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ABSTRACT The multiple-choice multidimensional knapsack problem (MMKP) is a well-known NP-hard 

problem that has many real-time applications. However, owing to its complexity, finding computationally 

efficient solutions for the MMKP remains a challenging task. In this study, we propose a Modified Artificial 

Bee Colony algorithm (MABC) to solve the MMKP. The MABC employs surrogate relaxation, Hamming 

distance, and a tabu list to enhance the local search process and exploit neighborhood information. We 

evaluated the performance of the MABC on standard benchmark instances and compared it with several state-

of-the-art algorithms, including RLS, ALMMKP, ACO, PEGF-PERC, TIKS-TIKS2 and D-QPSO. The 

experimental results reveal that MABC produces highly competitive solutions in terms of the best solutions 

found, achieving approximately 2% of the optimal solutions with trivial (milliseconds) CPU time. The 

Kruskal-Wallis test revealed that there was no statistically significant difference in the objective function 

values between the MABC algorithm and other state-of-the-art algorithms (H = 0.31506, p = 0.98882). 

However, for CPU efficiency, the test showed a statistically significant difference (H = 84.90850, p = 0), 

indicating that the MABC algorithm exhibited significantly better CPU efficiency (with shorter execution 

times) than the other algorithms did.  Along with these findings, the ease of implementation of the algorithm 

and the small number of control parameters make our approach highly adaptive for large-scale real-time 

systems. 

INDEX TERMS Artificial bee colony algorithm, multiple-choice multidimensional knapsack problem, 

hamming distance, surrogate relaxation. 

I. INTRODUCTION 

The MMKP is a generalization of the classical knapsack 

problem (KP)[1]. It is significant because it can model a 

wide range of real-time applications such as resource 

allocation[2],  intelligent  transportation  systems[3], 

logistics[4], quality of service (QoS)[5], [6], web service 

composition[7], Energy-Efficient Offloading in Mobile 

Edge Computing[8], medicine[9], budgeting problems[10], 

hardware design[11], and cloud computing[12].  

Formally, the MMKP can be expressed as a set of items 

divided into n disjoint groups and an m-dimensional resource 

constraint represented by the vector of resource availability 

𝑏𝑘 = {𝑏1, … , 𝑏𝑚}. Item j in group i has a non-negative profit 

value vij and consumes a certain amount 𝑟𝑖𝑗
𝑘 of resource k (k = 

1, …, m). The decision variable xij = 1 if item j from class i is 

selected and xij = 0 otherwise. The MMKP is then defined as  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑣𝑖𝑗𝑥𝑖𝑗

𝑛𝑖

𝑗=1

𝑛

𝑖=1

                    (1) 

𝑠. 𝑡.  ∑ ∑ 𝑟𝑖𝑗
𝑘𝑥𝑖𝑗

𝑛𝑖

𝑗=1

𝑛

𝑖=1

≤ 𝑏𝑘, 𝑘 = 1, … , 𝑚                    (2) 

∑ 𝑥𝑖𝑗

𝑛𝑖

𝑗=1

= 1, 𝑖 = 1, … , 𝑛                           (3) 

𝑥𝑖𝑗 ∈ {0,1}, 𝑖 = 1, . . , 𝑛, 𝑗 = 1, . . , 𝑛𝑖         (4) 
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As a variant of the classical KP, the MMKP can be 

considered as a combination of two challenging problems: the 

multidimensional knapsack problem (MKP)[13] and the 

multi-choice knapsack problem (MCKP)[14]. It involves a 

linear objective function under two types of linear constraints: 

(2) and (3). The first is a multidimensional constraint and the 

second is a choice constraint. If constraint (3), which limits 

each group to a single item, is relaxed, the problem is reduced 

to MKP[15]. Constraint (2) guarantees that the knapsack 

capacities are respected, and if the resource constraint is 

relaxed to a single dimension (m = 1), the problem is reduced 

to an MCKP[16]. 

The MMKP has a potentially wide range of practical 

applications. However, developing an efficient and 

effective algorithm for the problem is challenging because 

it is an NP-hard problem[17] as it is not trivial to find even 

a feasible solution within polynomial runtime complexity, 

particularly for large-scale problems.  

NP-hard problems have numerous local minima that can be 

challenging to escape. This is further aggravated by the 

cycling phenomenon, wherein the algorithm repeatedly visits 

a candidate solution, thereby wasting time and causing it to 

fall into a local optimum.  

Recently, metaheuristics based on nature-inspired 

algorithms have gained attention as a solution to the MMKP 

and other complex optimization problems. These algorithms 

are inspired by the behavior and decision-making processes of 

natural systems, such as the genetic algorithm (GA)[18], 

particle-swarm optimization (PSO)[19], ant colony 

optimization (ACO)[20], [21], biogeography-based 

optimization (BBO)[22], harmony search (HS)[23], and 

artificial bee colony (ABC) algorithm[24]. By combining 

metaheuristics with mathematical optimization techniques, 

they can effectively solve complex optimization problems and 

produce near-optimal solutions. 

The use of metaheuristics based on nature-inspired 

algorithms in practical problems highlights the importance 

and potential of these algorithms for real-world 

applications. These algorithms can effectively and 

efficiently solve complex optimization problems, making 

them useful in various fields[25], [26]. 

 Since its invention by Karaboga[24], the ABC algorithm 

has received increasing attention owing to its flexibility, 

simplicity of employment, and small number of control 

parameters[27]. Compared to other evolutionary 

algorithms, the ABC algorithm can escape local 

optima[28], [29] in several real-world problems[30]–[32] 

and is widely used in the field of combinatorial 

optimization problems[33] such as traveling salesman[34], 

vehicle routing[35], [36], graph coloring[37], team 

orienteering[38], bioinformatics[39], web service 

composition[40], social network analysis[41], 

timetabling[42]–[44], controller design[45], and image 

processing[46].  

The ABC algorithm contains three main phases: 

employed-bee, onlooker-bee, and scout-bee. The employed-

bee and onlooker-bee phases are dedicated to the exploitation 

of the search space, whereas the scout-bee phase is dedicated 

to the exploration of the search space. The exploration 

strategy of the ABC algorithm, which is based on a 

stochastic pattern search process, delivers excellent 

performance. However, similar to other evolutionary 

algorithms, it encounters performance challenges during 

the exploitation process[47]. 

The deficiencies in the ABC exploitation process are 

caused by several factors. In the employed-bee phase, the 

local search process is related to neighborhood information, 

which limits the efficiency of the exploitation process 

owing to the restricted information that a neighborhood can 

offer. A similar drawback affects the onlooker-bee, because 

the same structure is applied in the onlooker-bee phase. 

Furthermore, the fitness structure used in ABC maintains 

only food sources with high amounts of nectar; however, 

low-nectar solutions may also contain useful information. 

These factors lead to an imbalance between exploitation 

and exploration in the search process, causing delayed 

convergence and falling into a local optima[48]. 

In this study, we propose a Modified Artificial Bee 

Colony (MABC) algorithm to solve the MMKP based on 

the ABC algorithm. The MABC algorithm improves the 

performance of the ABC algorithm by integrating three 

distinct techniques, namely, surrogate relaxation, 

Hamming distance, and tabu list, to handle the 

combinatorial nature of the problem, increase population 

diversity, and facilitate faster convergence to find near-

optimal solutions within a short computational time. The 

MABC algorithm adopts the Hamming distance to measure 

the dissimilarity between candidate solutions, which is 

defined as the number of positions (groups) at which two 

solutions differ. The algorithm employs a stochastic 

selection process to generate new solutions within a 

predefined Hamming distance from the current solutions. 

This approach improves the population diversity, thereby 

avoiding convergence to local optima. Furthermore, the 

MABC algorithm employs a surrogate relaxation approach 

to address the combinatorial nature of the MMKP problem. 

By combining surrogate relaxation with Hamming distance 

techniques, the MABC algorithm aims to accelerate the 

convergence and find near-optimal solutions in  reduced 

computational time. Finally, the MABC algorithm 

integrates a tabu list that monitors the recently visited 

solutions, thereby preventing the algorithm from revisiting 

them. This technique enhances the exploration of the 

solution space and assists in avoiding the local optima.  

The approach was validated on standard benchmark 

problem instances and compared with several state-of-the-

art algorithms in literature.   

The remainder of this paper is organized as follows. 

Section 2 presents a brief review of the relevant literature. 
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We describe our MABC algorithm in Section 3. Section 4 

presents and discusses the extensive computational results 

obtained for the known benchmark problems. Finally, 

Section 5 concludes the study.  

II. LITERATURE REVIEW 

MMKP is strongly constrained and NP-hard[49]. 

Consequently, the search space grows exponentially with the 

problem size[17], which renders scanning highly difficult or 

even impossible in practice, despite advancements in 

computer technologies. In particular, it is challenging to 

identify a good solution quality without falling into a local 

optimum when scanning most of the search space.  

Several exact approaches have been proposed to solve the 

MMKP problem[50]–[52] most of which use a branch-and-

bound algorithm. Khan[52] suggested a combination of a 

branch-and-bound algorithm and linear programming. 

Sbihi[51] described an exact branch-and-bound algorithm 

that explores the search tree using the best-first strategy. In 

this approach, the upper bounds of the objective function are 

computed by reducing multiple dimensions to one and 

transforming the problem into an MCKP problem. Hence, the 

computational results reported in Sbihi[51] indicate that the 

algorithm outperformed Khan’s approach[52]. Razzazi and 

Ghasemi[53] used a more powerful branch-and-bound 

scheme based on a depth-first strategy to explore the search 

tree. They calculated the upper bounds using the surrogate 

relaxation of the problem. Their algorithm provides better 

results than those of Sbihi[51]. Ghasemi and Razzazi[50] 

developed an exact algorithm based on an approximate core 

to solve MMKP. They obtained promising results with up to 

five knapsack constraints and 1000 items. 

Nevertheless, exact approaches can only deal with 

problems of a limited size (n = 100 and m = 10)[54]. For real-

time decisions, exact algorithms are not feasible owing to 

their complexity and requirement of a fast system response. 

Therefore, approximation algorithms are viable options for 

solving the MMKP, particularly in cases where a precise 

optimal solution is not required and computational time is a 

significant constraint.  

For larger instances, several heuristics have been proposed 

to determine near-optimal solutions within acceptable 

computation time[54]. In 1997, Moser et al.[55] introduced 

the first heuristic algorithm for resolving the MMKP based 

on Lagrangian relaxation and repetitive permutation. The 

approach was subsequently improved by Akbar et al.[56]. 

Further, Hifi et al.[57] used a reactive local search (RLS) 

and a modified reactive local search (MRLS), which yielded 

better results than those of Moser et al.[55]. Cherfi and Hifi 

[58] proposed a hybrid algorithm combining local branching 

with column generation, which outperformed all previous 

approaches. 

Combinations of linear programming relaxation and other 

techniques are often used in MMKP algorithms to solve the 

reduced problem[59]–[61]. Cherfi[62] extended the approach 

proposed by Cherfi and Hifi[58] to improve the quality of 

solutions by combining column generation techniques and 

local search. Ren and Feng[63] presented an ACO approach 

following the scheme of a max-min ant system to solve the 

MMKP problem. Crévits et al.[64] introduced a semi-

continuous relaxation approach to solve the MMKP. In their 

approach, relaxation is used at each iteration to generate an 

upper bound and then create a sub-problem that can be solved 

to find a lower bound. Pseudo cuts are also produced to 

prevent falls into the local optima. 

Mansi et al.[60] described another hybrid approach based 

on iterative relaxation that applies new cuts to generate a 

reduced problem and a reformulation procedure. Additionally, 

Htiouech et al.[65] used a surrogate constraint combined 

with an oscillation method to solve the MMKP. Subsequently, 

Htiouech and Alzaidi[66] divided the MMKP into small sub-

problems and used an agent-based approach to solve the 

reduced problem. Xia et al.[67] proposed a first-level tabu 

search algorithm. Their proposed algorithm performs fairly 

well compared with legacy heuristic approaches.  

Gao et al.[61] described a new iterative pseudo-gap 

enumeration based on a new family of pseudo-cuts resulting 

from the reduced cost constraint of non-basic variables. Dong 

et al.[68] proposed an enhanced quantum particle swarm 

optimization algorithm for MMKP that prioritizes effective 

genes and reserves particles with greater revolutionary 

potential. The algorithm employs a mutation based on elite 

genes to prevent local optimization when the population 

diversity decreases. 

Caserta et al.[69] defined a primary mathematical model 

for solving the MMKP. Their model addresses complex 

system reliability and uses a new robust formulation 

characterized by second-order cone programs. In this model, 

the resource consumption values of items are 

nondeterministic. The authors demonstrated the ability to 

convert a nondeterministic MMKP into an integer linear 

program without extra complexity. Mkaouar et al.[70] 

developed an algorithm that uses the ABC algorithm to 

resolve the MMKP. Their proposed algorithm, inspired by the 

general behavior of the honeybee swarm, provided better 

quality solutions for medium and large scale instances 

compared to other reported approaches. 

Mansini and Zanotti[71] proposed a new approach for 

solving this problem. The method solves sub-problems of 

increasing size using a recursive variable fixing process until 

an optimality condition is satisfied. Syarif et al.[72] analyzed 

three different GA and evaluated the performance of several 

heuristic algorithm approaches to solve the MMKP. 

Yang et al.[73] applied a memetic algorithm to the MMKP. 

The authors designed a repair heuristic based on a tendency 

function with human experience through experiments using 

genetic algorithms. Lamanna et al.[74] provided a new 

variant of the heuristic framework kernel search applied to the 

MMKP. Dellinger et al.[75] proposed simple strategies that 

generate bounded solutions for the MMKP.  
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Despite the existence of several exact and approximate 

heuristic algorithms for solving the MMKP, new algorithms 

must be developed. This is for several reasons, including the 

fact that the MMKP is an NP-hard problem, meaning that 

obtaining exact solutions for large problem instances is a 

difficult task. Moreover, many existing algorithms are 

computationally intensive and require considerable 

computational time to provide the best possible solutions, 

particularly for large problems. The computational time 

required to solve the MMKP problem can be reduced by 

developing more efficient algorithms. Finally, new 

algorithms may need to be developed to handle new 

constraints, objectives, or uncertainties or to adapt to new 

problem instances or settings, which may require more 

flexible and adaptable solutions. 

Despite the diversity of methods used in research on the 

MMKP, none of the methods have leveraged dissimilarity 

and similarity measures between solutions. Such a measure 

can be highly valuable because it provides numeric values 

quantifying the relative positions (distances) of solutions with 

respect to each other in the search space. Therefore, this 

concept can provide significant flexibility for the algorithm to 

jump from one current local search area to another, and 

consequently explore several different zones of the search 

space. 

III. MABC 

To the best of our knowledge, the ABC algorithm has not yet 

been used for the MMKP, except in the study by Mkaouar et 

al. [70] that presents an algorithm inspired by the general 

behavior of a honeybee swarm. However, this study represents 

the different phases of the ABC algorithm for the MMKP. 

The ABC algorithm was first proposed by Karaboga[24] to 

solve continuous and discrete problems. Subsequently, 

Karaboga and Basturk[28] compared the performance of the 

ABC algorithm to that of the GA, differential evolution (DE), 

PSO, and evolutionary algorithm (EA), and tested them using 

five multidimensional numerical test problems. The 

experimental results show that ABC escaped falling into a 

local minimum, was more proficient for multivariable and 

multimodal function optimization, and outperformed DE, 

PSO, and EA[28], [29]. 

The ABC algorithm simulates the intelligent comportment 

of a honeybee swarm while probing for a food source 

(solution). In an ABC, a potential solution for the considered 

problem is a symbol of a food source, and the quality of this 

solution depicts the quantity of nectar in this food source. ABC 

adopts a colony model divided into three categories according 

to the task performance. 

Employed-bees: Each employed bee is a distinct food 

source. Employed-bees are responsible for investigating 

nectar food sources in areas or neighborhoods already visited 

by them. An employed-bee modifies the food source (current 

solution) in its memory depending on the local information 

(visual information) and assessments of the nectar amount 

(fitness value) of the new source (new solution). If the quantity 

of nectar in the new solution is higher than that in the current 

solution, the bee memorizes the new position and abandons 

the old one. Otherwise, it retains the position of the solution in 

memory. Moreover, it shares information about food sources 

with a certain probability with the bees residing in the hive 

(onlooker-bees). 

Onlooker-bees: receive information from employed-bees 

and evaluate the quality of the food source. Similar to the 

employed-bees, onlooker-bees attempt to improve the 

solutions using a greedy search strategy. 

Scout-bees: The employed-bee and onlooker-bee phases 

are dedicated to the exploitation of the search space, whereas 

the scout-bee phase is dedicated to the exploration of the 

search space. Scouts search for new food sources in new 

areas. An employed-bee becomes a scout-bee when the quality 

of a food source does not improve after a predetermined 

number of attempts, called the “limit.” 

This cycle (employed-bee, onlooker-bee, and scout-bee 

phases) is repeated until “maxCycle” (maximum number of 

cycles) is reached. Subsequently, the best global solution is 

returned by the algorithm. 
The main steps of the ABC algorithm are summarized in 

Algorithm 1. 

Algorithm 1: MAIN STEPS OF ABC ALGORITHM 

ABC algorithm 
Output: Global best solution found 

1. Initialization 

Repeat 

2. Employed-bee phase 

3. Onlooker-bee phase 

4. Scout-bee phase 
5. Refresh memory 

Until (one of the stop conditions is satisfied) 

 

The different phases of the ABC algorithm were modified 

to improve its performance. The following subsections 

describe each step in more details. 

A. Initialization of population 

The generation of an initial population in an optimization 

metaheuristic is important because it affects the search in 

future iterations and significantly influences the final solution. 

The random method aims to generate random solutions to 

produce greater diversity, which is an important factor for 

determining the quality of the final solution. The random 

greedy method may generate a population with good fitness 

solutions; however, there is a risk of rapid convergence 

toward a local optimum[76]. 

Because it may not produce feasible solutions for the 

MMKP within a reasonable computation time, the random 

initialization method for the candidate solutions of the initial 

population used in the standard ABC is not suitable for the 

MMKP. Therefore, in this study, a new initialization method 
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based on the Hamming distance (see Section V.B.1) was 

applied to create the initial population (initializeSolution 

procedure) to increase the diversity of the population and help 

avoid getting stuck in local optima. 

The principle of this procedure is to assign the n groups of 

the problem to N classes with 𝑁 < 𝑛 and 𝑛 𝑚𝑜𝑑 𝑁 = 0. The 

groups are randomly assigned to classes with the same number 

of groups in each class. The problem here is reduced to N sub- 

problems (classes) containing each of the 𝑛𝑁 = 𝑛⁄𝑁 groups. 

Each reduced problem P’ is individually solved. The 

combination of N partial solutions for the N sub-problems can 

be a candidate for a complete feasible solution for the MMKP. 

The initializeSolution procedure is repeated for each 
candidate solution Xl of the initial population with l = {1, ..., 

SN}, and SN is the size of the population. 

The main steps for the solution generation are presented in 

Algorithm 2. 

Algorithm 2: INITIALIZESOLUTION PROCEDURE 

initializeSolution procedure 
Input: index l of the candidate solution Xl with l = {1, ..., SN} 

Output: solution Xl 

1. /* initialization phase*/ 

2. Xl  ← Null 
3. Ɵ = {1, ..., n} // Ɵ is the set of remaining groups not selected 

4. Ɵ’ = ∅ // the set of groups already selected 
5. Limit the bound on the availability of resources k (k = 1, ..., m) to 

𝑏𝑝
𝑘 =

𝑏𝑘

𝑁
  for each subset  

6. dh= constant // number of items to be exchanged from a candidate 

solution 

7. While (Ɵ’ ≠ ∅) // while there is a group not yet initialized  

8.            Select Ɵ”// Ɵ” is a randomly selected nN = n/N groups 

9.            Ɵ ← Ɵ \ Ɵ” // Ɵ = the remaining groups after the difference 

between Ɵ and Ɵ" 

10.            Ɵ' ← Ɵ' ⋃ Ɵ” // Ɵ'= the union of Ɵ' and Ɵ"  
11.            /*Solve sub-problem Ɵ” */ 

           Set xij =1 with j the item selected for group i ∈ Ɵ” having the 

lowest resource consumption, 𝑚𝑖𝑛 ∑
𝑟𝑖𝑗

𝑘

𝑏𝑘

𝑛𝑖
𝑗=1 , i ∈ {1, ..., n} 

12.            /* d random exchanges between items*/ 

13.            d = 1 
14.            While (d < dh) 

15.        Select group i randomly, i ∈ {1, .., n} 

16.        Select item j’ randomly, j' ∈ {1, .., ni }, with xij = 0 and 
j≠j’ 

17.        Check if the resource constraints are satisfied 
18.        Boolean violatedres ← false 

19.        For int k = 0 to m 

20.               Res = 0 

21.               For each group i ∈ Ɵ” 

22.                      Res = Res + 𝑟𝑖𝑗
𝑘 

23.               End For 

24.               If (Res − 𝑟𝑖𝑗
𝑘 + 𝑟𝑖𝑗′

𝑘 > 𝑏𝑝
𝑘)  

25.                   Violatedres ← true // the resource constraints are 

violated 

26.                   Break // quit loop; For int k = 0 to m 
27.              End If 

28.         End For 

29.         If (violatedres = false) // no resource constraints 
violated 

30.         xij ← 0 

31.         xij’ ← 1 
32.         Update the Xl 

33.                     End If 
34.              d = d+1 

35.  End While 

36. Return Xl 

B. Modified employed-bee phase  

This phase aims to enhance the performance of the ABC 

algorithm by obtaining superior quality solutions while 

avoiding convergence to local optima[47], [48], [77]. 

1) DISTANCE MEASURE: HAMMING DISTANCE 

In this study, we incorporated the concept of a distance 

measure to enhance the exploitation search process. 

Manipulating the distances between solutions facilitates the 

localization of relative positions of the solutions. It also offers 

flexibility of movement within the search space from the 

position of the current solution to that of another by acting on 

a predefined part of the current solution. The size of the 

manipulated part represents the distance between the current 

and newly generated solution. The distance between solutions 

reflects the degree of similarity. If the distance between the 

two solutions is small, then the solutions are similar and 

located within a neighborhood search area, whereas if the 

distance between the two solutions is large, then the solutions 

are dissimilar and localized in different search areas. 

The MABC algorithm utilizes the Hamming distance as a 

distance metric because of its simplicity and effectiveness in 

capturing the differences between two solutions based on the 

number of different bits. Specifically, in the context of the 

MMKP, the Hamming distance is adept at capturing the 

differences between two solutions based on the number of 

groups in which the corresponding items differ.  

In information theory, the Hamming distance between two 

binary strings a and b is measured by performing the XOR 

operation (a ⊕ b) and then counting the total number of ones 

in the resultant string[78]. Typically, the Hamming distance 

between two vectors a and b of the same length n is given by 

 

 

dh(𝑎, 𝑏) = ∑(𝑎𝑖

𝑛

𝑖=1

⊕ 𝑏𝑖)                (5) 

 

The solution for the MMKP is represented as a vector X of 

length n (number of groups). X is used to indicate item j with 

j ∈ {1, .., ni}, which is selected from each group i with i ∈ {1, 

.., n}. Fig. 1 illustrates the structure of solution X for an 

instance containing ten groups (n = 10) and five items (ni = 5). 
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FIGURE 1. Structure of a solution X for the multiple-choice 
multidimensional knapsack problem (MMKP). 

 

In our approach, we define the distance between two 

solutions as the number of groups in which selected items 

differ. The distance d between two solutions X and X’ of length 

n is given by 

𝑑(𝑋, X′) = ∑|𝑋[𝑖] − 𝑋′[𝑖]|                   (6)

𝑛

𝑖=1

 

𝑤𝑖𝑡ℎ {
|𝑋[𝑖] − 𝑋′[𝑖]| = 0 𝑖𝑓 𝑋[𝑖] = 𝑋′[𝑖] 

|𝑋[𝑖] − 𝑋′[𝑖]| = 1 𝑖𝑓 𝑋[𝑖] ≠ 𝑋′[𝑖]
 

 

An example of the calculation of the Hamming distance 

between the two MMKP candidate solutions is shown in Fig. 2. 
 

 

FIGURE 2. Illustration of hamming distance calculation: X→X’ = 1 step; 
X→X’’= 4 steps. 

 

The unit of the Hamming distance measure (dh) is referred 

to as a step (the number of groups in which the corresponding 

items differ). For example, if dh (s, s’) = 2, s is two steps away 

from s’. 

This approach aims to manipulate the search depth in the 

exploitation phase by expanding (selecting large steps 

between solutions) or narrowing (selecting small steps 

between solutions) the local area around the solution (Fig. 3). 

This facilitates the exchange of a set of items in a single 

iteration, and consequently helps the algorithm to quickly 

converge to promising regions of the solution space. 

Specifically, the proposed algorithm generates a candidate 

solution s’ in the neighborhood of the current solution s with 

dh (s, s’) = d steps (number of items to exchange) from the 

current solution s by performing d exchanges E (i, j, h) of d 

items satisfying xih = 1, with d new items belonging to the 

same group satisfying xij = 0. 
 

 

FIGURE 3. Exploitation process with hamming distance. 

 

Algorithm 3 presents the main steps for generating a new 

solution V from the current solution X with dh (X, V) = d. 

 

Algorithm 3: HAMMING DISTANCE ALGORITHM 

Hamming distance algorithm 

Input: current solution X 
Output: new candidate solution V 

1. dh = constant  

2. For d = 1 to dh 

3.       select item h with xih = 1 from X 
4.       select item j with xij = 0 // j and h belong to the same group 

5.       replace item h with j // a mutant solution V is generated from X 

6.       if the new solution V is feasible, then replace V with X 
7. End For 

8. Return V 

2) SURROGATE RELAXATION 

Each solution has more than one neighboring candidate 

solution. The choice of movement depends only on the 

information from the neighborhood domain of the current 

solution. Therefore, it is important to define a neighborhood 

relation between the solutions in the search space. In this 

study, the neighborhood relation was based on the surrogate 

constraint relaxation information. The surrogate relaxation 

technique is mainly used to prevent the algorithm from 

getting stuck in local optima. This involves approximating the 

original optimization problem with a simpler, relaxed 

problem that is easier to solve. By relaxing the problem, the 

algorithm can explore a larger solution space and avoid 

becoming trapped in local optima. Glover[79] proposed a 

surrogate constraint obtained by substituting the constraints of 

a problem with a single constraint to obtain approximate near-

optimal solutions for integer programming problems. Surrogate 

relaxation has been proven to be efficient in the exploitation 

of several knapsack problems[65], [80]. 

Htiouech et al.[65] used surrogate relaxation information 

according to the search direction: add move, drop move 

(infeasible solution case), or swap move (feasible solution 

case). Here, we are interested only in the swap move strategy, 

because our algorithm only deals with feasible solutions. The 

surrogate relaxation algorithm (swap move) proposed by 

Htiouech et al. continues through all groups and items in each 

group, and performs intensive mathematical tests and 

computations. Exchanges between items are performed 

whenever an improvement is detected. The algorithm stops 

only when no further improvement is possible, which making 

it computationally heavy. 
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However, in our study, the computational time was 

considered a critical measure of the quality of the obtained 

solutions. Consequently, adjustments were made to the 

surrogate relaxation method used by Htiouech et al.[65] to 

overcome its limitations in terms of time complexity. 

Therefore, in the employed-bee phase of the MABC, we 

combine the Hamming distance (local search depth control) 

and the surrogate relaxation information structure to utilize its 

solution improvement efficiency without increasing the time 

complexity of the algorithm. Thus, only dh exchanges are 

permitted in the current solution. The choice rule for 

exchanges between items is based on the information 

provided by the surrogate relaxation. 
During this step, demp exchanges are performed for each 

candidate solution (Steps 18–21 in Algorithm 4). In each 

exchange E (i, j, h), item h is selected from group i and 

replaced by item j belonging to the same group. The choice of 
the demp groups (items from the current solution to be 

exchanged) is based on the lowest ratio utility (Step 19 in 

Algorithm 4) given by 

𝑢𝑖𝑗 =
𝑣𝑖𝑗

∑
𝑟𝑖𝑗

𝑘

𝑏𝑘
𝑚
𝑘=1

 || 𝑥𝑖𝑗 = 1, 𝑖 = 1, . . , 𝑛, 𝑗 = 1, . . , 𝑛𝑖    (10) 

For each selected item with xih = 1, surrogate relaxation is 

used (Step 20 in Algorithm 4) to select a new item xij = 0 from 

the same group to maximize (11). 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 {
𝑣𝑖𝑗 𝑠𝑖𝑗⁄

𝑣𝑖ℎ 𝑠𝑖ℎ⁄
|𝑥𝑖𝑗 = 0, 𝑥𝑖ℎ = 1}    (11) 

𝑠𝑖𝑗 = ∑
𝐴𝑘

(∆𝑘)2

𝑚

𝑘=1

 𝑟𝑖𝑗
𝑘 

𝑤𝑖𝑡ℎ ∆𝑘= 𝑏𝑘 − ∑ ∑ 𝑟𝑖𝑗
𝑘  𝑥𝑖𝑗|𝑥𝑖𝑗 = 1, 𝑘 = 1, . . , 𝑚    (12)

𝑛𝑖

𝑗=1

𝑛

𝑖=1

 

𝑎𝑛𝑑 𝐴𝑘 = ∑ ∑ 𝑟𝑖𝑗
𝑘|𝑥𝑖𝑗 = 0

𝑛𝑖

𝑗=1

𝑛

𝑖=1

 

In (11), the term vij / vih represents the gain of the profit 

value, and sij / sih represents the gain in terms of the 

remaining available resources. Consequently, the choice of 

the new item j (xij = 0) to be exchanged instead of the old 

item h (xih = 1) is made to improve the quality of the solution 

in terms of the maximization of (i) profit and (ii) savings of 

aggregate resources. 
After the exchange, the decision variable xij changes from 

0 to 1, and xih changes from 1 to 0. Therefore, a new solution 

Vl is generated (Step 22 in Algorithm 4) from the current 

solution Xl (with l in {1, ..., SN}), where dh (Xl, Vl) = demp. 

A greedy selection based on the value of the objective 

function is performed between the newly generated solution 

and the current solution (Steps 23–29 in Algorithm 4). 

C. Modified onlooker-bee phase 

The probability of selecting a candidate solution in this phase 

(Steps 32–34 in Algorithm 4) is inspired by the Gbest-guided 

artificial bee colony (GABC) algorithm[81], which is given 

by 

prob𝑖 = (
0.9 ∗ fitness (𝑋𝑖)

fitnessbest

 ) + 0.1                 (13) 

where fitness (Xi) is the fitness value of the current 

solution and fitness best is the highest fitness value. 

A feasible candidate solution with relatively low nectar 

content may yield a better global solution than another 

candidate solution with higher nectar content. Therefore, the 

greedy selection between the current solution Xl and the new 

solution Vl is based on the highest fitness value computed by 

(14) instead of (9). 

fitness𝑙(𝑋𝑙) =
𝑏𝑘

∑ ∑ 𝑟𝑖𝑗
𝑘𝑛𝑖

𝑗=1
𝑛
𝑖=1

, 𝑘 = 1, . . , 𝑚, ∀ 𝑙 ∈ {1, . . , SN}          (14) 

The depth of the search is controlled using the Hamming 

distance (dh). In other words, dh = don maximum number of 

exchanges is allowed (Steps 39–42 in Algorithm 4) to obtain 

a new candidate solution Vl from the current solution Xl. 

dh  (𝑋𝑙 , 𝑉𝑙) = 𝑑𝑜𝑛 , 𝑙 ∈ {1, . . , SN}                      (15) 

For each candidate solution, don items (xij = 1) with the 

lowest profit selected using (16) (Step 40 in Algorithm 4) are 
exchanged randomly with the new item (xij = 0), thereby 

satisfying the choice constraint (Step 41 in Algorithm 4). No 

exchange is allowed, unless this leads to a feasible solution. 

min
1≤𝑖≤𝑛

1≤𝑗≤𝑛𝑖

𝑣𝑖𝑗𝑥𝑖𝑗| 𝑥𝑖𝑗 = 1                                (16) 

After don exchanges, a greedy selection between the new 

solution Vl and the current solution Xl is performed, and only 

the solution with the highest fitness value (14) is retained 

(Steps 43–50 in Algorithm 4). Equation (14) (the bound of 

the resources availability per consumed resources) ensures 

an improvement in the quality of the retained solution (neither 

the current solution Xl nor the newly generated solution Vl) 

in terms maximizing the remaining available resources, 
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which reduces the overall load on the resources during the 

subsequent iterations of the exploitation process. 

D. Modified scout-bee phase 

The employed-bee and onlooker-bee phases could be 

considered perturbation processes that aim to change the 

trajectory of the search to release the solution when it is stuck 

in a potential local optimum, and further improve the 

solution without losing the progress made by the exploitation 

process. If the solution cannot be further improved, it is 

completely re-initialized with a randomly generated new 

solution (scout bee) using the initializeSolution procedure 

(Algorithm 2) (Steps 59–64 in Algorithm 4). 

A tabu list (TL) is used in this study. This involves tracking 

recently explored solutions and temporarily excluding them 

from the search. This helps the algorithm avoid revisiting the 

same solutions repeatedly and efficiently exploring new areas 

of the solution space, thus accelerating convergence. TL is 

updated using the first-in-first-out (FIFO) strategy. Consider 

Vl as the new solution to be inserted into TL, and Xl as the 

oldest solution in the list. The TL vector is updated as follows 

TL = TL − 𝑋𝑙 +  𝑉𝑙                               (17) 

E. General approach 

Algorithm 4 presents the main steps of the MABC. The 

algorithm begins by generating the initial population (Steps 

11–15 in Algorithm 4), followed by the main loop containing 

the employed-bee, onlooker-bee, and scout-bee phases of the 

algorithm. The employed-bee (Steps 16–30 in Algorithm 4) 

and onlooker-bee (Steps 31–57 in Algorithm 4) phases aim to 

improve the quality of solutions. In the employed-bee phase, 

if the generated solution achieves a better objective value than 

the current solution, the current solution is updated. However, 

in the onlooker-bee phase, the solution with the best remaining 

resource value is retained. If a solution reaches the maximum 

for non-improvement (limit), the solution is completely reset 

by the scout bee (Steps 59–64 in Algorithm 4). The three main 

steps of the algorithm (employed-bee, onlooker-bee, and 

scout-bee phases) are repeated until the maximum number of 

cycles is reached (Step 66 in Algorithm 4). The global best 

solution is memorized in each cycle (Step 65 of the algorithm) 

and then returned to the end of the algorithm (Step 67 in 

Algorithm 4).  

The pseudo code for the proposed approach is presented in 

Algorithm 4. 

Algorithm 4: HIGH-LEVEL PSEUDO CODE FOR MABC 

MABC 
Output: BGS 

1. /*Parameter initialization*/ 

2. predefine limit  
3. predefine maxCycle  

4. predefine demp // demp=dh (Xl, Vl) is the number of exchanges used in 

the employed-bee phase 

5. predefine don // don=dh (Xl, Vl) is the number of exchanges used in 
the onlooker-bee phase 

6. TL length= SN // the TL has the same tenure as the population size 

7. For l = 1 to SN 
8.         triall ← 0  

9. End For 

10. /*Generate an initial population*/ 
11. For l ← 1 to SN 

12. Use the initializeSolution procedure (algorithm 2) to generate a 

candidate solution Xl 
13.               TLl ←Xl // initially, the TL contains the initial population  

14. End For 

15. Cycle ← 1 
16.  /* Employed-bee phase */ 

17. For l = 1 to SN 

18.         For i = 1 to demp 

19.              Select xih from Xl having the lowest uij computed using (10) 

20.              Select xij that maximizes (11) // the choice of item j is based 

on the surrogate relaxation 

21.         End For 

22. Calculate the fitness value fitness (Vl) // Vl is generated from Xl after 
demp exchanges 

23.      If f (Vl) > f (Xl) and Vl ∉ TL // f is the objective function value of 
the considered solution 

24.           Xl ← Vl  
25.           Update TL using (17) 

26.           triall ← 0 

27.      Else 
28.           triall ← triall + 1 

29.       End If 

30. End For 
31. /*Onlooker-bee phase*/ 

32. For l = 1 to SN 

33.        Calculate the probability values probl using (13) 

34.  End For 
35. t ← 1 

36. l ← 1 // set index l of the current solution at 1 with l ∈ {1, ..., SN} 
37. While (t < SN) do 

38.     If rand (0,1) < probl // rand (0,1) returns a real value between 0 
and 1 

39.     For i = 1 to don 

40.            Select xih using (16) with xih = 1 from Xl 

41.            xij ← rand (ni) with xij = 0 and j ≠ h // rand (ni) returns an 
integer between 1 and ni  

42.     End For 

43.            Calculate fitness (Vl) using (14) // Vl is the mutant of Xl after 

performing don exchanges 

44.           If fitness (Vl) > fitness (Xl) and Vl ∉ TL 

45.               Xl ← Vl 
46.               triall ← 0 

47.               Update TL using (17) 
48.           Else 

49.               triall ← traill + 1  

50.           End If 
51.      t ← t + 1                 

52.      l ← l + 1 

53.      If l = SN 
54.          l ← 1 

55.      End If 

56.     End If rand (0,1) < probl   
57.  End While 

58. /*The scout phase*/ 

59. For l = 1 to SN 
60.         If (triall = limit)  

61.           Generate a new solution Xl using (algorithm 2) 

62.           Update TL using (17) 
63.         End If 

64.       End For 

65.       Memorize the BGS 
66. Until Cycle = maxCycle  

67. Return BGS  
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The computational complexity of the MABC algorithm was 

determined by evaluating the worst-case time complexity of 

each component. The time complexity of the MABC 

algorithm was estimated to be O((demp+don)×ni×m).  

 

IV. COMPUTATIONAL RESULTS 

This section assesses the performance of the MABC 

algorithm. 

A. Problem instances 
TABLE I 

DETAILS OF E1(I01 – I20) AND E2 (INST01 – INST20) 

Instance n ni m N 

I07 100 10 10 1000 

I08 150 10 10 1500 

I09 200 10 10 2000 

I10 250 10 10 2500 

I11 300 10 10 3000 
I12 350 10 10 3500 

I13 400 10 10 4000 

INST01 50 10 10 500 
INST02 50 10 10 500 

INST03 60 10 10 600 

INST04 70 10 10 700 
INST05 75 10 10 750 

INST06 75 10 10 750 

INST07 80 10 10 800 
INST08 80 10 10 800 

INST09 80 10 10 800 

INST10 90 10 10 900 
INST11 90 10 10 900 

INST12 100 10 10 1000 

INST13 100 30 10 3000 
INST14 150 30 10 4500 

INST15 180 30 10 5400 

INST16 200 30 10 6000 
INST17 250 30 10 7500 

INST18 280 20 10 5600 

INST19 300 20 10 6000 
INST20 350 20 10 7000 

We experimentally examined the algorithms on two sets 

of benchmark instances: E1 (I07 – I13) proposed by 

Khan[52], and E2 (INST01 – INST20) proposed by Hifi et 

al.[57]. The instances (I01–I06) are known to be easily 

solvable in the literature. Hence, this study focused on the 

most difficult and large instances (E1 and E2). 

All the benchmarks are available from the MMKP 

benchmarks website[82]. 

The first set contained 7 instances (I07–I13), and the 

number of groups in each instance varied between 100 and 

400. Each group contained 10 items. Therefore, the number of 

decision variables ranges from 1000 to 4000. The second set 

contains 20 instances (INST01–INST20). The number of 

items in each group varied from 10 to 30 and the number of 

groups ranged from 50 to 400. Therefore, the total number of 

items in each instance of the second set varied from 500 to 

7500. 

All benchmarks are characterized by their common 

dimensionality size m = 10, n indicates the number of groups, 

and ni indicates the size of group i. The details of these 

instances are summarized in Table I. 

 The best results are obtained using the following 

parameters 

 maxCycle = 20  

 limit = 5  

 TL length = SN 

 demp = n / ni: Hamming distance (number of allowed 

exchanges) used in the employed-bee phase. 
 don = ni: hamming distance onlooker-bee phase 

B. Performance of MABC 

In this section, we compare the convergence performance of 

our proposed MABC algorithm, which includes surrogate 

relaxation, Hamming distance, and tabu list, with its basic 

version, BABC, which does not use these techniques. The 

objective of this comparative analysis is to demonstrate the 

favorable impact of these additional techniques on the 

convergence performance of the MABC algorithm.  

Table II provides the detailed results for both algorithms for 

the two sets of instances. Column 2 shows the CPLEX 

solution. Columns 3 and 4 display the solutions obtained (Obj) 

by the BABC and its computational time (CPU), respectively, 

whereas columns 5 and 6 display the results for the MABC. 

Column 7 shows the deviation between the results of the two 

algorithms, given by 

 

%dev = (1 −
BABCMMKP

MABCMMKP
) × 100                (18)  

Columns 8 and 9 present the solutions obtained for the 

MABC when maxCycle was set to 2000.  The best 

computational times and objective function values for the two 

algorithms are highlighted in bold. 

The results in Table II indicate that BABC provides 

acceptable results within a short average computational time. 

The MABC attained better solutions than the BABC with 

shorter computational times. Therefore, MABC improves the 

instances by an average of 4.6% with a shorter execution time 

(a total of 3.46 s against 10.11 s). Evidently, the improvements 

in the results are due to modifications of the BABC to enhance 

its performance. Table II shows the good quality of the 

solutions provided by both BABC and MABC (7% on average 

for BABC and 2.4% on average for MABC over the quality of 

the solutions provided by CPLEX); the computational times 

for both algorithms are very low (0.1 s and 0.3 s on average for 

each instance for BABC and MABC, respectively), which 

proves that both the algorithms are very fast and adequate for 

real-time and critical-time problems. On average, the quality 

of the solutions generated by the MABC algorithm is 4.6% 

higher than that generated by the BABC algorithm. This 

improvement is ascribed to the modifications made during the 
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TABLE II 
COMPARISON BETWEEN BABC AND MABC 

 

Instance CPLEX BABC MABC % DEV MABC2000 

  Obj CPU Obj CPU  OBJ CPU 

I07 24,595 23106 0.152 24006 0.07 4 24050 5.08 

I08 36,884 34724 0.106 36034 0.1 4 36189 8.65 

I09 49,176 46538 0.147 48009 0.2 3 48200 15.53 

I10 61,475 57965 0.131 60075 0.3 4 60311 29.55 

I11 73,783 69872 0.13 72115 0.4 3 72456 36.37 

I12 86,091 81109 0.14 84933 0.5 5 84583 55.02 

I13 98,437 92473 0.164 96203 0.6 4 96675 63.98 

INST01 10738 9682 0.019 10391 0.01 7 10266 1.69 

INST02 13598 12440 0.02 13273 0.02 6 13289 1.83 

INST03 10946 10252 0.406 10509 0.024 2 10588 3.91 

INST04 14449 12751 0.315 13980 0.04 9 13984 5.27 

INST05 17059 16077 0.026 16478 0.04 2 16511 3.42 

INST06 16835 15858 0.026 16269 0.03 3 16300 4.08 

INST07 16444 14872 0.058 15901 0.04 6 15741 4.99 

INST08 17507 16335 0.029 16946 0.04 4 16993 3.86 

INST09 17759 16701 0.028 17135 0.04 3 17215 3.22 

INST10 19307 17259 0.035 18645 0.05 7 18694 3.94 

INST11 19441 17336 0.037 18729 0.05 7 18732 4.20 

INST12 21731 19573 0.034 20997 0.06 7 21023 4.92 

INST13 21577 20140 0.107 20942 0.2 4 20946 22.23 

INST14 32871 30412 0.132 31875 0.5 5 31878 46.13 

INST15 39160 36373 0.162 37985 0.7 4 38031 54.38 

INST16 43364 40303 0.181 42198 0.9 4 42234 82.36 

INST17 54360 50198 0.23 52746 1.3 5 52747 105.39 

INST18 60465 56356 0.187 58727 0.9 4 58787 64.82 

INST19 64929 60366 0.223 63246 1.3 5 63256 53.47 

INST20 75616 70363 0.238 73538 1.7 4 73608 68.43 

Average   0.128  0.37 4.6   

Sum   3.46  10.11   756.72 

different phases of the basic version (utility ratio, surrogate 

relaxation, random exchanges, Hamming distance, TL, 

etc.).For the same limit parameter value, a higher maxCycle 

parameter value (maxCycle = 50) was set for the BABC. 

However, the computational time for the BABC algorithm 

was found to be (slightly) lower than that for the MABC 

algorithm. This can be ascribed to the fact that, in the BABC, 

only one item is exchanged randomly in the employed-bee and 

onlooker-bee phases. Therefore, the number of loops and 

mathematical computations were lower. Finally, we can 

conclude that the modified version achieved an improvement 

of almost 4.6% over the basic version, without any additional 

computational time. 

Furthermore, different configuration parameters may 

provide better solution quality. However, this often leads to a 

significantly longer CPU time. Column 8 shows a deviation of 

0.21% in the quality of the solutions obtained when the 

maxCycle was changed from 20 to 20×100 = 2000. The CPU 

time increased from less than 10 s for all instances to 756 s. 

The set of values chosen in our experiment showed an 

acceptable trade-off between the quality of the objective 

function and the required computational time. 

 
C. Further analysis of MABC behavior 

In this study, we conducted a sensitivity analysis of two crucial 

parameters, maxCycle and limit, to analyze the behavior of the 

MABC algorithm. First, we set the limit parameter to a 

predetermined value and varied the maxCycle parameter. 

Then, we fixed the maxCycle parameter and varied the limit 

parameter to evaluate the impact of each parameter on the 

performance of the algorithm. Through this approach, we 

gained insight into the optimal values of these parameters to 

achieve an efficient and effective optimization.  

 

FIGURE 4. Solution rate evolution of MABC. 
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Fig. 4 provides a closer view of the behavior of the MABC 

by illustrating the evolution of the quality of solutions over 

time (I13 as an example). The figure demonstrates a 

continuous gradual improvement in the quality of the solutions 

over the cycles until it reaches a maximum (stagnation phase). 

When the threshold for the number of non-improvement (limit 

parameter) times is reached, the solution is discontinued and 

replaced by a new randomly chosen solution. This explains the 

sudden drop in the quality of solutions (orange lines). 

 

 

 

FIGURE 5. Behavior of MABC for instance 20 when varying maxCycle 
with the limit set at 5. 

 

Fig. 5 shows the behavior of MABC when fixing the limit 

parameter value and varying the maxCycle parameter value 

for instance 20. It is clear from the figure that the objective 

function value of the obtained solutions gradually increases by 

2.7% from maxCycle 1 to 19 (41% improvement in total), 

until it becomes almost constant at 20. This significant 

improvement requires almost no extra-computation time (less 

than 0.1 ms in each cycle). 

 

 

FIGURE 6. Fig. 6. Behavior of MABC for instance 20 when varying 
the limit and maxCycle set at 100. 

 

Fig. 6 shows the sensitivity of the limit parameter to the 

quality of the obtained solution by setting the maxCycle 

parameter value and varying only the limit parameter for 

INST20. The sensitivity of the limit parameter variation 

becomes detectable only with a large number of cycles 

(maxCycle = 100 in this case) and a significant separation 

interval between the values of the limit parameter (intervals of 

40, 50, and 100 in this case). Fig. 6 shows that when the limit 

value is relatively low (the solution quickly reaches the re-

initialization threshold), the execution time becomes 

considerable (26 s for limit = 2 and maxCycle = 100), whereas 

by increasing the value of the limit, the execution time 

decreases gradually (until waiting for 11 s in this case). The 

decrease in CPU time is accompanied by a slight decrease in 

the quality of the objective function because the more the 

value of the limit parameter increases, the less the 

reinitialization phase (scout-bee phase) is executed, and 

consequently, the running time will be reduced (and vice 

versa). 

D. Comparative study 

In this subsection, we compare the results of the MABC with 

those of state-of-the-art algorithms. 

We implemented MABC in Java JDK version 8, and all the 

reported computational experiments were conducted on a PC 

with a 2.30-GHz Intel i5 CPU. 

Table III presents the results of our approach, compared to 

the results of six approaches from the literature, namely RLS: 

reactive local search-based algorithm[57], ALMMKP: ACO 

approach[63], PEGF-PERC: two variants of the reduce and 

solve approach[54], TIKS-TIKS2: two variants of the two-

phase iterative kernel search approach[74] and D-QPSO: 

Diversity reserved quantum particle swarm optimization 

approach[68]. The details of the running configurations of all 

these state-of-the-art algorithms, except those of ALMMKP 

(not reported), are presented next. 

RLS: The algorithms were coded in C++ and tested on an 

Ultra-Sparc10 250 Mhz.  

PEGF-PERC: The algorithms were executed on an Intel 

Xeon 2.83 GHz E5440 CPU and CPLEX 12.4. Two variants, 

PEGF and PERC, were proposed and the best results obtained 

are presented in Table III. 

TIKS and TIKS2: The algorithms were coded in Java 8 and 

Gurobi 9.0 is used as an MILP solver. The tests were executed 

on an Intel Core I7-5930K 3.5 GHz processor. TIKS has a 

1200 s time limit using six cores and TIKS2 has a 3600 s time 

limit using two cores on the machine. 

D-QPSO: The algorithm was coded in MATLAB, run on 

an Intel Core 2 2.66GHz and tested only on the E1 benchmark 

set. 

To enable comparisons between the best results, Table III 

presents the best objective function value and the minimal 

running time produced by our algorithm within 100 trials 

using different random seeds for each instance.
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TABLE III 

COMPARISON OF MABC WITH STATE-OF-THE-ART ALGORITHMS 

 

Instance CPLEX MRLS HIFI ALMMKP PEGF-PERC 
TIKS 

(6 CORES) 

TIKS2 

(2 CORES) 
D-QPSO MABC 

  Obj CPU Obj CPU OBJ CPU OBJ CPU OBJ CPU OBJ CPU OBJ CPU % MAX 

I07 24.595 24587 37 24557 3.125 24.590 75 24595 1200 24595 3600 24162 ≈38 24006 0.07 2 

I08 36.884 36877 37 36869 5.579 36.892 74 36895 1200 36894 3600 36403 ≈50 36034 0.1 2 

I09 49.176 49167 25 49156 6.815 49.181 393 49188 1200 49189 3600 48331 ≈50 48009 0.2 2 

I10 61.475 61437 47 61457 9.07 61.473 144 61481 1200 61480 3600 60432 ≈100 60075 0.3 2 

I11 73.783 73773 41 73775 10.506 73.787 205 73792 1200 73791 3600 72951 ≈143 72115 0.4 2 

I12 86.091 86069 42 86063 12.711 86.090 206 86095 1200 86095 3600 84890 ≈170 84933 0.5 1 

I13 98.437 98429 160 98420 14.933 98.436 212 98443 1200 98443 3600 97201 ≈220 96203 0.6 2 

INST01 10738 10714 10 10702 1.829 10.738 97 10738 1200 10738 3600 - - 10391 0.01 3 

INST02 13598 13598 76 13591 1.275 13.598 38 13598 1200 13598 3600 - - 13273 0.02 2 

INST03 10946 10943 58 10922 3.265 10.947 7 10955 1200 10955 3600 - - 10509 0.024 3 

INST04 14449 14429 8 14441 3.772 14.447 121 14457 1200 14456 3600 - - 13980 0.04 3 

INST05 17059 17053 42 17032 3.603 17.055 127 17061 1200 17065 3600 - - 16478 0.04 3 

INST06 16835 16823 50 16807 3.454 16.832 76 16845 1200 16838 3600 - - 16269 0.03 3 

INST07 16444 16423 65 16406 4.343 16.440 241 16442 1200 16444 3600 - - 15901 0.04 3 

INST08 17507 17506 27 17485 3.516 17.503 20 17518 1200 17518 3600 - - 16946 0.04 3 

INST09 17759 17754 51 17724 3.251 17.760 124 17762 1200 17762 3600 - - 17135 0.04 3 

INST10 19307 19314 32 19281 4.983 19.314 275 19320 1200 19318 3600 - - 18645 0.05 3 

INST11 19441 19431 111 19422 4.28 19.437 114 19449 1200 19449 3600 - - 18729 0.05 3 

INST12 21731 21730 23 21706 3.829 21.738 4 21744 1200 21743 3600 - - 20997 0.06 3 

INST13 21577 21569 18 21573 6.862 21.575 15 21580 1200 21580 3600 - - 20942 0.2 2 

INST14 32871 32869 72 32873 12.037 32.873 209 32874 1200 32875 3600 - - 31875 0.5 3 

INST15 39160 39148 63 39155 19.317 39.161 146 39165 1200 39165 3600 - - 37985 0.7 3 

INST16 43364 43354 194 43361 23.532 43.367 98 43366 1200 43366 3600 - - 42198 0.9 2 

INST17 54360 54349 30 54356 41.406 54.360 50 54362 1200 54362 3600 - - 52746 1.3 2 

INST18 60465 60456 201 60458 22.782 60.466 22 60469 1200 60468 3600 - - 58727 0.9 2 

INST19 64929 64921 45 64925 26.866 64.932 150 64931 1200 64933 3600 - - 63246 1.3 2 

INST20 75616 75603 47 75611 40.102 75.614 51 75617 1200 75616 3600 - - 73538 1.7 2 

Average   37  11.53  122  1200  3600    0.37 2.4 

Sum   915  293.92  3219  32 400  97 200    10.11  
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Note that different trials yielded slightly different results, 

with deviations in the range of 0.1–1.5% in the quality of the 

obtained solutions. Additionally, the best solutions obtained 

with CPLEX 12.9 within a time limit of 3600 s are reported. 

Most heuristic comparisons in the literature are based on the 

objective function values. However, it is not fair to assess 

algorithms by comparing only the best reported solutions. 

Nevertheless, to facilitate an objective comparison between 

the computation times of the methods cited earlier, they must 

be run on the same platform and configuration. Because these 

algorithms are not available, this is not possible. 

Therefore, our comparative study included both 

computational time and objective function values to better 

evaluate the performance of our algorithm. The best 

computational times and objective function values for the 

state-of-art algorithms, cited in table III, are highlighted in 

bold. The last column indicates the percentage of solutions 

achieved by our algorithm compared to the best objective 

function value from the literature. Finally, the last two rows of 

Table III, labeled as “Average” and “Sum,” report the runtime 

average and runtime sum, respectively, of all the solutions 

over all the instances realized by each of the considered 

methods. 

The quality of the solutions generated by the MABC is 

evaluated against the CPLEX solutions in Table III, showing 

an average similarity of nearly 2%. This indicates that the 

MABC produces high-quality solutions that are close to the 

optimal solutions obtained by CPLEX. Our algorithm 

demonstrated a significantly improved runtime compared to 

other algorithms. In comparison to the fastest algorithm 

(ALMMKP) cited in Table III, which recorded an average 

runtime of 11.5 s per solution and a total runtime of 294 s for 

all instances, our algorithm exhibited an average runtime of 

0.37 s per solution and a total runtime of 10.11 s for all 

solutions. Consequently, our algorithm, MABC, resulted in a 

time saving of more than 283 s for all instances when 

compared to the fastest algorithm from the literature 

(ALMMKP). Moreover, for the largest instance, INST17 

(7500 variables), MABC provides a value close to 2%, similar 

to the best solution in less than 2 s (1.3 s). 

To further illustrate the significance of the results obtained 

from the proposed MABC algorithm compared with those of 

other state-of-the-art algorithms (RLS, ALMMKP, PEGF-

PERC, and TIKS), we performed a Kruskal-Wallis test, which 

is a nonparametric statistical test that compares the median 

values of independent groups based on the ranks of the 

observations. The test output provides the p-value and H 

statistic, where the former measures the probability of 

observing the data if the null hypothesis (no differences 

between the groups being compared) is true, and the latter 

measures the overall difference among the medians of the 

groups being compared.  

We applied the Kruskal-Wallis test on two levels: the 

objective function value and CPU. For the objective function 

value, the H statistic was 0.31506, with a p-value of 0.98882, 

indicating no significant difference among the medians of the 

groups being compared. This suggests that there is no 

significant difference between the objective function values of 

the solutions obtained by the MABC algorithm and those 

obtained by the other state-of-the-art algorithms. 

For CPU, the H statistic was 84.90850 and the p-value was 

0, indicating strong evidence to reject the null hypothesis of 

equal medians among the compared groups. Thus, we can 

conclude that there is a significant difference in the CPU 

performance of the MABC algorithm compared with other 

state-of-the-art algorithms. 

V. Conclusion 

In this study, we developed a new approach (MABC) to solve 

the MMKP problem based on the ABC algorithm combined 

with surrogate relaxation, Hamming distance, and tabu list. 

The proposed method was validated using 27 benchmark 

instances. The experimental results verified that MABC 

generated competitive results (2.4% proximity to CPLEX 

solutions) within very short computational time (in 

milliseconds).  

The Kruskal-Wallis test was used to compare the 

performance of the MABC algorithm with that of other state-

of-the-art algorithms in terms of objective function value and 

CPU efficiency. Statistical analysis revealed no statistically 

significant difference between the objective function values 

obtained by the MABC algorithm and the other algorithms (H 

= 0.31506, p = 0.98882). However, for CPU performance, the 

Kruskal-Wallis test demonstrated a statistically significant 

difference between the MABC algorithm and the other 

algorithms (H = 84.90850, p = 0). Thus, it can be concluded 

that the MABC algorithm has a significantly different CPU 

efficiency compared with other state-of-the-art algorithms, 

with very short execution times. 

However, increasing the parameter configuration values 

(limit and maxCycle parameters) may improve the quality of 

the obtained solutions, but with a significant computational 

time cost. Therefore, using the Hamming distance during the 

exploitation process to limit the local search to a finite number 

of groups (items) significantly reduces the time complexity of 

the algorithm. However, this may lead to a loss of information.  

Therefore, the MABC algorithm is effective for solving 

optimization problems with complex constraints and 

objective functions. Nevertheless, the performance of the 

algorithm may depend on the selection of parameters, and it 

may not be suitable for problems requiring high precision or 

a large number of variables. 

In future work, we aim to improve the quality of the 

obtained solutions without increasing the computational 

weight of the algorithm. This study was restricted to feasible 

exchanges between items. Thus, complex moves that traverse 

the solutions from the feasible search space to the infeasible 

space, and vice versa, can be examined. In addition, a 

systematic empirical study on the general swarm intelligence 

performance (including that of ABC and ant colony) can be 
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conducted to achieve an efficient and consistent solution 

quality for the MMKP. 
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