𝛼1 + 𝛿3 + 𝜇 + 𝛾1)𝐼𝐿𝐼𝐶

+ (𝛼1 + 𝛿3 + 𝜇 + 𝛾1)𝛽2𝐼𝐿𝐼𝐶

(

1 −
𝐼𝐿∗

𝐼𝐿

)

+ (𝛼1 + 𝛿3 + 𝜇 + 𝛾1)𝛼1𝐼𝐿

(

1 −
𝐼𝐿∗

𝐼𝐿

)

+ 𝛼2
2𝐼𝐶

(

1 −
𝐼𝐿∗

𝐼𝐿

)

+ 𝛼2𝐼𝐶 (𝛾2 + 𝜇)
(

1 −
𝐼𝐿∗

𝐼𝐿

)

+ 𝛿3𝐼𝐶 (𝛼3 − 𝜇 + 𝛾3)
(

1 − 𝐼∗

𝐼

)

+ 𝛽2𝐼𝐿𝐼𝐶𝛿3

(

1 − 𝑇 ∗

𝑇

)

+ 𝛿3𝐼𝐿(𝛼1 + 𝛿3 + 𝜇 + 𝛾1)
(

1 − 𝑇 ∗

𝑇

)

+ 𝛿3𝛿4𝐼𝐿

(

1 − 𝑇 ∗

𝑇

)

+ 𝛿4𝛼3𝐼
(

1 − 𝑇 ∗

𝑇

)

+ 𝛿3𝐼𝐿(𝛿1 − 𝜇)
(

1 − 𝑇 ∗

𝑇

)

+ 𝛼3𝐼(𝛿1 − 𝜇)
(

1 − 𝑇 ∗

𝑇

)

+ 𝛿3𝛿5𝐼
(

1 − 𝑇 ∗

𝑇

)

+ 𝛿4𝛿5𝑇
(

1 − 𝑅∗

𝑅

)

+ 𝑇 𝛿5(𝛿1 − 𝜇)
(

1 − 𝑅∗

𝑅

)

+ 𝛿5
2𝑇

(

1 − 𝑇 ∗

𝑇

)

+ 𝛿5
2𝑇

(

1 − 𝑅∗

𝑅

)

+ 𝛿5𝑇𝜇
(

1 − 𝑅∗

𝑅

)

+ 𝛿∗2
2𝐶

(

1 − 𝐶∗

𝐶

)

+ 𝛿∗2𝜇𝐶
(

1 − 𝐶∗

𝐶

)

+ 𝛿4𝜇𝑇
(

1 − 𝐶∗

𝐶

)

.

t is clearly be seen that

𝐼𝑓 U1 > U2 𝑡ℎ𝑒𝑛𝑑
2
𝑑𝑡2

> 0, (10)

𝐼𝑓 U1 < U2 𝑡ℎ𝑒𝑛𝑑
2
𝑑𝑡2

< 0, (11)

𝐼𝑓 U1 = U2 𝑡ℎ𝑒𝑛𝑑
2
𝑑𝑡2

= 0. (12)

Numerical presentations and discussion

Now using the following values for the nomenclatures of the proposed model to simulate the results In order to simulate the outcomes using our
suggested numerical scheme, we take the total population to be 𝑁 = 100 millions and use the numerical data from Table 2. Figs. 3 and 4 show the
equivalent results for the various compartments graphically, respectively. One may observe the behaviors of various compartments in the Figs. 3,
and 4 above displayed of our proposed model using classical order derivative. In the previously stated circumstances, the model (1) will probably
be unable to show more waves. The spread will eventually disappear without any renewal force, according to the model. However, this model has
been utilized in literature to illustrate how infectious diseases propagate in several waves.

Fractional order model and numerical simulations

Here, we attempt to investigate the proposed model under the concept of Caputo fractional order derivative for more explanation about the
transmission dynamics. We set our model (1) as

𝐶𝐷𝜚𝑃 (𝑡) = 𝛬 −
𝛽1 log(𝑃𝐼 + 1) + 𝛿 𝑇 + 𝛿∗ 𝐶 − 𝜇 𝑃
12

𝑡 𝑁 𝐿 1 2



Results in Physics 51 (2023) 106700I. Shah et al.
Fig. 3. Graphical presentation of susceptible, latently infected, chronically and infected compartments.

Fig. 4. Graphical presentation of treatment, cancer infected and recovered compartments.
13
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T
0

𝐶𝐷𝜚
𝑡 𝐼𝐿(𝑡) =

𝛽1
𝑁

log(𝑃𝐼𝐿 + 1) − 𝛽2 𝐼𝐿 𝐼𝐶 − (𝛼1 + 𝛿3 + 𝛾1 + 𝜇)𝐼𝐿,
𝐶𝐷𝜚

𝑡 𝐼𝐶 (𝑡) = 𝛽2 𝐼𝐿 𝐼𝐶 − 𝛼2 𝐼𝐶 − (𝛾2 + 𝜇)𝐼𝐶 + 𝛼1 𝐼𝐿,
𝐶𝐷𝜚

𝑡 𝐼(𝑡) = 𝛼2𝐼𝐶 − (𝛼3 + 𝛾3 − 𝜇)𝐼,
𝐶𝐷𝜚

𝑡 𝑇 (𝑡) = 𝛿3 𝐼𝐿 − 𝛿4 𝑇 − (𝛿1 + 𝜇)𝑇 + 𝛼3 𝐼 − 𝛿5 𝑇 ,
𝐶𝐷𝜚

𝑡 𝐶(𝑡) = 𝛿4 𝑇 − 𝛿∗2 𝐶 − 𝜇 𝐶,
𝐶𝐷𝜚

𝑡 𝑅(𝑡) = 𝛿5 𝑇 − 𝜇𝑅, (13)
𝑃 (0) > 0, 𝐼𝐿(0) ≥ 0, 𝐼𝐶 ≥ 0, 𝐼(0) ≥ 0, 𝑇 (0) ≥ 0, 𝐶(0) ≥ 0, 𝑅(0) ≥ 0.

o simulate the model given in (13), we consider the solution (3) given in Theorem 2 by using ℎ is a step size, 𝑡𝑗+1 = (𝑗 + 1)ℎ, and 𝑡𝑗 = 𝑗ℎ, 𝑗 =
, 1, 2,…. as

𝑃 (𝑡𝑗+1) = 𝑃0 + ∫

𝑡𝑗+1

0

(𝑡𝑗+1 − 𝜍)𝜚−1

𝛤 (𝜚)
𝛹 (𝜍, 𝑃 (𝜍))𝑑𝜍. (14)

To solve integral (14), authors [37] have applied two-step Lagrange interpolation and obtained the following numerical result

𝑃𝑗+1 = 𝑃0 +
ℎ𝜚

𝛤 (𝜚 + 2)

𝑗
∑

𝑙=0
𝛹 (𝑡𝑙 , 𝑃𝑙)

[

(𝑗 − 𝑙 + 1)𝜚(𝑗 − 𝑙 + 2 + 𝜚)

−(𝑗 − 𝑙)𝜚(𝑗 − 𝑙 + 2 + 2𝜚)

]

(15)

− ℎ𝜚

𝛤 (𝜚 + 2)

𝑗
∑

𝑙=0
𝛹 (𝑡𝑙−, 𝑃𝑙−1)

[

(𝑗 − 𝑙 + 1)𝜚+1

−(𝑗 − 𝑙)𝜚(𝑗 − 𝑙 + 1 + 𝜚)

]

.

Repeating the same process as in (15), we establish for other compartments as follow

𝐼𝐿,𝑗+1 = 𝐼𝐿,0 +
ℎ𝜚

𝛤 (𝜚 + 2)

𝑗
∑

𝑙=0
𝛹 (𝑡𝑙 , 𝐼𝐿,𝑙)

[

(𝑗 − 𝑙 + 1)𝜚(𝑗 − 𝑙 + 2 + 𝜚)

−(𝑗 − 𝑙)𝜚(𝑗 − 𝑙 + 2 + 2𝜚)

]

(16)

− ℎ𝜚

𝛤 (𝜚 + 2)

𝑗
∑

𝑙=0
𝛹 (𝑡𝑙−, 𝐼𝐿,𝑙−1)

[

(𝑗 − 𝑙 + 1)𝜚+1

−(𝑗 − 𝑙)𝜚(𝑗 − 𝑙 + 1 + 𝜚)

]

.

𝐼𝐶,𝑗+1 = 𝐼𝐶,0 +
ℎ𝜚

𝛤 (𝜚 + 2)

𝑗
∑

𝑙=0
𝛹 (𝑡𝑙 , 𝐼𝐶,𝑙)

[

(𝑗 − 𝑙 + 1)𝜚(𝑗 − 𝑙 + 2 + 𝜚)

−(𝑗 − 𝑙)𝜚(𝑗 − 𝑙 + 2 + 2𝜚)

]

(17)

− ℎ𝜚

𝛤 (𝜚 + 2)

𝑗
∑

𝑙=0
𝛹 (𝑡𝑙−, 𝐼𝐶,𝑙−1)

[

(𝑗 − 𝑙 + 1)𝜚+1

−(𝑗 − 𝑙)𝜚(𝑗 − 𝑙 + 1 + 𝜚)

]

.

𝐼𝑗+1 = 𝐼0 +
ℎ𝜚

𝛤 (𝜚 + 2)

𝑗
∑

𝑙=0
𝛹 (𝑡𝑙 , 𝐼𝑙)

[

(𝑗 − 𝑙 + 1)𝜚(𝑗 − 𝑙 + 2 + 𝜚)

−(𝑗 − 𝑙)𝜚(𝑗 − 𝑙 + 2 + 2𝜚)

]

(18)

− ℎ𝜚

𝛤 (𝜚 + 2)

𝑗
∑

𝑙=0
𝛹 (𝑡𝑙−, 𝐼𝑙−1)

[

(𝑗 − 𝑙 + 1)𝜚+1

−(𝑗 − 𝑙)𝜚(𝑗 − 𝑙 + 1 + 𝜚)

]

.

𝑇𝑗+1 = 𝑇0 +
ℎ𝜚

𝛤 (𝜚 + 2)

𝑗
∑

𝑙=0
𝛹 (𝑡𝑙 , 𝑇𝑙)

[

(𝑗 − 𝑙 + 1)𝜚(𝑗 − 𝑙 + 2 + 𝜚)

−(𝑗 − 𝑙)𝜚(𝑗 − 𝑙 + 2 + 2𝜚)

]

(19)

− ℎ𝜚

𝛤 (𝜚 + 2)

𝑗
∑

𝑙=0
𝛹 (𝑡𝑙−, 𝑇𝑙−1)

[

(𝑗 − 𝑙 + 1)𝜚+1

−(𝑗 − 𝑙)𝜚(𝑗 − 𝑙 + 1 + 𝜚)

]

.

𝐶𝑗+1 = 𝐶0 +
ℎ𝜚

𝛤 (𝜚 + 2)

𝑗
∑

𝑙=0
𝛹 (𝑡𝑙 , 𝐶𝑙)

[

(𝑗 − 𝑙 + 1)𝜚(𝑗 − 𝑙 + 2 + 𝜚)

−(𝑗 − 𝑙)𝜚(𝑗 − 𝑙 + 2 + 2𝜚)

]

(20)

− ℎ𝜚

𝛤 (𝜚 + 2)

𝑗
∑

𝑙=0
𝛹 (𝑡𝑙−, 𝐶𝑙−1)

[

(𝑗 − 𝑙 + 1)𝜚+1

−(𝑗 − 𝑙)𝜚(𝑗 − 𝑙 + 1 + 𝜚)

]

.

𝑅𝑗+1 = 𝑅0 +
ℎ𝜚

𝛤 (𝜚 + 2)

𝑗
∑

𝑙=0
𝛹 (𝑡𝑙 , 𝑅𝑙)

[

(𝑗 − 𝑙 + 1)𝜚(𝑗 − 𝑙 + 2 + 𝜚)

−(𝑗 − 𝑙)𝜚(𝑗 − 𝑙 + 2 + 2𝜚)

]

(21)

− ℎ𝜚

𝛤 (𝜚 + 2)

𝑗
∑

𝑙=0
𝛹 (𝑡𝑙−, 𝑅𝑙−1)

[

(𝑗 − 𝑙 + 1)𝜚+1

−(𝑗 − 𝑙)𝜚(𝑗 − 𝑙 + 1 + 𝜚)

]

.

Using the considered numerical scheme, we present the solutions graphically for various compartments corresponding to different fractional
orders in Figs. 5, 6 respectively. Here, we demonstrate that fractional order derivative has been considered in Caputo sense. The presented numerical
simulations for different fractional orders tell us about the global dynamics. As the order is smaller the decay process in various compartments is
faster as compared to higher fractional order. In the same way, the growth phenomenon is more faster for greater fractional order as compared to
lower fractional order. Hence we concluded that smaller fractional order models are more significant for the description of those evolution process
14

exhibiting decay in their nature. While growth process are more brilliantly be described by using larger fractional order models.
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Fig. 5. Graphical presentation of susceptible, latently infected, chronically and infected compartments corresponding to different fractional orders.

Fig. 6. Graphical presentation of treatment, cancer infected and recovered compartments corresponding to different fractional orders.
15
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Conclusion

This manuscript has been devoted to establish a detailed analysis of tobacco-cancer mathematical model using both traditional as well as
fractional order concepts. The complicated dynamics of an epidemic model that addresses the spread of infectious diseases under the influence of
various irresistible periods (latently, chronically, class with treatment, and infected) have been dealt with in this research effort by developing an
updated mathematical model. We have proved the existence, boundedness, and positivity of the model. We have specifically looked at the main
characteristics of the suggested model, which support the notion that it has properly stated. We obtained the fundamental reproduction number
and investigated its impact on the various model parameters by using the well-known method called the next generation matrix procedure. We
have arrived at the strength number by taking the Lyaponove function and its second derivative to detect the future prediction about the infection
transmission. In addition, it has been proved that the model is locally and globally asymptotically stable according to quantitative analysis that
was conducted using several techniques (first and second derivative tests, LaSalle’s invariant theorem). Additionally, we have used the traditional
RK-4 method to graphically present our numerical findings and established that maintaining a value for (9) smaller than one is one of the key
factors in halting the spread of an infectious virus. Additionally, we have used the Euler numerical scheme to simulate the outcomes for various
compartments under fractional orders derivative with Caputo power law kernel. We noted that, in contrast to the classical order depicted in Figs. 3
and 4, the dynamical behaviors of the various compartments corresponding to fractional orders are more complex and global as shown in 5 and 6,
respectively. Moreover, the analysis we established here will be utilized in future to study more complex dynamical systems of various infectious
disease like COVID-19, hepatitis C and B, etc.
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