Submitted 4 January 2023
Accepted 6 March 2023
Published 14 April 2023

Corresponding author
Hamid Ali, hamid.ali@ntu.edu.pk

Academic editor
Tawfik Al-Hadhrami

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.1315

© Copyright
2023 Ghadi et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

An efficient optimizer for the 0/1
knapsack problem using group
counseling

Yazeed Yasin Ghadi', Tamara AlShloul’, Zahid Igbal Nezami’, Hamid Ali’,
Muhammad Asif', Hanan Aljuaid’ and Shahbaz Ahmad*

! Department of Computer Science/Software Engineering, Al Ain University, Al Ain, UAE
2 Collage of General Education, Liwa College of Technology, Abu Dhabi, UAE

? Department of Computer Science, The Superior University, Lahore, Pakistan

* Department of Computer Science, National Textile University, Faisalabad, Pakistan

> Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint
Abdulrahman University, Riyadh, Saudi Arabia

ABSTRACT

The field of optimization is concerned with determining the optimal solution to a prob-
lem. It refers to the mathematical loss or gain of a given objective function. Optimization
must reduce the given problem’s losses and disadvantages while maximizing its earnings
and benefits. We all want optimal or, at the very least, suboptimal answers because

we all want to live a better life. Group counseling optimizer (GCO) is an emerging

evolutionary algorithm that simulates the human behavior of counseling within a group
for solving problems. GCO has been successfully applied to single and multi-objective
optimization problems. The 0/1 knapsack problem is also a combinatorial problem in
which we can select an item entirely or drop it to fill a knapsack so that the total weight
of selected items is less than or equal to the knapsack size and the value of all items

is as significant as possible. Dynamic programming solves the 0/1 knapsack problem
optimally, but the time complexity of dynamic programming is O(n?). In this article,
we provide a feature analysis of GCO parameters and use it to solve the 0/1 knapsack
problem (KP) using GCO. The results show that the GCO-based approach efficiently
solves the 0/1 knapsack problem; therefore, it is a viable alternative to solving the 0/1
knapsack problem.

Subjects Adaptive and Self-Organizing Systems, Computer Aided Design, Data Mining and
Machine Learning, Optimization Theory and Computation, Social Computing

Keywords GCO, Knapsack, Evolutionary algorithmx, Evolutionary algorithm, Combinatorial,
Optimization, Machine learning

INTRODUCTION

Over the previous several decades, the use of evolutionary algorithms to solve optimization
issues has increased. Single-objective and multi-objective are the two categories of
optimization problems. Multi-objective optimization involves problems with multiple
competing goals to be achieved. Problems that have only one goal are called single-objective
optimization problems. Researchers have suggested several evolutionary optimization
strategies for single-objective and multi-objective optimization problems (Steuer, 1986).

How to cite this article Ghadi YY, AlShloul T, Nezami ZI, Ali H, Asif M, Aljuaid H, Ahmad S. 2023. An efficient optimizer for the 0/1
knapsack problem using group counseling. Peer] Comput. Sci. 9:¢1315 http://doi.org/10.7717/peerj-cs.1315

PeerJ Computer Science

These include the Adaptive neuro-fuzzy inference system-evolutionary algorithms hybrid
models (ANFIS-EA) (Roy et al., 2020), multi-objective optimization of grid-connected
PV-wind hybrid system (Barakat, Ibrahim & Elbaset, 2020), ant colony optimization
(ACO) (Dorigo, Birattari ¢ Thomas, 2006), evolution strategy (ES) (Mezura-Montes ¢
Coello Coello, 2005), particle swarm optimization (PSO) (Janga Reddy ¢» Nagesh Kumar,
2021; Coello Coello, Pulido ¢ Lechuga, 2004), genetic algorithm (Deb et al., 2002), genetic
programming (GP) (Mugambi ¢ Hunter, 2003), evolutionary programming (EP) (Fonseca
& Fleming, 1995), differential evolution (DE) (Storn ¢ Price, 1995), group counseling
optimizer (Eita ¢ Fahmy, 2010; Ali ¢ Khan, 2013), comprehensive parent selection-based
genetic algorithm (CPSGA) (Ali ¢ Khan, 2012), whale optimization algorithm (Masadeh,
2021), binary particle swarm optimization algorithm (Sun et al., 2021), hybrid cat-particle
swarm optimization algorithm (Santoso et al., 2022), An enhanced binary slime mold
algorithm (Abdollahzadeh et al., 2021), improving flower pollination algorithm (Basheer
& Algamal, 2021), and 0/1 knapsack problem using genetic algorithm (Singh, 2011), are
some of the most common evolutionary optimization techniques. The group counseling
optimizer (GCO) ensures uniqueness to prevent premature convergence. The effectiveness
of the GCO method demonstrates that it is well-suited to solving both single-objective and
multi-objective optimization problems (Ali ¢» Khan, 2013).

Since the 0/1 knapsack problem is a combinatorial problem, approaches such as branch
and bound, backtracking, and dynamic programming are not very helpful in solving it.
A multi-objective variant of GCO has been recently published that shows promise in
solving multi-objective optimization problems. According to the results, group counseling
optimizer is used in a real-world application to test its applicability and the proposed
algorithm also outperforms well-known optimizers.

In this article, we use the GCO algorithm for the following:

1. to solve the 0/1 knapsack problem and
2. to analyze the various parameters to see how they affect the solution.

The experimental results show the significant role of parameters in GCO algorithms for
solving the 0/1 knapsack problem.

The rest of the article is organized as follows: Section II describes the related work. In
section III, we briefly discuss the group counseling optimizer. Sections IV and V describe
the knapsack problem and experimental results, respectively. Section VI concludes the
article.

RELATED WORK

In Ezugwu ef al. (2019), the authors proposed preliminary results from several memetics
optimization procedures for solving the 0/1 knapsack problems, including simulated
annealing, genetic algorithms, greedy search algorithm, dynamic programming, branch and
bound, and simulated annealing using a hybrid genetic algorithm. During the optimization
process, every computation punishes infeasible arrangements while optimizing the feasible
ones. The authors of Abdel-Basset, Mohamed ¢ Mirjalili (2021) suggested a binary version
of equilibrium optimization (BEO). Transfer functions change the constant value from

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 2/21

PeerJ Computer Science

continuous to binary EO, converting it to the binary values 0, 1, and 0. Transfer functions
come in two different shapes: V-shaped and S-shaped. This research demonstrates that
the best transfer function among them is the V-Shaped V3. The sigmoid S3 transfer
function is likewise more advantageous than V3. This new intelligent system builds on
dragonfly foraging and predator evasion theory (Wang, Shi ¢ Dong, 2021). When tackling
continuous multi-modal functions and engineering issues, the dragonfly algorithm (DA)
excels. This study offers an angle modulation technique on DA (AMDA). AMDA is used
to produce bit strings to make this algorithm function in binary space. A modified AMDA,
an improved angle-modulated dragonfly algorithm (IAMDA) is presented to increase
algorithm stability and convergence speed by including one additional coefficient to control
the vertical displacement of the cosine section of the original generating function. Hybrid
rice optimization (HRO) (Shu et al., 2022) is a new optimization procedure stimulated
through the upbringing method of Chinese three-line hybrid rice. The population of
the algorithm is divided into three categories; restorer, maintainer, and sterile line, and
other stages like hybridization, renewal, and selfing are applied. The proposed algorithm
is integrated with another to develop a parallel and serial model using the binary ant
colony optimization (BACO) technique to expand merging speed and search efficiency.
The maintainer line is updated by BACO, which is incorporated in HRO as an operator.
The re-establishment plan presents an active step to adjust the investigation and misuse
stages. All exploratory approaches were implemented using Python 3.6 on a Windows 10
Working Framework PC with an Intel(R) Core (TM) i7-8700 @ 3.2 GHz CPU and 16GB
DDR3 RAM. In Moradi, Kayvanfar ¢ Rafiee (2021), the authors develop and contrast a
novel population-based SA (PSA) for the 0/1 knapsack problem and analyze and contrast
the given and non-introduced single-solution SA-based computations for KPO1. PSA is
the most efficient optimization strategy for KPO1 among the SA-based options. PSA’s
inquiry and abuse are far more capable than previous SA-based calculations since it
generates multiple beginning arrangements rather than a single fair one. PSA employs
transformation and hybrid administrators to investigate and misuse the arrangement
space and the ravenous repair and improvement instrument to identify neighboring
arrangements. In Abdollahzadeh et al. (2021), the authors solve the 0/1 knapsack problem
using an extended binary slime mold algorithm (SMA) at various sizes. SMA has tested
and analyzed eight distinct transfer functions. The transfer function that performed
well is used to improve the performance of the proposed binary SMA, and the Bitwise
and Gaussian mutation operators are applied. Punitive work and a repair computation
are used to deal with infeasible arrangements. On typical datasets with various scales,
performance was tested statistically. In Basheer ¢~ Algamal (2021), the authors proposed
two new time-varying exchange functions to expand the biotic flower pollination algorithm
BFPA’s investigation and exploitation capacity with the best arrangement and shortest
computation time. A bio-inspired algorithm called the flower pollination algorithm mimics
the pollination characteristics of plants’ blooms. It mimics the backpack issue’s small,
medium, and large-dimensional scales. Two efficient time-varying exchange functions
are combined with the S-shaped and V-shaped functions with the time-varying notion.
In Wang ¢» Wang (2021), the authors provide a quantum-inspired differential advancement

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 3/21

PeerJ Computer Science

algorithm with a grey wolf optimizer (QDGWO) to make strides in differences and
meet execution in high-dimensional situations. The suggested method uses quantum
computing standards such as quantum superposition states and gates. It, too, uses flexible
transformation operations of differential advancement, hybrid operations of differential
advancement, and quantum perception to construct unique arrangements as trial persons.
The superior arrangements between the stored individuals and the trial individuals formed
by change and hybrid operations are determined using determination operations.

GROUP COUNSELING OPTIMIZER

Aswas previously said, the GCO draws inspiration from human behavior to solve real-world
problems (Eita ¢ Fahmy, 2010; Ali ¢ Khan, 2013). Several parameters must be established,
including the population size, generational age, generational size of the counselors, self-
counseling probability, and self-belief counseling probability (SBCP). Figure 1 describes
the flowchart of the GCO algorithm.

Main algorithm
The outline of the GCO algorithm is given in algorithm 1:

ALGORITHM 1: PSEUDO-CODE OF GROUP COUNSELING OPTIMIZER (GCO)
Begin

1 Initialize the number of generations and population size

2 Find the fitness of each individual in the population

3 Store the objective and best positions of each individual

4 WHILE the given condition does not meet

5 For i=1 to population size

6 Calculate the change in an individual's position using strategies given in subsection
1I-B.

7 Equation 1 calculates the new position of an individual.

8 POP[i]= popl[il+ change[i] (1

)

9 Limit the positions of each individual within the given boundaries of the search
space in case they go beyond their limits.

1 Find the fitness of each individual in the population

0

1 If an individual's current position is better than the prior position described in

1 subsection III C, change the individual's best position.

1 END FOR

2

1 Update the while loop counter

3

1 END WHILE

4

1 End

5

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 4/21

PeerJ Computer Science

Initialize population X Personal best of
the population. set i =1

i
mgf = madf _max*(1-(gc-?i] ¥

xk o xE s mdr +2# may + rand)

X=X +(X,,-X) X=X+, XD

o

k=k+1+
phest =X
i: gengration counter from 1 to max_gen
j: population counter from 1 to ps
=i L Yes i k: dimension counter from 1 to n
— M J =Bl scp: self-counseling probability

shep: self-belief connseling probability
mMaX_gen: Maximom generations
ps: population size

Yes i=i+l

Figure 1 Flowchart of GCO algorithm.
Full-size @ DOI: 10.7717/peerjcs.1315/fig-1

Selection of individuals for counseling
The counseling process of each individual continues component-wise in each generation.

The new value of each component is obtained from the previous values of the same

component using one of the following three strategies:

e Other-members counseling
o Self-belief counseling (use self-best values)

e Self-counseling

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 5/21

PeerJ Computer Science

To influence a person’s decision, the creators of the original GCO algorithm (Eita
& Fahmy, 2010) provide other members with counseling and self-counseling techniques.
However, in Ali ¢ Khan (2013), the authors add a third technique called self-belief coaching
to help an individual stay current.

Strategy, i.e., self-belief counseling, illustrates an individual’s self-experience in decision-
making as we know that an individual’s self-experience influences their decisions. This
self-experience tries to limit any possible modification against what they believe based
on their personal experience. Therefore, the authors introduce the self-belief counseling
strategy into the algorithm to make the counseling process more realistic.

For each component, we generate a random number of self-counseling decisive
coefficients (sdc) in the range [0, 1]. If “sdc” is less than self-counseling probability
(scp), then we do self-counseling; else, we do self-belief or other-members counseling.
Now we generate a random number self-belief counseling decisive coefficient “scdc” in
the range [0, 1]. If “scdc” is less than the self-belief counseling probability (scdc), use
the self-belief counseling strategy; otherwise, use other member counseling strategies. The
self-counseling operator covers the whole range of each component at the start of the search
and then uses a nonlinear function to limit the range covered over time. So, self—counseling
produces a highly explorative behavior at the beginning of the search, and the influence of
the self-counseling operator reduces as the number of generations grows.

The process of computing the new value of each component is given in algorithm 2.

ALGORITHM 2: THE METHOD TO COMPUTE THE CHANGE IN EACH
COMPONENT

Begin

End

1 FOR i =1 to population size

2 If sdc is less than scp

3 ‘ Change (i) = mdf + 2x mdf xrand 1
4 Else

5 If scdc is less than sbep

6 ‘ change (i) = IBSET(i)-POP(i)

7 Else

8 counselor = ceil(mc_sizexrand)
9 change(i) = POP (counselor)-POP(i)
1 Endif

0

1 Endif

1

1 End for

2

1

3

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 6/21

PeerJ Computer Science

Where,

iteration

mdf = max_mdf x (1 —) (1)

gen

Updating individual best position

If the present position leads to the best value, replace the best position; otherwise, do
not change the best position. If the current and best positions are the same, then we can
randomly select any position.

if POP(i) dominates IBEST (i)

IBEST(i) = POP(i)
else
if rand1<0.5
IBEST(i) = POP(i)
end if
end if

KNAPSACK PROBLEM

The 0/1 knapsack problem is a combinatorial problem. ‘W’ is the positive capacity of a
knapsack. An individual can insert a set of S different items in the knapsack. The weight
of item 7 is a positive integer ‘wi’, while the value of item ‘7’ is a positive integer vi (Singh,
2011). The objective is to:

Maximize

m
E ViSi
i=1

subject to

m
E wisi < W
i=1

Example of 0/1 knapsack problem
Assume that there is a knapsack with a size of 15 and many objects of varying weights and
values. Within the constraints of the knapsack’s capacity, we wish to maximize the worth
of goods contained in the knapsack. Four objects were used (A, B, C, and D). The following
are their weights and values as shown in Table I:
We want to maximize the total value:
4

Z(V1$1 + 128 +V353+V4S4). (2)

i=1

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 7/21

PeerJ Computer Science

Table 1 Detail of example knapsack problem items.

Item # A B C D
Values 25 35 40 55
Weights 8 6 7 9

Table 2 Possible subsets of items.

A B C D Total weight Total value
0 0 0 0 0 0
0 0 0 1 9 55
0 0 1 0 7 40
0 0 1 1 16 95
0 1 0 0 6 35
0 1 0 1 15 90
0 1 1 0 13 75
0 1 1 1 22 130
1 0 0 0 8 25
1 0 0 1 17 80
1 0 1 0 15 65
1 0 1 1 24 120
1 1 0 0 14 60
1 1 0 1 23 115
1 1 1 0 21 100
1 1 1 1 30 155
Maximize
4
Zvisi = (255, 4 355, + 4053 + 5554)s; € (0, 1)
=1
i=1,2,...,m (3)
subject to
4

Zwisi = (851465, +7534+9s4) <W
i=1

There are 24 potential subsets of objects for this problem, as shown in Table 2:

The best solution satisfies the constraint while also providing the highest total value.
The rows in italics face meeting the condition in our situation. As a result, the best value
for the given constraint (W =15) is 90, which is reached with B and D items.

RESULTS AND DISCUSSION

The item representation, individual encoding, experimental setup, and conclusions are
discussed in this section.

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 8/21

PeerJ Computer Science

Table 3 Representation of the item.

Item # 1 2 3 4
Weights 8 6 7
Values 25 35 40 55

Table 4 Encoding of an individual.

Item # 1 2 3 4
Weights 0 1 0 1

Representation of the items
To represent all items, we need a table with three rows, item #, weights, and values, as seen
in Table 3:

Encoding an individual
An array of the same size represents an individual as the number of elements in the array.
The item included in the knapsack is denoted by 1; if not included, indicated by 0, but the
total weight is always less than or equal to the knapsack size. For example, the second and
fourth items are packed in the knapsack, as shown in Table 4.

A table called “population” is used to represent the entire population. The rows represent
the number of individuals, and the columns represent the items that might be carried in
the knapsack.

Fitness function
Each individual’s fitness is equal to the sum of the values of selected items for the knapsack.

Termination condition
After achieving the provided criteria (maximum number of generations or maximum
assigned profit value), the program will terminate. The whole process is given in Fig. 2.

Experimental setup

MATLAB R2018a has been used to develop the GCO algorithm-based solution to solve the
0/1 knapsack problem. A thorough analysis was performed on the performance impact of
the parameters used in the GCO algorithm. The three knapsack problems with different
weights are given in Tables 5 to 7. These problems were used for various experiments.
Experiment 1: At the same time, we have changed the number of counselors. Analysis was
performed by 1 to 5 counselors. The other settings were left alone and followed (Ali ¢
Khan, 2013) exactly.

Experiment 2: The number of function evaluations was changed from 200 to 1,000, as
given in Tables 8 to 10. We changed the population sizes to 10, 20, 30, 40, and 50 while
keeping the number of generations equal to 100. The other settings were left alone and
followed (Ali ¢ Khan, 2013) exactly.

Experiment 3: The number of function evaluations was changed from 200 to 1,000, as
given in Tables 11 to 13. We changed the number of generations to 20, 40, 60, 80, and

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 9/21

PeerJ Computer Science

‘ Start '

For each individual in a papulation do:

Randomly decide to include the ith item. No

Add its weights to the total weights.

weight of
knapsack

insert the ith item in knapsack.

ithitem <=n

Calculate total value of knapsack.

‘ Stop '

Figure 2 A flow chart for the fitness function.

Full-size G DOI: 10.7717/peerjcs.1315/fig-2

100 while keeping the population size equal to 100. The other settings were left alone and

followed (Ali ¢ Khan, 2013) exactly.
Experiment 4: In this experiment, we changed the self-belief counseling probability. The

results are produced by varying the self-belief counseling probability from 10% to 90%,

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 10/21

PeerJ Computer Science

Table 5 A 0/1 knapsack problem with the weight of the knapsack = 60.

Item # 1 2 3 4 5 6 7 8 9 10
Values 35 30 27 25 20 18 17 14 13 10
Weights 15 12 10 13 11 9 8 7 5 4

Table 6 A 0/1 knapsack problem with the weight of the knapsack = 70.

Item # 1 2 3 4 5 6 7 8 9 10
Values 10 13 14 17 18 20 25 27 30 35
Weights 3 4 6 8 10 12 14 17 18 19

Table 7 A 0/1 knapsack problem with the weight of the knapsack = 80.

Item # 1 2 3 4 5 6 7 8 9 10
Values 25 23 28 29 37 34 36 39 40 42
Weights 6 9 12 14 17 19 20 15 18 20

as given in Tables 14 to 16. The other settings were left alone and followed (Ali ¢ Khan,

2013) exactly.

Experiment 5: In this experiment, we changed the self-counseling probability. The results

are produced by varying the self-counseling probability from 10% to 90%, as given in

Tables 17 to 19. The other settings were left alone and followed (Ali ¢» Khan, 2013) exactly.
The following subsections explain the findings.

Experiment 1
This experiment sought to determine how the GCO algorithm’s use of counselors affected
its ability to solve the 0/1 knapsack problem. We compare the GCO results by varying the
number of counselors using three different knapsack problems.

Tables 8 to 10 show that the average and standard deviation of results produced by
varying the number of counselors are best when the number of counsellors is equal to 1 for
all three knapsack problems. So we should use only one counselor for knapsack problems.

Experiment 2

This experiment was designed to find the impact of the number of function evaluations
and population size in the GCO algorithm when solving the 0/1 knapsack problem. We
compare the GCO results by varying the number of function evaluations using three
different knapsack problems.

Tables 11 to 13 show that the error decreases as the number of function evaluations
increases. Because the average and standard deviation of results produced by varying the
number of function evaluations are minima when the number of functions is equal to 1,000
for all three knapsack problems, we can say that GCO does not trap knapsack problems at

a local optimum.

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 11/21

PeerJ Computer Science

Table 8 Impact of number of counselor for the first problem.

Counselors — 1 2 3 4 5

Best 140 140 140 140 140
Worst 133 133 135 133 126
Average 137 136 137 137 137
Median 137 137 137 137 137
Std. Dev. 2.20 2.29 2.16 2.27 2.66

Table 9 Impact of number of counselors for the second problem.

Counselors — 1 2 3 4 5

Best 139 139 139 139 139
Worst 126 129 124 127 124
Average 135 134 133 134 133
Median 136 134 134 135 133
Std. Dev. 2.98 2.54 2.97 2.63 3.00

Table 10 Impact of number of counselors for the third problem.

Counselors — 1 2 3 4 5

Best 197 197 197 197 197
Worst 166 169 168 176 169
Average 188 189 187 188 187
Median 188 189 187 188 188
Std. Dev. 5.40 4.74 5.71 4.26 591

Experiment 3

This experiment aimed to determine how the GCO algorithm’s function evaluations and
generation count affected its ability to solve the 0/1 knapsack problem. We compare the
GCO results by varying the number of function evaluations using three different knapsack
problems.

Tables 14 to 16 show that the error decreases as the number of function evaluations
increases. Because the average and standard deviation of results produced by varying the
number of function evaluations are minima when functions are equal to 1,000 for all three
knapsack problems, we can say that GCO is not a trap for knapsack problems at the local
optimum.

Comparing the results produced in experiments 2 and 3 shows that increasing the
number of generations is more effective than a population. So, we use more generations
except for the population.

Experiment 4
This experiment aimed to determine how the self-belief counseling probability affected the
GCO algorithm’s capacity to solve the 0/1 knapsack problem. Compare the GCO results

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 12/21

PeerJ Computer Science

Table 11 Impact of the number of function evaluations and number of population for the first prob-

lem.

Counselors — 200 400 600 800 1000
Best 140 140 140 140 140
Worst 130 135 135 135 137
Average 137 139 139 140 139
Median 137 140 140 140 140
Std. Dev. 2.39 1.59 1.21 0.9 0.4

Table 12 Impact of the number of function evaluations and number of population for the second

problem.

Counselors — 200 400 600 800 1000
Best 139 139 139 139 139
Worst 124 131 131 131 134
Average 134 136 136 137 138
Median 133 136 136 137 138
Std. Dev. 3.12 2.34 2.00 1.66 1.27

Table 13 Impact of the number of function evaluations and number of population for the third prob-

lem.

Counselors — 200 400 600 800 1000
Best 140 140 140 140 140
Worst 130 135 134 135 133
Average 137 138 138 138 138
Median 137 140 140 140 140
Std. Dev. 2.38 2.22 2.17 2.30 2.36

using three different knapsack problems and varying the probability of trust advice from
10% to 90%.

Tables 17 to 19 show that the average and standard deviation results produced by
varying the self-belief-counseling probability are best at 70% for two out of three knapsack
problems. So we should use a 70% self-belief-counseling probability for knapsack problems.

Experiment 5
This experiment aimed to determine how the self-counseling probability affected the GCO
algorithm’s capacity to solve the 0/1 knapsack problem. We compare the GCO results by
varying the self-counseling probability from 10% to 90% using three knapsack problems.
Tables 20 to 22 show that the average and standard deviation of results produced by
varying the self-counseling probability is best at 50% for two out of three knapsack
problems. So we should use a 50% self-belief-counselling probability for knapsack
problems.
A proposed solution for the 0/1 knapsack problem based on GCO is implemented in
MATLAB R2018a. GCO advanced parameter settings are initialized as follows:

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 13/21

PeerJ Computer Science

Table 14 Impact of the number of the function evaluations and number of generations for the first

problem.
Counselors — 200 400 600 800 1000
Best 197 197 197 197 197
Worst 176 178 187 184 187
Average 188 191 192 192 193
Median 188 192 193 193 194
Std. Dev. 4.42 3.68 2.71 2.96 2.41

Table 15 Impact of the number of function evaluations and number of generations for the second

problem.

Counselors — 200 400 600 800 1000
Best 139 139 139 139 139
Worst 129 127 125 131 131
Average 134 136 136 136 137
Median 135 136 136 136 138
Std. Dev. 2.95 2.81 2.75 2.12 2.39

Table 16 Impact of the number of function evaluations and number of generations for the third prob-

lem.
Counselors — 200 400 600 800 1000
Best 197 197 197 197 197
Worst 176 179 182 175 182
Average 188 190 190 191 191
Median 188 191 192 193 193
Std. Dev. 4.77 3.81 3.33 4.12 3.50

e The population size is equal to 50;

The maximum number of generations increases from 20 to 100;
The number of counselors is equal to 1;

self-belief-counseling probability is equal to 70%;

self-counseling probability is equal to 50%;
e Max_mdfis equal to 0.5;

In all experiments, we report results obtained from 100 independent runs. The best
results are presented in all cases.

Results
Our experiments use the 0/1 knapsack problem with three different knapsack capacities.
Details of the 0/1 knapsack problem are shown in Table 2 to Table 4.

Set the population size to 20 and vary the number of generations from 20 to 100 to
generate results. Tables 5 to 7 show the maximum fit found after 100 runs of the algorithm
in each generation. The results demonstrate the usefulness of GCO for the 0/1 knapsack

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 14/21

PeerJ Computer Science

Table 17 Impact of self-belief-counseling probability for the first problem.

Self-belief counseling Probability Best Worst Average Median Std. Dev.
10% 139 124 133 132 3.38
20% 139 124 134 135 2.86
30% 139 126 135 136 2.96
40% 139 131 136 136 2.22
50% 139 131 136 136 2.22
60% 139 131 139 137 2.15
70% 139 130 136 136 2.40
80% 139 127 137 136 2.13
90% 139 125 137 137 2.37

Table 18 Impact of self-belief-counseling probability for the second problem.

Self-belief counseling probability Best Worst Average Median Std. Dev.
10% 140 130 137 137 2.62
20% 140 135 138 139 2.11
30% 140 135 138 139 2.10
40% 140 135 138 139 2.29
50% 140 135 138 140 2.24
60% 140 135 138 140 2.19
70% 140 135 138 140 2.19
80% 140 135 138 140 2.20
90% 140 135 139 140 1.97

problem. They show that for all numbers of function evaluations, it yields results close to
those of the dynamic programming approach for all three problems.

Diff = ((Optimal value -GCO Optimal value)/ Optimal value) *100

Various problem sizes are present in the test scenarios to examine the effectiveness of
the proposed algorithm. The numbers of items that sizes are 20, 40, 60, and 80 having the
size of knapsack 125, 400, 800, and 1,150 respectively. We apply the dynamic programming
and GOC algorithm to know the optimal values of the given problem.

In Table 23, the number of items is 20, having a knapsack size of 125. The optimal
value is 261 according to the dynamic programming technique, and the result produced by
the GCO is also 261. So the difference between dynamic programming and the proposed
algorithm is zero.

In Table 24, the number of items is 40, having a knapsack size of 400. The optimal value
is 741 according to the dynamic programming technique, and the result produced by the
GCO is also 735. So the difference between the dynamic programming and the proposed
algorithm is 0.80%.

In Table 25, the number of items is 60, having a knapsack size of 800. The optimal value
is 951 according to the dynamic programming technique, and the result produced by the
GCO is also 945. So the difference between the dynamic programming and the proposed
algorithm is 0.63%.

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 15/21

PeerJ Computer Science

Table 19 Impact of self-belief-counseling probability for the third problem.

Self-belief counseling probability Best Worst Average Median Std. Dev.
10% 197 167 186 187 6.80
20% 197 167 188 188 5.54
30% 197 176 189 191 4.75
40% 197 173 190 191 4.48
50% 197 175 190 191 4.77
60% 197 182 191 192 3.50
70% 197 175 192 193 3.93
80% 197 182 191 192 3.52
90% 197 178 192 192 3.78

Table 20 Impact of self-counseling probability for the first problem.

Self-counseling probability Best Worst Average Median Std. Dev.
10% 140 130 137 135 2.53
20% 140 134 138 139 2.18
30% 140 135 138 137 2.21
40% 140 133 138 139 2.12
50% 140 135 138 140 2.17
60% 140 134 138 139 2.08
70% 140 132 138 139 2.33
80% 140 135 138 139 2.22
90% 140 135 138 139 2.26

Table 21 Impact of self-counseling probability for the second problem.

Self-counseling probability Best Worst Average Median Std. Dev.
10% 139 124 133 133 3.72
20% 139 122 134 134 3.21
30% 139 130 135 135 2.42
40% 139 129 135 136 2.63
50% 139 130 135 136 2.64
60% 139 127 135 136 2.93
70% 139 127 136 136 2.53
80% 139 131 135 136 2.48
90% 139 127 135 136 2.88

In Table 26, the number of items is 80, having a knapsack size of 1,150. The optimal
value is 1,426 according to dynamic programming techniques, and the result produced
by the GCO is also 1,335. So the difference between the dynamic programming and the
proposed algorithm is 0.14%.

Table 27 shows that the results produced by the GCO algorithms differ by less than 1%
by using the dynamic programming method.

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 16/21

PeerJ Computer Science

Table 22 Impact of self-counseling probability for the third problem.

Self-counseling probability Best Worst Average Median Std. Dev.
10% 197 163 185 187 6.85
20% 197 172 188 188 5.19
30% 197 175 188 188 5.06
40% 197 172 189 189 4.75
50% 197 175 189 189 4.93
60% 197 176 190 192 3.90
70% 197 178 190 191 4.21
80% 197 178 190 191 3.87
90% 197 175 189 189 4.15

Table 23 Knapsack problem having 20 items and knapsack size equal to 125.

Items No. 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
Weights 1,3,2,5,7,9,12,17,4,6,11,13,15,20,19,18,8,10,14,16
Values 5,12,14,17,19,23,8,16,22,27,21,6,11,10,25,15,20,18,22,13

Table 24 Knapsack problem having 40 items and knapsack size equal to 400.

Items No. 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,
32,33,34,35,36,37,38,39,40

Weights 2,4,7,8,10,13,21,5,3,6,12,18,20,1,7,14,22,25,16,24,23,9,11,15,17,27,32,37,39,36,40,35,
19,26,28,38,31,30,29,33

Values 4,7,8,12,13,17,9,19,21,23,27,30,32,18,24,38,37,23,28,41,22,25,34,26,29,15,16,2,1,14,

42,11,20,33,35,39,44,45,50,49

CONCLUSION

This article used dynamic programming and the GCO algorithm to solve the 0/1 knapsack
problem (KP). GCO is adaptable to the customer’s prerequisites, with various elements, for
instance, population size, number of generations, number of counsellors, self-counselling
probability, and self-belief counselling probability. The counseling process of each
individual continues component-wise in each generation. The GCO algorithm provided
other members with counseling and self-counseling ways to influence each individual’s
decision. The authors used a third strategy, i.e., self-belief counseling, which illustrates the
behavior of an individual’s self-experience in decision-making. The 0/1 knapsack problem
is optimally solved with dynamic programming. However, the time complexity of the
dynamic programming is O(n3). The proposed GCO algorithm time complexity is O(g
xn xm)). In this article, we provide a feature analysis of GCO parameters and use it to
solve the 0/1 knapsack problem (KP) using GCO. The results show that the GCO is a viable
alternative to solving the 0/1 knapsack problem.

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 17/21

PeerJ Computer Science

Table 25 Knapsack problem having 60 items and knapsack size equal to 800.

Items No. 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30
,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57
,58,59,60

Weights 1,7,3,5,2,8,4,9,6,10,12,20,13,18,19,21,30,32,24,33,17,14,12,22,26,31,27,28,34,23,
15,13,2,23,35,40,42,47,50,51,46,49,43,44,55,53,29,4,17,39,24,42,37,34,51,23,12,
17,19,31

Values 18,20,1,7,14,22,25,16,24,23,9,11,15,23,27,30,32,18,24,38,4,7,8,12,13,17,9,19,21,
23,27,30,32,23,3,17,9,19,21,23,27,30,32,18,24,38,19,21,23,27,30,32,18,24,38,37,
23,21,25,12

Table 26 Knapsack problem having 80 items and knapsack size equal to 1150.

Items No. 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,
32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,
59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80

Weights 20,13,18,19,21,30,32,24,33,17,14,12,22,26,31,27,28,34,23,1,7,3,5,2,8,4,9,6,10,12,20,
13,18,19, 47,50,51,46,49,43,44,55, 24,23,9,11,15,17,27,32,37,39,36,40,35,19,26,28,
53,29,4,17,39 ,24,42,37,34,51,23,12,17,28, 18,20,1,7,14,22,25,16

Values 15, 23,27,30,32,18,24,38,7,8,12,13,17,9,19,21,23,27,30,32,23,3,17,11,15,23,27,30,32,
18,24,38,4,7,8,12,13,17,9,19,21,23,27,30,23,27,30,32,18,24,38,37,23,28, 15,16,2,1,14,
42,11,7,14,22,25,16,24,23,9,11,15,23,27,29,35,28,17,28,34

Table 27 Result of all 0-1 Knapsack problems.

Problem Optimal value GCO Diff (%)
Z Time (sec)

1 261 261 13.48 0

2 741 735 25.0 0.81

3 951 945 35.0 0.63

4 1,426 1335 47.09 0.14
ADDITIONAL INFORMATION AND DECLARATIONS
Funding

The authors received funding from the Princess Nourah bint Abdulrahman University
Researchers Supporting Project number (PNURSP2023R54), Princess Nourah bint
Abdulrahman University, Riyadh, Saudi Arabia. The funders had a role in the study
design, data collection and analysis, and decision to publish. The funders had no role in
the preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

The Princess Nourah bint Abdulrahman University Researchers Supporting Project
number: PNURSP2023R54.

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 18/21

PeerJ Computer Science

Competing Interests
Muhammad Asif is an Academic Editor for Peer] Computer Science. The authors do not
declare any competing interests.

Author Contributions

e Yazeed Yasin Ghadi conceived and designed the experiments, performed the
experiments, performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.

e Tamara AlShloul conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

e Zahid Igbal Nezami conceived and designed the experiments, analyzed the data,
performed the computation work, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

e Hamid Ali conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Muhammad Asif conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Hanan Aljuaid performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.

e Shahbaz Ahmad conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
The code and data are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.1315#supplemental-information.

REFERENCES

Abdel-Basset M, Mohamed R, Mirjalili S. 2021. A binary equilibrium optimization algo-
rithm for 0—1 knapsack problems. Computers & Industrial Engineering 151:106946
DOI10.1016/j.c1e.2020.106946.

Abdollahzadeh B, Barshandeh S, Javadi H, Epicoco N. 2021. An enhanced binary
slime mould algorithm for solving the 0—1 knapsack problem. Engineering with
Computers 1-22.

Ali H, Khan FA. 2012. Comprehensive parent selection-based genetic algorithm.

In: International conference on innovative techniques and applications of artificial
intelligence. London: Springer, 123—135.

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 19/21

PeerJ Computer Science

Ali H, Khan FA. 2013. Group counseling optimization for multi-objective functions. In:
2013 IEEE congress on evolutionary computation. IEEE, 705-712.

Barakat S, Ibrahim H, Elbaset AA. 2020. Multi-objective optimization of grid-connected
PV-wind hybrid system considering reliability, cost, and environmental aspects.
Sustainable Cities and Society 60:102178 DOI 10.1016/j.5¢5.2020.102178.

Basheer GT, Algamal ZY. 2021. Improving flower pollination algorithm for solv-
ing 0—1 knapsack problem. Journal of Physics: Conference Series. IOP Publishing
1879(2):022097.

Coello Coello CA, Pulido GT, Lechuga MS. 2004. Handling multiple objectives with
particle swarm optimization. IEEE Transactions on Evolutionary Computation
8(3):256-279 DOI 10.1109/TEVC.2004.826067.

Deb K, Pratap A, Agarwal S, Meyarivan T. 2002. A fast and elitist multi-objective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2):182—-197
DOI 10.1109/4235.996017.

Dorigo M, Birattari M, Thomas S. 2006. Ant colony optimization. IEEE Computational
Intelligence Magazine 1.4:28-39.

Eita MA, Fahmy MM. 2010. Group counseling optimization: a novel approach. In:
Research and Development in Intelligent Systems XXVI, Part 5. London: Springer
London, 195-208.

Ezugwu AE, Verosha P, Divyan H, Sivanarain K, Govender M. 2019. A comparative
study of meta-heuristic optimization algorithms for 0—1 knapsack problem: some
initial results. IEEE Access 7:43979—-44001 DOI 10.1109/ACCESS.2019.2908489.

Fonseca CM, Fleming PJ. 1995. An overview of evolutionary algorithms in multi-
objective optimization. IEEE Transactions on Evolutionary Computation 3(1):1-16
DOI 10.1162/evc0.1995.3.1.1.

Janga Reddy M, Nagesh Kumar D. 2021. Evolutionary algorithms, swarm intelligence
methods and their applications in water resources engineering: a state-of-the-art
review. H2Open Journal 3.1:135-188.

Masadeh R. 2021. Whale optimization algorithm applied to the 0/1 knapsack problem.
Journal of Theoretical and Applied Information Technology 99.7.

Mezura-Montes E, Coello Coello CA. 2005. A simple multimembered evolution strategy
to solve constrained optimization problems. IEEE Transactions on Evolutionary
Computation 9.1:1-17.

Moradi N, Kayvanfar V, Rafiee M. 2021. An efficient population-based simulated an-
nealing algorithm for 0—1 knapsack problem. Engineering with Computers 2021:1-20.

Mugambi EM, Hunter A. 2003. Multi-objective genetic programming optimization
of decision trees for classifying medical data. In: Knowledge-Based Intelligent
Information and Engineering Systems. Heidelberg: Springer Berlin, 293-299.

Roy DK, Barzegar R, Quilty J, Adamowski J. 2020. Using ensembles of adaptive
neuro-fuzzy inference systems and optimization algorithms to predict reference
evapotranspiration in subtropical climatic zones. Journal of Hydrology 591:125509
DOI 10.1016/j.jhydrol.2020.1255009.

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 20/21

PeerJ Computer Science

Santoso , Kiswara A, Kurniawan Bagus M, Kamsyakawuni A, Abduh R. 2022. Hybrid
cat-particle swarm optimization algorithm on bounded knapsack problem with
multiple constraints. In: International conference on mathematics, geometry, statistics,
and computation (IC-MaGeStiC 2021). Atlantis Press, 244-248.

Shu Z,YeZ, Zong X, Liu S, Zhang D, Wang C, Wang M. 2022. A modified hybrid
rice optimization algorithm for solving 0-1 knapsack problem. Applied Intelligence
52(5):5751-5769 DOI 10.1007/s10489-021-02717-4.

Singh RP. 2011. Solving 0-1 knapsack problem using genetic algorithms. In: IEEE 3rd
international conference on communication software and networks. Piscataway: IEEE,
591-595.

Steuer RE. 1986. Multiple criteria optimization: theory, computations, and application.
New York: John Wiley & Sons, Inc.

Storn R, Price K. 1995. Differential evolution—a simple and efficient adaptive scheme
for global optimization over continuous spaces. Technical Report TR-(1995) 95-012.
International Computer Science Institute, Berkeley.

Sun W-Z, Zhang M, Wang J-S, Guo S-S, Wang M, Hao W-K. 2021. Binary particle
swarm optimization algorithm based on z-shaped probability transfer function
to solve 0-1 knapsack problem. JAENG International Journal of Computer Science
48:294-303.

Wang L, Shi R, Dong J. 2021. A hybridization of dragonfly algorithm optimization and
angle modulation mechanism for 0/1 knapsack problems. Entropy 23.5:598.

Wang Y, Wang W. 2021. Quantum-inspired differential evolution with grey wolf
optimizer for 0/1 knapsack problem. Mathematics 9.11:1233.

Ghadi et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1315 21/21

