

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Modified Artificial Bee Colony Algorithm for
Multiple-Choice Multidimensional Knapsack
Problem

ARIJ MKAOUAR1, SKANDER HTIOUECH2,3, AND HABIB CHABCHOUB4
1OLID Laboratory, ISGIS, University of Sfax, BP 1164, 3021, Sfax, Tunisia
2CS and AI department, University of Jeddah, 21959, Jeddah, Saudi Arabia
3DES Research Unit, Faculty of Sciences of Sfax, University of Sfax, BP 1171-3000, Sfax, Tunisia
4College of Business, Al Ain University, P.O.Box: 112612, Abu Dhabi, UAE

Corresponding author: Arij Mkaouar (arij.mkaouar@yahoo.fr).

ABSTRACT The multiple-choice multidimensional knapsack problem (MMKP) is a well-known NP-hard

problem that has many real-time applications. However, owing to its complexity, finding computationally

efficient solutions for the MMKP remains a challenging task. In this study, we propose a Modified Artificial

Bee Colony algorithm (MABC) to solve the MMKP. The MABC employs surrogate relaxation, Hamming

distance, and a tabu list to enhance the local search process and exploit neighborhood information. We

evaluated the performance of the MABC on standard benchmark instances and compared it with several state-

of-the-art algorithms, including RLS, ALMMKP, ACO, PEGF-PERC, TIKS-TIKS2 and D-QPSO. The

experimental results reveal that MABC produces highly competitive solutions in terms of the best solutions

found, achieving approximately 2% of the optimal solutions with trivial (milliseconds) CPU time. The

Kruskal-Wallis test revealed that there was no statistically significant difference in the objective function

values between the MABC algorithm and other state-of-the-art algorithms (H = 0.31506, p = 0.98882).

However, for CPU efficiency, the test showed a statistically significant difference (H = 84.90850, p = 0),

indicating that the MABC algorithm exhibited significantly better CPU efficiency (with shorter execution

times) than the other algorithms did. Along with these findings, the ease of implementation of the algorithm

and the small number of control parameters make our approach highly adaptive for large-scale real-time

systems.

INDEX TERMS Artificial bee colony algorithm, multiple-choice multidimensional knapsack problem,

hamming distance, surrogate relaxation.

I. INTRODUCTION

The MMKP is a generalization of the classical knapsack

problem (KP)[1]. It is significant because it can model a

wide range of real-time applications such as resource

allocation[2], intelligent transportation systems[3],

logistics[4], quality of service (QoS)[5], [6], web service

composition[7], Energy-Efficient Offloading in Mobile

Edge Computing[8], medicine[9], budgeting problems[10],

hardware design[11], and cloud computing[12].

Formally, the MMKP can be expressed as a set of items

divided into n disjoint groups and an m-dimensional resource

constraint represented by the vector of resource availability

𝑏𝑘 = {𝑏1, … , 𝑏𝑚}. Item j in group i has a non-negative profit

value vij and consumes a certain amount 𝑟𝑖𝑗
𝑘 of resource k (k =

1, …, m). The decision variable xij = 1 if item j from class i is

selected and xij = 0 otherwise. The MMKP is then defined as

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑣𝑖𝑗𝑥𝑖𝑗

𝑛𝑖

𝑗=1

𝑛

𝑖=1

 (1)

𝑠. 𝑡. ∑ ∑ 𝑟𝑖𝑗
𝑘𝑥𝑖𝑗

𝑛𝑖

𝑗=1

𝑛

𝑖=1

≤ 𝑏𝑘, 𝑘 = 1, … , 𝑚 (2)

∑ 𝑥𝑖𝑗

𝑛𝑖

𝑗=1

= 1, 𝑖 = 1, … , 𝑛 (3)

𝑥𝑖𝑗 ∈ {0,1}, 𝑖 = 1, . . , 𝑛, 𝑗 = 1, . . , 𝑛𝑖 (4)

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-
Choice Multidimensional Knapsack Problem

2 VOLUME XX, 2017

As a variant of the classical KP, the MMKP can be

considered as a combination of two challenging problems: the

multidimensional knapsack problem (MKP)[13] and the

multi-choice knapsack problem (MCKP)[14]. It involves a

linear objective function under two types of linear constraints:

(2) and (3). The first is a multidimensional constraint and the

second is a choice constraint. If constraint (3), which limits

each group to a single item, is relaxed, the problem is reduced

to MKP[15]. Constraint (2) guarantees that the knapsack

capacities are respected, and if the resource constraint is

relaxed to a single dimension (m = 1), the problem is reduced

to an MCKP[16].

The MMKP has a potentially wide range of practical

applications. However, developing an efficient and

effective algorithm for the problem is challenging because

it is an NP-hard problem[17] as it is not trivial to find even

a feasible solution within polynomial runtime complexity,

particularly for large-scale problems.

NP-hard problems have numerous local minima that can be

challenging to escape. This is further aggravated by the

cycling phenomenon, wherein the algorithm repeatedly visits

a candidate solution, thereby wasting time and causing it to

fall into a local optimum.

Recently, metaheuristics based on nature-inspired

algorithms have gained attention as a solution to the MMKP

and other complex optimization problems. These algorithms

are inspired by the behavior and decision-making processes of

natural systems, such as the genetic algorithm (GA)[18],

particle-swarm optimization (PSO)[19], ant colony

optimization (ACO)[20], [21], biogeography-based

optimization (BBO)[22], harmony search (HS)[23], and

artificial bee colony (ABC) algorithm[24]. By combining

metaheuristics with mathematical optimization techniques,

they can effectively solve complex optimization problems and

produce near-optimal solutions.

The use of metaheuristics based on nature-inspired

algorithms in practical problems highlights the importance

and potential of these algorithms for real-world

applications. These algorithms can effectively and

efficiently solve complex optimization problems, making

them useful in various fields[25], [26].

 Since its invention by Karaboga[24], the ABC algorithm

has received increasing attention owing to its flexibility,

simplicity of employment, and small number of control

parameters[27]. Compared to other evolutionary

algorithms, the ABC algorithm can escape local

optima[28], [29] in several real-world problems[30]–[32]

and is widely used in the field of combinatorial

optimization problems[33] such as traveling salesman[34],

vehicle routing[35], [36], graph coloring[37], team

orienteering[38], bioinformatics[39], web service

composition[40], social network analysis[41],

timetabling[42]–[44], controller design[45], and image

processing[46].

The ABC algorithm contains three main phases:

employed-bee, onlooker-bee, and scout-bee. The employed-

bee and onlooker-bee phases are dedicated to the exploitation

of the search space, whereas the scout-bee phase is dedicated

to the exploration of the search space. The exploration

strategy of the ABC algorithm, which is based on a

stochastic pattern search process, delivers excellent

performance. However, similar to other evolutionary

algorithms, it encounters performance challenges during

the exploitation process[47].

The deficiencies in the ABC exploitation process are

caused by several factors. In the employed-bee phase, the

local search process is related to neighborhood information,

which limits the efficiency of the exploitation process

owing to the restricted information that a neighborhood can

offer. A similar drawback affects the onlooker-bee, because

the same structure is applied in the onlooker-bee phase.

Furthermore, the fitness structure used in ABC maintains

only food sources with high amounts of nectar; however,

low-nectar solutions may also contain useful information.

These factors lead to an imbalance between exploitation

and exploration in the search process, causing delayed

convergence and falling into a local optima[48].

In this study, we propose a Modified Artificial Bee

Colony (MABC) algorithm to solve the MMKP based on

the ABC algorithm. The MABC algorithm improves the

performance of the ABC algorithm by integrating three

distinct techniques, namely, surrogate relaxation,

Hamming distance, and tabu list, to handle the

combinatorial nature of the problem, increase population

diversity, and facilitate faster convergence to find near-

optimal solutions within a short computational time. The

MABC algorithm adopts the Hamming distance to measure

the dissimilarity between candidate solutions, which is

defined as the number of positions (groups) at which two

solutions differ. The algorithm employs a stochastic

selection process to generate new solutions within a

predefined Hamming distance from the current solutions.

This approach improves the population diversity, thereby

avoiding convergence to local optima. Furthermore, the

MABC algorithm employs a surrogate relaxation approach

to address the combinatorial nature of the MMKP problem.

By combining surrogate relaxation with Hamming distance

techniques, the MABC algorithm aims to accelerate the

convergence and find near-optimal solutions in reduced

computational time. Finally, the MABC algorithm

integrates a tabu list that monitors the recently visited

solutions, thereby preventing the algorithm from revisiting

them. This technique enhances the exploration of the

solution space and assists in avoiding the local optima.

The approach was validated on standard benchmark

problem instances and compared with several state-of-the-

art algorithms in literature.

The remainder of this paper is organized as follows.

Section 2 presents a brief review of the relevant literature.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-
Choice Multidimensional Knapsack Problem

3 VOLUME XX, 2017

We describe our MABC algorithm in Section 3. Section 4

presents and discusses the extensive computational results

obtained for the known benchmark problems. Finally,

Section 5 concludes the study.

II. LITERATURE REVIEW

MMKP is strongly constrained and NP-hard[49].

Consequently, the search space grows exponentially with the

problem size[17], which renders scanning highly difficult or

even impossible in practice, despite advancements in

computer technologies. In particular, it is challenging to

identify a good solution quality without falling into a local

optimum when scanning most of the search space.

Several exact approaches have been proposed to solve the

MMKP problem[50]–[52] most of which use a branch-and-

bound algorithm. Khan[52] suggested a combination of a

branch-and-bound algorithm and linear programming.

Sbihi[51] described an exact branch-and-bound algorithm

that explores the search tree using the best-first strategy. In

this approach, the upper bounds of the objective function are

computed by reducing multiple dimensions to one and

transforming the problem into an MCKP problem. Hence, the

computational results reported in Sbihi[51] indicate that the

algorithm outperformed Khan’s approach[52]. Razzazi and

Ghasemi[53] used a more powerful branch-and-bound

scheme based on a depth-first strategy to explore the search

tree. They calculated the upper bounds using the surrogate

relaxation of the problem. Their algorithm provides better

results than those of Sbihi[51]. Ghasemi and Razzazi[50]

developed an exact algorithm based on an approximate core

to solve MMKP. They obtained promising results with up to

five knapsack constraints and 1000 items.

Nevertheless, exact approaches can only deal with

problems of a limited size (n = 100 and m = 10)[54]. For real-

time decisions, exact algorithms are not feasible owing to

their complexity and requirement of a fast system response.

Therefore, approximation algorithms are viable options for

solving the MMKP, particularly in cases where a precise

optimal solution is not required and computational time is a

significant constraint.

For larger instances, several heuristics have been proposed

to determine near-optimal solutions within acceptable

computation time[54]. In 1997, Moser et al.[55] introduced

the first heuristic algorithm for resolving the MMKP based

on Lagrangian relaxation and repetitive permutation. The

approach was subsequently improved by Akbar et al.[56].

Further, Hifi et al.[57] used a reactive local search (RLS)

and a modified reactive local search (MRLS), which yielded

better results than those of Moser et al.[55]. Cherfi and Hifi

[58] proposed a hybrid algorithm combining local branching

with column generation, which outperformed all previous

approaches.

Combinations of linear programming relaxation and other

techniques are often used in MMKP algorithms to solve the

reduced problem[59]–[61]. Cherfi[62] extended the approach

proposed by Cherfi and Hifi[58] to improve the quality of

solutions by combining column generation techniques and

local search. Ren and Feng[63] presented an ACO approach

following the scheme of a max-min ant system to solve the

MMKP problem. Crévits et al.[64] introduced a semi-

continuous relaxation approach to solve the MMKP. In their

approach, relaxation is used at each iteration to generate an

upper bound and then create a sub-problem that can be solved

to find a lower bound. Pseudo cuts are also produced to

prevent falls into the local optima.

Mansi et al.[60] described another hybrid approach based

on iterative relaxation that applies new cuts to generate a

reduced problem and a reformulation procedure. Additionally,

Htiouech et al.[65] used a surrogate constraint combined

with an oscillation method to solve the MMKP. Subsequently,

Htiouech and Alzaidi[66] divided the MMKP into small sub-

problems and used an agent-based approach to solve the

reduced problem. Xia et al.[67] proposed a first-level tabu

search algorithm. Their proposed algorithm performs fairly

well compared with legacy heuristic approaches.

Gao et al.[61] described a new iterative pseudo-gap

enumeration based on a new family of pseudo-cuts resulting

from the reduced cost constraint of non-basic variables. Dong

et al.[68] proposed an enhanced quantum particle swarm

optimization algorithm for MMKP that prioritizes effective

genes and reserves particles with greater revolutionary

potential. The algorithm employs a mutation based on elite

genes to prevent local optimization when the population

diversity decreases.

Caserta et al.[69] defined a primary mathematical model

for solving the MMKP. Their model addresses complex

system reliability and uses a new robust formulation

characterized by second-order cone programs. In this model,

the resource consumption values of items are

nondeterministic. The authors demonstrated the ability to

convert a nondeterministic MMKP into an integer linear

program without extra complexity. Mkaouar et al.[70]

developed an algorithm that uses the ABC algorithm to

resolve the MMKP. Their proposed algorithm, inspired by the

general behavior of the honeybee swarm, provided better

quality solutions for medium and large scale instances

compared to other reported approaches.

Mansini and Zanotti[71] proposed a new approach for

solving this problem. The method solves sub-problems of

increasing size using a recursive variable fixing process until

an optimality condition is satisfied. Syarif et al.[72] analyzed

three different GA and evaluated the performance of several

heuristic algorithm approaches to solve the MMKP.

Yang et al.[73] applied a memetic algorithm to the MMKP.

The authors designed a repair heuristic based on a tendency

function with human experience through experiments using

genetic algorithms. Lamanna et al.[74] provided a new

variant of the heuristic framework kernel search applied to the

MMKP. Dellinger et al.[75] proposed simple strategies that

generate bounded solutions for the MMKP.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-
Choice Multidimensional Knapsack Problem

4 VOLUME XX, 2017

Despite the existence of several exact and approximate

heuristic algorithms for solving the MMKP, new algorithms

must be developed. This is for several reasons, including the

fact that the MMKP is an NP-hard problem, meaning that

obtaining exact solutions for large problem instances is a

difficult task. Moreover, many existing algorithms are

computationally intensive and require considerable

computational time to provide the best possible solutions,

particularly for large problems. The computational time

required to solve the MMKP problem can be reduced by

developing more efficient algorithms. Finally, new

algorithms may need to be developed to handle new

constraints, objectives, or uncertainties or to adapt to new

problem instances or settings, which may require more

flexible and adaptable solutions.

Despite the diversity of methods used in research on the

MMKP, none of the methods have leveraged dissimilarity

and similarity measures between solutions. Such a measure

can be highly valuable because it provides numeric values

quantifying the relative positions (distances) of solutions with

respect to each other in the search space. Therefore, this

concept can provide significant flexibility for the algorithm to

jump from one current local search area to another, and

consequently explore several different zones of the search

space.

III. MABC

To the best of our knowledge, the ABC algorithm has not yet

been used for the MMKP, except in the study by Mkaouar et

al. [70] that presents an algorithm inspired by the general

behavior of a honeybee swarm. However, this study represents

the different phases of the ABC algorithm for the MMKP.

The ABC algorithm was first proposed by Karaboga[24] to

solve continuous and discrete problems. Subsequently,

Karaboga and Basturk[28] compared the performance of the

ABC algorithm to that of the GA, differential evolution (DE),

PSO, and evolutionary algorithm (EA), and tested them using

five multidimensional numerical test problems. The

experimental results show that ABC escaped falling into a

local minimum, was more proficient for multivariable and

multimodal function optimization, and outperformed DE,

PSO, and EA[28], [29].

The ABC algorithm simulates the intelligent comportment

of a honeybee swarm while probing for a food source

(solution). In an ABC, a potential solution for the considered

problem is a symbol of a food source, and the quality of this

solution depicts the quantity of nectar in this food source. ABC

adopts a colony model divided into three categories according

to the task performance.

Employed-bees: Each employed bee is a distinct food

source. Employed-bees are responsible for investigating

nectar food sources in areas or neighborhoods already visited

by them. An employed-bee modifies the food source (current

solution) in its memory depending on the local information

(visual information) and assessments of the nectar amount

(fitness value) of the new source (new solution). If the quantity

of nectar in the new solution is higher than that in the current

solution, the bee memorizes the new position and abandons

the old one. Otherwise, it retains the position of the solution in

memory. Moreover, it shares information about food sources

with a certain probability with the bees residing in the hive

(onlooker-bees).

Onlooker-bees: receive information from employed-bees

and evaluate the quality of the food source. Similar to the

employed-bees, onlooker-bees attempt to improve the

solutions using a greedy search strategy.

Scout-bees: The employed-bee and onlooker-bee phases

are dedicated to the exploitation of the search space, whereas

the scout-bee phase is dedicated to the exploration of the

search space. Scouts search for new food sources in new

areas. An employed-bee becomes a scout-bee when the quality

of a food source does not improve after a predetermined

number of attempts, called the “limit.”

This cycle (employed-bee, onlooker-bee, and scout-bee

phases) is repeated until “maxCycle” (maximum number of

cycles) is reached. Subsequently, the best global solution is

returned by the algorithm.
The main steps of the ABC algorithm are summarized in

Algorithm 1.

Algorithm 1: MAIN STEPS OF ABC ALGORITHM

ABC algorithm
Output: Global best solution found

1. Initialization

Repeat

2. Employed-bee phase

3. Onlooker-bee phase

4. Scout-bee phase
5. Refresh memory

Until (one of the stop conditions is satisfied)

The different phases of the ABC algorithm were modified

to improve its performance. The following subsections

describe each step in more details.

A. Initialization of population

The generation of an initial population in an optimization

metaheuristic is important because it affects the search in

future iterations and significantly influences the final solution.

The random method aims to generate random solutions to

produce greater diversity, which is an important factor for

determining the quality of the final solution. The random

greedy method may generate a population with good fitness

solutions; however, there is a risk of rapid convergence

toward a local optimum[76].

Because it may not produce feasible solutions for the

MMKP within a reasonable computation time, the random

initialization method for the candidate solutions of the initial

population used in the standard ABC is not suitable for the

MMKP. Therefore, in this study, a new initialization method

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-
Choice Multidimensional Knapsack Problem

5 VOLUME XX, 2017

based on the Hamming distance (see Section V.B.1) was

applied to create the initial population (initializeSolution

procedure) to increase the diversity of the population and help

avoid getting stuck in local optima.

The principle of this procedure is to assign the n groups of

the problem to N classes with 𝑁 < 𝑛 and 𝑛 𝑚𝑜𝑑 𝑁 = 0. The

groups are randomly assigned to classes with the same number

of groups in each class. The problem here is reduced to N sub-

problems (classes) containing each of the 𝑛𝑁 = 𝑛⁄𝑁 groups.

Each reduced problem P’ is individually solved. The

combination of N partial solutions for the N sub-problems can

be a candidate for a complete feasible solution for the MMKP.

The initializeSolution procedure is repeated for each
candidate solution Xl of the initial population with l = {1, ...,

SN}, and SN is the size of the population.

The main steps for the solution generation are presented in

Algorithm 2.

Algorithm 2: INITIALIZESOLUTION PROCEDURE

initializeSolution procedure
Input: index l of the candidate solution Xl with l = {1, ..., SN}

Output: solution Xl

1. /* initialization phase*/

2. Xl ← Null
3. Ɵ = {1, ..., n} // Ɵ is the set of remaining groups not selected

4. Ɵ’ = ∅ // the set of groups already selected
5. Limit the bound on the availability of resources k (k = 1, ..., m) to

𝑏𝑝
𝑘 =

𝑏𝑘

𝑁
 for each subset

6. dh= constant // number of items to be exchanged from a candidate

solution

7. While (Ɵ’ ≠ ∅) // while there is a group not yet initialized

8. Select Ɵ”// Ɵ” is a randomly selected nN = n/N groups

9. Ɵ ← Ɵ \ Ɵ” // Ɵ = the remaining groups after the difference

between Ɵ and Ɵ"

10. Ɵ' ← Ɵ' ⋃ Ɵ” // Ɵ'= the union of Ɵ' and Ɵ"
11. /*Solve sub-problem Ɵ” */

 Set xij =1 with j the item selected for group i ∈ Ɵ” having the

lowest resource consumption, 𝑚𝑖𝑛 ∑
𝑟𝑖𝑗

𝑘

𝑏𝑘

𝑛𝑖
𝑗=1 , i ∈ {1, ..., n}

12. /* d random exchanges between items*/

13. d = 1
14. While (d < dh)

15. Select group i randomly, i ∈ {1, .., n}

16. Select item j’ randomly, j' ∈ {1, .., ni }, with xij = 0 and
j≠j’

17. Check if the resource constraints are satisfied
18. Boolean violatedres ← false

19. For int k = 0 to m

20. Res = 0

21. For each group i ∈ Ɵ”

22. Res = Res + 𝑟𝑖𝑗
𝑘

23. End For

24. If (Res − 𝑟𝑖𝑗
𝑘 + 𝑟𝑖𝑗′

𝑘 > 𝑏𝑝
𝑘)

25. Violatedres ← true // the resource constraints are

violated

26. Break // quit loop; For int k = 0 to m
27. End If

28. End For

29. If (violatedres = false) // no resource constraints
violated

30. xij ← 0

31. xij’ ← 1
32. Update the Xl

33. End If
34. d = d+1

35. End While

36. Return Xl

B. Modified employed-bee phase

This phase aims to enhance the performance of the ABC

algorithm by obtaining superior quality solutions while

avoiding convergence to local optima[47], [48], [77].

1) DISTANCE MEASURE: HAMMING DISTANCE

In this study, we incorporated the concept of a distance

measure to enhance the exploitation search process.

Manipulating the distances between solutions facilitates the

localization of relative positions of the solutions. It also offers

flexibility of movement within the search space from the

position of the current solution to that of another by acting on

a predefined part of the current solution. The size of the

manipulated part represents the distance between the current

and newly generated solution. The distance between solutions

reflects the degree of similarity. If the distance between the

two solutions is small, then the solutions are similar and

located within a neighborhood search area, whereas if the

distance between the two solutions is large, then the solutions

are dissimilar and localized in different search areas.

The MABC algorithm utilizes the Hamming distance as a

distance metric because of its simplicity and effectiveness in

capturing the differences between two solutions based on the

number of different bits. Specifically, in the context of the

MMKP, the Hamming distance is adept at capturing the

differences between two solutions based on the number of

groups in which the corresponding items differ.

In information theory, the Hamming distance between two

binary strings a and b is measured by performing the XOR

operation (a ⊕ b) and then counting the total number of ones

in the resultant string[78]. Typically, the Hamming distance

between two vectors a and b of the same length n is given by

dh(𝑎, 𝑏) = ∑(𝑎𝑖

𝑛

𝑖=1

⊕ 𝑏𝑖) (5)

The solution for the MMKP is represented as a vector X of

length n (number of groups). X is used to indicate item j with

j ∈ {1, .., ni}, which is selected from each group i with i ∈ {1,

.., n}. Fig. 1 illustrates the structure of solution X for an

instance containing ten groups (n = 10) and five items (ni = 5).

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-
Choice Multidimensional Knapsack Problem

6 VOLUME XX, 2017

FIGURE 1. Structure of a solution X for the multiple-choice
multidimensional knapsack problem (MMKP).

In our approach, we define the distance between two

solutions as the number of groups in which selected items

differ. The distance d between two solutions X and X’ of length

n is given by

𝑑(𝑋, X′) = ∑|𝑋[𝑖] − 𝑋′[𝑖]| (6)

𝑛

𝑖=1

𝑤𝑖𝑡ℎ {
|𝑋[𝑖] − 𝑋′[𝑖]| = 0 𝑖𝑓 𝑋[𝑖] = 𝑋′[𝑖]

|𝑋[𝑖] − 𝑋′[𝑖]| = 1 𝑖𝑓 𝑋[𝑖] ≠ 𝑋′[𝑖]

An example of the calculation of the Hamming distance

between the two MMKP candidate solutions is shown in Fig. 2.

FIGURE 2. Illustration of hamming distance calculation: X→X’ = 1 step;
X→X’’= 4 steps.

The unit of the Hamming distance measure (dh) is referred

to as a step (the number of groups in which the corresponding

items differ). For example, if dh (s, s’) = 2, s is two steps away

from s’.

This approach aims to manipulate the search depth in the

exploitation phase by expanding (selecting large steps

between solutions) or narrowing (selecting small steps

between solutions) the local area around the solution (Fig. 3).

This facilitates the exchange of a set of items in a single

iteration, and consequently helps the algorithm to quickly

converge to promising regions of the solution space.

Specifically, the proposed algorithm generates a candidate

solution s’ in the neighborhood of the current solution s with

dh (s, s’) = d steps (number of items to exchange) from the

current solution s by performing d exchanges E (i, j, h) of d

items satisfying xih = 1, with d new items belonging to the

same group satisfying xij = 0.

FIGURE 3. Exploitation process with hamming distance.

Algorithm 3 presents the main steps for generating a new

solution V from the current solution X with dh (X, V) = d.

Algorithm 3: HAMMING DISTANCE ALGORITHM

Hamming distance algorithm

Input: current solution X
Output: new candidate solution V

1. dh = constant

2. For d = 1 to dh

3. select item h with xih = 1 from X
4. select item j with xij = 0 // j and h belong to the same group

5. replace item h with j // a mutant solution V is generated from X

6. if the new solution V is feasible, then replace V with X
7. End For

8. Return V

2) SURROGATE RELAXATION

Each solution has more than one neighboring candidate

solution. The choice of movement depends only on the

information from the neighborhood domain of the current

solution. Therefore, it is important to define a neighborhood

relation between the solutions in the search space. In this

study, the neighborhood relation was based on the surrogate

constraint relaxation information. The surrogate relaxation

technique is mainly used to prevent the algorithm from

getting stuck in local optima. This involves approximating the

original optimization problem with a simpler, relaxed

problem that is easier to solve. By relaxing the problem, the

algorithm can explore a larger solution space and avoid

becoming trapped in local optima. Glover[79] proposed a

surrogate constraint obtained by substituting the constraints of

a problem with a single constraint to obtain approximate near-

optimal solutions for integer programming problems. Surrogate

relaxation has been proven to be efficient in the exploitation

of several knapsack problems[65], [80].

Htiouech et al.[65] used surrogate relaxation information

according to the search direction: add move, drop move

(infeasible solution case), or swap move (feasible solution

case). Here, we are interested only in the swap move strategy,

because our algorithm only deals with feasible solutions. The

surrogate relaxation algorithm (swap move) proposed by

Htiouech et al. continues through all groups and items in each

group, and performs intensive mathematical tests and

computations. Exchanges between items are performed

whenever an improvement is detected. The algorithm stops

only when no further improvement is possible, which making

it computationally heavy.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-
Choice Multidimensional Knapsack Problem

7 VOLUME XX, 2017

However, in our study, the computational time was

considered a critical measure of the quality of the obtained

solutions. Consequently, adjustments were made to the

surrogate relaxation method used by Htiouech et al.[65] to

overcome its limitations in terms of time complexity.

Therefore, in the employed-bee phase of the MABC, we

combine the Hamming distance (local search depth control)

and the surrogate relaxation information structure to utilize its

solution improvement efficiency without increasing the time

complexity of the algorithm. Thus, only dh exchanges are

permitted in the current solution. The choice rule for

exchanges between items is based on the information

provided by the surrogate relaxation.
During this step, demp exchanges are performed for each

candidate solution (Steps 18–21 in Algorithm 4). In each

exchange E (i, j, h), item h is selected from group i and

replaced by item j belonging to the same group. The choice of
the demp groups (items from the current solution to be

exchanged) is based on the lowest ratio utility (Step 19 in

Algorithm 4) given by

𝑢𝑖𝑗 =
𝑣𝑖𝑗

∑
𝑟𝑖𝑗

𝑘

𝑏𝑘
𝑚
𝑘=1

 || 𝑥𝑖𝑗 = 1, 𝑖 = 1, . . , 𝑛, 𝑗 = 1, . . , 𝑛𝑖 (10)

For each selected item with xih = 1, surrogate relaxation is

used (Step 20 in Algorithm 4) to select a new item xij = 0 from

the same group to maximize (11).

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 {
𝑣𝑖𝑗 𝑠𝑖𝑗⁄

𝑣𝑖ℎ 𝑠𝑖ℎ⁄
|𝑥𝑖𝑗 = 0, 𝑥𝑖ℎ = 1} (11)

𝑠𝑖𝑗 = ∑
𝐴𝑘

(∆𝑘)2

𝑚

𝑘=1

 𝑟𝑖𝑗
𝑘

𝑤𝑖𝑡ℎ ∆𝑘= 𝑏𝑘 − ∑ ∑ 𝑟𝑖𝑗
𝑘 𝑥𝑖𝑗|𝑥𝑖𝑗 = 1, 𝑘 = 1, . . , 𝑚 (12)

𝑛𝑖

𝑗=1

𝑛

𝑖=1

𝑎𝑛𝑑 𝐴𝑘 = ∑ ∑ 𝑟𝑖𝑗
𝑘|𝑥𝑖𝑗 = 0

𝑛𝑖

𝑗=1

𝑛

𝑖=1

In (11), the term vij / vih represents the gain of the profit

value, and sij / sih represents the gain in terms of the

remaining available resources. Consequently, the choice of

the new item j (xij = 0) to be exchanged instead of the old

item h (xih = 1) is made to improve the quality of the solution

in terms of the maximization of (i) profit and (ii) savings of

aggregate resources.
After the exchange, the decision variable xij changes from

0 to 1, and xih changes from 1 to 0. Therefore, a new solution

Vl is generated (Step 22 in Algorithm 4) from the current

solution Xl (with l in {1, ..., SN}), where dh (Xl, Vl) = demp.

A greedy selection based on the value of the objective

function is performed between the newly generated solution

and the current solution (Steps 23–29 in Algorithm 4).

C. Modified onlooker-bee phase

The probability of selecting a candidate solution in this phase

(Steps 32–34 in Algorithm 4) is inspired by the Gbest-guided

artificial bee colony (GABC) algorithm[81], which is given

by

prob𝑖 = (
0.9 ∗ fitness (𝑋𝑖)

fitnessbest

) + 0.1 (13)

where fitness (Xi) is the fitness value of the current

solution and fitness best is the highest fitness value.

A feasible candidate solution with relatively low nectar

content may yield a better global solution than another

candidate solution with higher nectar content. Therefore, the

greedy selection between the current solution Xl and the new

solution Vl is based on the highest fitness value computed by

(14) instead of (9).

fitness𝑙(𝑋𝑙) =
𝑏𝑘

∑ ∑ 𝑟𝑖𝑗
𝑘𝑛𝑖

𝑗=1
𝑛
𝑖=1

, 𝑘 = 1, . . , 𝑚, ∀ 𝑙 ∈ {1, . . , SN} (14)

The depth of the search is controlled using the Hamming

distance (dh). In other words, dh = don maximum number of

exchanges is allowed (Steps 39–42 in Algorithm 4) to obtain

a new candidate solution Vl from the current solution Xl.

dh (𝑋𝑙 , 𝑉𝑙) = 𝑑𝑜𝑛 , 𝑙 ∈ {1, . . , SN} (15)

For each candidate solution, don items (xij = 1) with the

lowest profit selected using (16) (Step 40 in Algorithm 4) are
exchanged randomly with the new item (xij = 0), thereby

satisfying the choice constraint (Step 41 in Algorithm 4). No

exchange is allowed, unless this leads to a feasible solution.

min
1≤𝑖≤𝑛

1≤𝑗≤𝑛𝑖

𝑣𝑖𝑗𝑥𝑖𝑗| 𝑥𝑖𝑗 = 1 (16)

After don exchanges, a greedy selection between the new

solution Vl and the current solution Xl is performed, and only

the solution with the highest fitness value (14) is retained

(Steps 43–50 in Algorithm 4). Equation (14) (the bound of

the resources availability per consumed resources) ensures

an improvement in the quality of the retained solution (neither

the current solution Xl nor the newly generated solution Vl)

in terms maximizing the remaining available resources,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-
Choice Multidimensional Knapsack Problem

8 VOLUME XX, 2017

which reduces the overall load on the resources during the

subsequent iterations of the exploitation process.

D. Modified scout-bee phase

The employed-bee and onlooker-bee phases could be

considered perturbation processes that aim to change the

trajectory of the search to release the solution when it is stuck

in a potential local optimum, and further improve the

solution without losing the progress made by the exploitation

process. If the solution cannot be further improved, it is

completely re-initialized with a randomly generated new

solution (scout bee) using the initializeSolution procedure

(Algorithm 2) (Steps 59–64 in Algorithm 4).

A tabu list (TL) is used in this study. This involves tracking

recently explored solutions and temporarily excluding them

from the search. This helps the algorithm avoid revisiting the

same solutions repeatedly and efficiently exploring new areas

of the solution space, thus accelerating convergence. TL is

updated using the first-in-first-out (FIFO) strategy. Consider

Vl as the new solution to be inserted into TL, and Xl as the

oldest solution in the list. The TL vector is updated as follows

TL = TL − 𝑋𝑙 + 𝑉𝑙 (17)

E. General approach

Algorithm 4 presents the main steps of the MABC. The

algorithm begins by generating the initial population (Steps

11–15 in Algorithm 4), followed by the main loop containing

the employed-bee, onlooker-bee, and scout-bee phases of the

algorithm. The employed-bee (Steps 16–30 in Algorithm 4)

and onlooker-bee (Steps 31–57 in Algorithm 4) phases aim to

improve the quality of solutions. In the employed-bee phase,

if the generated solution achieves a better objective value than

the current solution, the current solution is updated. However,

in the onlooker-bee phase, the solution with the best remaining

resource value is retained. If a solution reaches the maximum

for non-improvement (limit), the solution is completely reset

by the scout bee (Steps 59–64 in Algorithm 4). The three main

steps of the algorithm (employed-bee, onlooker-bee, and

scout-bee phases) are repeated until the maximum number of

cycles is reached (Step 66 in Algorithm 4). The global best

solution is memorized in each cycle (Step 65 of the algorithm)

and then returned to the end of the algorithm (Step 67 in

Algorithm 4).

The pseudo code for the proposed approach is presented in

Algorithm 4.

Algorithm 4: HIGH-LEVEL PSEUDO CODE FOR MABC

MABC
Output: BGS

1. /*Parameter initialization*/

2. predefine limit
3. predefine maxCycle

4. predefine demp // demp=dh (Xl, Vl) is the number of exchanges used in

the employed-bee phase

5. predefine don // don=dh (Xl, Vl) is the number of exchanges used in
the onlooker-bee phase

6. TL length= SN // the TL has the same tenure as the population size

7. For l = 1 to SN
8. triall ← 0

9. End For

10. /*Generate an initial population*/
11. For l ← 1 to SN

12. Use the initializeSolution procedure (algorithm 2) to generate a

candidate solution Xl
13. TLl ←Xl // initially, the TL contains the initial population

14. End For

15. Cycle ← 1
16. /* Employed-bee phase */

17. For l = 1 to SN

18. For i = 1 to demp

19. Select xih from Xl having the lowest uij computed using (10)

20. Select xij that maximizes (11) // the choice of item j is based

on the surrogate relaxation

21. End For

22. Calculate the fitness value fitness (Vl) // Vl is generated from Xl after
demp exchanges

23. If f (Vl) > f (Xl) and Vl ∉ TL // f is the objective function value of
the considered solution

24. Xl ← Vl
25. Update TL using (17)

26. triall ← 0

27. Else
28. triall ← triall + 1

29. End If

30. End For
31. /*Onlooker-bee phase*/

32. For l = 1 to SN

33. Calculate the probability values probl using (13)

34. End For
35. t ← 1

36. l ← 1 // set index l of the current solution at 1 with l ∈ {1, ..., SN}
37. While (t < SN) do

38. If rand (0,1) < probl // rand (0,1) returns a real value between 0
and 1

39. For i = 1 to don

40. Select xih using (16) with xih = 1 from Xl

41. xij ← rand (ni) with xij = 0 and j ≠ h // rand (ni) returns an
integer between 1 and ni

42. End For

43. Calculate fitness (Vl) using (14) // Vl is the mutant of Xl after

performing don exchanges

44. If fitness (Vl) > fitness (Xl) and Vl ∉ TL

45. Xl ← Vl
46. triall ← 0

47. Update TL using (17)
48. Else

49. triall ← traill + 1

50. End If
51. t ← t + 1

52. l ← l + 1

53. If l = SN
54. l ← 1

55. End If

56. End If rand (0,1) < probl
57. End While

58. /*The scout phase*/

59. For l = 1 to SN
60. If (triall = limit)

61. Generate a new solution Xl using (algorithm 2)

62. Update TL using (17)
63. End If

64. End For

65. Memorize the BGS
66. Until Cycle = maxCycle

67. Return BGS

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-
Choice Multidimensional Knapsack Problem

9 VOLUME XX, 2017

The computational complexity of the MABC algorithm was

determined by evaluating the worst-case time complexity of

each component. The time complexity of the MABC

algorithm was estimated to be O((demp+don)×ni×m).

IV. COMPUTATIONAL RESULTS

This section assesses the performance of the MABC

algorithm.

A. Problem instances
TABLE I

DETAILS OF E1(I01 – I20) AND E2 (INST01 – INST20)

Instance n ni m N

I07 100 10 10 1000

I08 150 10 10 1500

I09 200 10 10 2000

I10 250 10 10 2500

I11 300 10 10 3000
I12 350 10 10 3500

I13 400 10 10 4000

INST01 50 10 10 500
INST02 50 10 10 500

INST03 60 10 10 600

INST04 70 10 10 700
INST05 75 10 10 750

INST06 75 10 10 750

INST07 80 10 10 800
INST08 80 10 10 800

INST09 80 10 10 800

INST10 90 10 10 900
INST11 90 10 10 900

INST12 100 10 10 1000

INST13 100 30 10 3000
INST14 150 30 10 4500

INST15 180 30 10 5400

INST16 200 30 10 6000
INST17 250 30 10 7500

INST18 280 20 10 5600

INST19 300 20 10 6000
INST20 350 20 10 7000

We experimentally examined the algorithms on two sets

of benchmark instances: E1 (I07 – I13) proposed by

Khan[52], and E2 (INST01 – INST20) proposed by Hifi et

al.[57]. The instances (I01–I06) are known to be easily

solvable in the literature. Hence, this study focused on the

most difficult and large instances (E1 and E2).

All the benchmarks are available from the MMKP

benchmarks website[82].

The first set contained 7 instances (I07–I13), and the

number of groups in each instance varied between 100 and

400. Each group contained 10 items. Therefore, the number of

decision variables ranges from 1000 to 4000. The second set

contains 20 instances (INST01–INST20). The number of

items in each group varied from 10 to 30 and the number of

groups ranged from 50 to 400. Therefore, the total number of

items in each instance of the second set varied from 500 to

7500.

All benchmarks are characterized by their common

dimensionality size m = 10, n indicates the number of groups,

and ni indicates the size of group i. The details of these

instances are summarized in Table I.

 The best results are obtained using the following

parameters

 maxCycle = 20

 limit = 5

 TL length = SN

 demp = n / ni: Hamming distance (number of allowed

exchanges) used in the employed-bee phase.
 don = ni: hamming distance onlooker-bee phase

B. Performance of MABC

In this section, we compare the convergence performance of

our proposed MABC algorithm, which includes surrogate

relaxation, Hamming distance, and tabu list, with its basic

version, BABC, which does not use these techniques. The

objective of this comparative analysis is to demonstrate the

favorable impact of these additional techniques on the

convergence performance of the MABC algorithm.

Table II provides the detailed results for both algorithms for

the two sets of instances. Column 2 shows the CPLEX

solution. Columns 3 and 4 display the solutions obtained (Obj)

by the BABC and its computational time (CPU), respectively,

whereas columns 5 and 6 display the results for the MABC.

Column 7 shows the deviation between the results of the two

algorithms, given by

%dev = (1 −
BABCMMKP

MABCMMKP
) × 100 (18)

Columns 8 and 9 present the solutions obtained for the

MABC when maxCycle was set to 2000. The best

computational times and objective function values for the two

algorithms are highlighted in bold.

The results in Table II indicate that BABC provides

acceptable results within a short average computational time.

The MABC attained better solutions than the BABC with

shorter computational times. Therefore, MABC improves the

instances by an average of 4.6% with a shorter execution time

(a total of 3.46 s against 10.11 s). Evidently, the improvements

in the results are due to modifications of the BABC to enhance

its performance. Table II shows the good quality of the

solutions provided by both BABC and MABC (7% on average

for BABC and 2.4% on average for MABC over the quality of

the solutions provided by CPLEX); the computational times

for both algorithms are very low (0.1 s and 0.3 s on average for

each instance for BABC and MABC, respectively), which

proves that both the algorithms are very fast and adequate for

real-time and critical-time problems. On average, the quality

of the solutions generated by the MABC algorithm is 4.6%

higher than that generated by the BABC algorithm. This

improvement is ascribed to the modifications made during the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-
Choice Multidimensional Knapsack Problem

VOLUME XX, 2017 3

TABLE II
COMPARISON BETWEEN BABC AND MABC

Instance CPLEX BABC MABC % DEV MABC2000

 Obj CPU Obj CPU OBJ CPU

I07 24,595 23106 0.152 24006 0.07 4 24050 5.08

I08 36,884 34724 0.106 36034 0.1 4 36189 8.65

I09 49,176 46538 0.147 48009 0.2 3 48200 15.53

I10 61,475 57965 0.131 60075 0.3 4 60311 29.55

I11 73,783 69872 0.13 72115 0.4 3 72456 36.37

I12 86,091 81109 0.14 84933 0.5 5 84583 55.02

I13 98,437 92473 0.164 96203 0.6 4 96675 63.98

INST01 10738 9682 0.019 10391 0.01 7 10266 1.69

INST02 13598 12440 0.02 13273 0.02 6 13289 1.83

INST03 10946 10252 0.406 10509 0.024 2 10588 3.91

INST04 14449 12751 0.315 13980 0.04 9 13984 5.27

INST05 17059 16077 0.026 16478 0.04 2 16511 3.42

INST06 16835 15858 0.026 16269 0.03 3 16300 4.08

INST07 16444 14872 0.058 15901 0.04 6 15741 4.99

INST08 17507 16335 0.029 16946 0.04 4 16993 3.86

INST09 17759 16701 0.028 17135 0.04 3 17215 3.22

INST10 19307 17259 0.035 18645 0.05 7 18694 3.94

INST11 19441 17336 0.037 18729 0.05 7 18732 4.20

INST12 21731 19573 0.034 20997 0.06 7 21023 4.92

INST13 21577 20140 0.107 20942 0.2 4 20946 22.23

INST14 32871 30412 0.132 31875 0.5 5 31878 46.13

INST15 39160 36373 0.162 37985 0.7 4 38031 54.38

INST16 43364 40303 0.181 42198 0.9 4 42234 82.36

INST17 54360 50198 0.23 52746 1.3 5 52747 105.39

INST18 60465 56356 0.187 58727 0.9 4 58787 64.82

INST19 64929 60366 0.223 63246 1.3 5 63256 53.47

INST20 75616 70363 0.238 73538 1.7 4 73608 68.43

Average 0.128 0.37 4.6

Sum 3.46 10.11 756.72

different phases of the basic version (utility ratio, surrogate

relaxation, random exchanges, Hamming distance, TL,

etc.).For the same limit parameter value, a higher maxCycle

parameter value (maxCycle = 50) was set for the BABC.

However, the computational time for the BABC algorithm

was found to be (slightly) lower than that for the MABC

algorithm. This can be ascribed to the fact that, in the BABC,

only one item is exchanged randomly in the employed-bee and

onlooker-bee phases. Therefore, the number of loops and

mathematical computations were lower. Finally, we can

conclude that the modified version achieved an improvement

of almost 4.6% over the basic version, without any additional

computational time.

Furthermore, different configuration parameters may

provide better solution quality. However, this often leads to a

significantly longer CPU time. Column 8 shows a deviation of

0.21% in the quality of the solutions obtained when the

maxCycle was changed from 20 to 20×100 = 2000. The CPU

time increased from less than 10 s for all instances to 756 s.

The set of values chosen in our experiment showed an

acceptable trade-off between the quality of the objective

function and the required computational time.

C. Further analysis of MABC behavior

In this study, we conducted a sensitivity analysis of two crucial

parameters, maxCycle and limit, to analyze the behavior of the

MABC algorithm. First, we set the limit parameter to a

predetermined value and varied the maxCycle parameter.

Then, we fixed the maxCycle parameter and varied the limit

parameter to evaluate the impact of each parameter on the

performance of the algorithm. Through this approach, we

gained insight into the optimal values of these parameters to

achieve an efficient and effective optimization.

FIGURE 4. Solution rate evolution of MABC.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-
Choice Multidimensional Knapsack Problem

11 VOLUME XX, 2017

Fig. 4 provides a closer view of the behavior of the MABC

by illustrating the evolution of the quality of solutions over

time (I13 as an example). The figure demonstrates a

continuous gradual improvement in the quality of the solutions

over the cycles until it reaches a maximum (stagnation phase).

When the threshold for the number of non-improvement (limit

parameter) times is reached, the solution is discontinued and

replaced by a new randomly chosen solution. This explains the

sudden drop in the quality of solutions (orange lines).

FIGURE 5. Behavior of MABC for instance 20 when varying maxCycle
with the limit set at 5.

Fig. 5 shows the behavior of MABC when fixing the limit

parameter value and varying the maxCycle parameter value

for instance 20. It is clear from the figure that the objective

function value of the obtained solutions gradually increases by

2.7% from maxCycle 1 to 19 (41% improvement in total),

until it becomes almost constant at 20. This significant

improvement requires almost no extra-computation time (less

than 0.1 ms in each cycle).

FIGURE 6. Fig. 6. Behavior of MABC for instance 20 when varying
the limit and maxCycle set at 100.

Fig. 6 shows the sensitivity of the limit parameter to the

quality of the obtained solution by setting the maxCycle

parameter value and varying only the limit parameter for

INST20. The sensitivity of the limit parameter variation

becomes detectable only with a large number of cycles

(maxCycle = 100 in this case) and a significant separation

interval between the values of the limit parameter (intervals of

40, 50, and 100 in this case). Fig. 6 shows that when the limit

value is relatively low (the solution quickly reaches the re-

initialization threshold), the execution time becomes

considerable (26 s for limit = 2 and maxCycle = 100), whereas

by increasing the value of the limit, the execution time

decreases gradually (until waiting for 11 s in this case). The

decrease in CPU time is accompanied by a slight decrease in

the quality of the objective function because the more the

value of the limit parameter increases, the less the

reinitialization phase (scout-bee phase) is executed, and

consequently, the running time will be reduced (and vice

versa).

D. Comparative study

In this subsection, we compare the results of the MABC with

those of state-of-the-art algorithms.

We implemented MABC in Java JDK version 8, and all the

reported computational experiments were conducted on a PC

with a 2.30-GHz Intel i5 CPU.

Table III presents the results of our approach, compared to

the results of six approaches from the literature, namely RLS:

reactive local search-based algorithm[57], ALMMKP: ACO

approach[63], PEGF-PERC: two variants of the reduce and

solve approach[54], TIKS-TIKS2: two variants of the two-

phase iterative kernel search approach[74] and D-QPSO:

Diversity reserved quantum particle swarm optimization

approach[68]. The details of the running configurations of all

these state-of-the-art algorithms, except those of ALMMKP

(not reported), are presented next.

RLS: The algorithms were coded in C++ and tested on an

Ultra-Sparc10 250 Mhz.

PEGF-PERC: The algorithms were executed on an Intel

Xeon 2.83 GHz E5440 CPU and CPLEX 12.4. Two variants,

PEGF and PERC, were proposed and the best results obtained

are presented in Table III.

TIKS and TIKS2: The algorithms were coded in Java 8 and

Gurobi 9.0 is used as an MILP solver. The tests were executed

on an Intel Core I7-5930K 3.5 GHz processor. TIKS has a

1200 s time limit using six cores and TIKS2 has a 3600 s time

limit using two cores on the machine.

D-QPSO: The algorithm was coded in MATLAB, run on

an Intel Core 2 2.66GHz and tested only on the E1 benchmark

set.

To enable comparisons between the best results, Table III

presents the best objective function value and the minimal

running time produced by our algorithm within 100 trials

using different random seeds for each instance.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-Choice Multidimensional Knapsack Problem

12 VOLUME XX, 2017

TABLE III

COMPARISON OF MABC WITH STATE-OF-THE-ART ALGORITHMS

Instance CPLEX MRLS HIFI ALMMKP PEGF-PERC
TIKS

(6 CORES)

TIKS2

(2 CORES)
D-QPSO MABC

 Obj CPU Obj CPU OBJ CPU OBJ CPU OBJ CPU OBJ CPU OBJ CPU % MAX

I07 24.595 24587 37 24557 3.125 24.590 75 24595 1200 24595 3600 24162 ≈38 24006 0.07 2

I08 36.884 36877 37 36869 5.579 36.892 74 36895 1200 36894 3600 36403 ≈50 36034 0.1 2

I09 49.176 49167 25 49156 6.815 49.181 393 49188 1200 49189 3600 48331 ≈50 48009 0.2 2

I10 61.475 61437 47 61457 9.07 61.473 144 61481 1200 61480 3600 60432 ≈100 60075 0.3 2

I11 73.783 73773 41 73775 10.506 73.787 205 73792 1200 73791 3600 72951 ≈143 72115 0.4 2

I12 86.091 86069 42 86063 12.711 86.090 206 86095 1200 86095 3600 84890 ≈170 84933 0.5 1

I13 98.437 98429 160 98420 14.933 98.436 212 98443 1200 98443 3600 97201 ≈220 96203 0.6 2

INST01 10738 10714 10 10702 1.829 10.738 97 10738 1200 10738 3600 - - 10391 0.01 3

INST02 13598 13598 76 13591 1.275 13.598 38 13598 1200 13598 3600 - - 13273 0.02 2

INST03 10946 10943 58 10922 3.265 10.947 7 10955 1200 10955 3600 - - 10509 0.024 3

INST04 14449 14429 8 14441 3.772 14.447 121 14457 1200 14456 3600 - - 13980 0.04 3

INST05 17059 17053 42 17032 3.603 17.055 127 17061 1200 17065 3600 - - 16478 0.04 3

INST06 16835 16823 50 16807 3.454 16.832 76 16845 1200 16838 3600 - - 16269 0.03 3

INST07 16444 16423 65 16406 4.343 16.440 241 16442 1200 16444 3600 - - 15901 0.04 3

INST08 17507 17506 27 17485 3.516 17.503 20 17518 1200 17518 3600 - - 16946 0.04 3

INST09 17759 17754 51 17724 3.251 17.760 124 17762 1200 17762 3600 - - 17135 0.04 3

INST10 19307 19314 32 19281 4.983 19.314 275 19320 1200 19318 3600 - - 18645 0.05 3

INST11 19441 19431 111 19422 4.28 19.437 114 19449 1200 19449 3600 - - 18729 0.05 3

INST12 21731 21730 23 21706 3.829 21.738 4 21744 1200 21743 3600 - - 20997 0.06 3

INST13 21577 21569 18 21573 6.862 21.575 15 21580 1200 21580 3600 - - 20942 0.2 2

INST14 32871 32869 72 32873 12.037 32.873 209 32874 1200 32875 3600 - - 31875 0.5 3

INST15 39160 39148 63 39155 19.317 39.161 146 39165 1200 39165 3600 - - 37985 0.7 3

INST16 43364 43354 194 43361 23.532 43.367 98 43366 1200 43366 3600 - - 42198 0.9 2

INST17 54360 54349 30 54356 41.406 54.360 50 54362 1200 54362 3600 - - 52746 1.3 2

INST18 60465 60456 201 60458 22.782 60.466 22 60469 1200 60468 3600 - - 58727 0.9 2

INST19 64929 64921 45 64925 26.866 64.932 150 64931 1200 64933 3600 - - 63246 1.3 2

INST20 75616 75603 47 75611 40.102 75.614 51 75617 1200 75616 3600 - - 73538 1.7 2

Average 37 11.53 122 1200 3600 0.37 2.4

Sum 915 293.92 3219 32 400 97 200 10.11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-
Choice Multidimensional Knapsack Problem

13 VOLUME XX, 2017

Note that different trials yielded slightly different results,

with deviations in the range of 0.1–1.5% in the quality of the

obtained solutions. Additionally, the best solutions obtained

with CPLEX 12.9 within a time limit of 3600 s are reported.

Most heuristic comparisons in the literature are based on the

objective function values. However, it is not fair to assess

algorithms by comparing only the best reported solutions.

Nevertheless, to facilitate an objective comparison between

the computation times of the methods cited earlier, they must

be run on the same platform and configuration. Because these

algorithms are not available, this is not possible.

Therefore, our comparative study included both

computational time and objective function values to better

evaluate the performance of our algorithm. The best

computational times and objective function values for the

state-of-art algorithms, cited in table III, are highlighted in

bold. The last column indicates the percentage of solutions

achieved by our algorithm compared to the best objective

function value from the literature. Finally, the last two rows of

Table III, labeled as “Average” and “Sum,” report the runtime

average and runtime sum, respectively, of all the solutions

over all the instances realized by each of the considered

methods.

The quality of the solutions generated by the MABC is

evaluated against the CPLEX solutions in Table III, showing

an average similarity of nearly 2%. This indicates that the

MABC produces high-quality solutions that are close to the

optimal solutions obtained by CPLEX. Our algorithm

demonstrated a significantly improved runtime compared to

other algorithms. In comparison to the fastest algorithm

(ALMMKP) cited in Table III, which recorded an average

runtime of 11.5 s per solution and a total runtime of 294 s for

all instances, our algorithm exhibited an average runtime of

0.37 s per solution and a total runtime of 10.11 s for all

solutions. Consequently, our algorithm, MABC, resulted in a

time saving of more than 283 s for all instances when

compared to the fastest algorithm from the literature

(ALMMKP). Moreover, for the largest instance, INST17

(7500 variables), MABC provides a value close to 2%, similar

to the best solution in less than 2 s (1.3 s).

To further illustrate the significance of the results obtained

from the proposed MABC algorithm compared with those of

other state-of-the-art algorithms (RLS, ALMMKP, PEGF-

PERC, and TIKS), we performed a Kruskal-Wallis test, which

is a nonparametric statistical test that compares the median

values of independent groups based on the ranks of the

observations. The test output provides the p-value and H

statistic, where the former measures the probability of

observing the data if the null hypothesis (no differences

between the groups being compared) is true, and the latter

measures the overall difference among the medians of the

groups being compared.

We applied the Kruskal-Wallis test on two levels: the

objective function value and CPU. For the objective function

value, the H statistic was 0.31506, with a p-value of 0.98882,

indicating no significant difference among the medians of the

groups being compared. This suggests that there is no

significant difference between the objective function values of

the solutions obtained by the MABC algorithm and those

obtained by the other state-of-the-art algorithms.

For CPU, the H statistic was 84.90850 and the p-value was

0, indicating strong evidence to reject the null hypothesis of

equal medians among the compared groups. Thus, we can

conclude that there is a significant difference in the CPU

performance of the MABC algorithm compared with other

state-of-the-art algorithms.

V. Conclusion

In this study, we developed a new approach (MABC) to solve

the MMKP problem based on the ABC algorithm combined

with surrogate relaxation, Hamming distance, and tabu list.

The proposed method was validated using 27 benchmark

instances. The experimental results verified that MABC

generated competitive results (2.4% proximity to CPLEX

solutions) within very short computational time (in

milliseconds).

The Kruskal-Wallis test was used to compare the

performance of the MABC algorithm with that of other state-

of-the-art algorithms in terms of objective function value and

CPU efficiency. Statistical analysis revealed no statistically

significant difference between the objective function values

obtained by the MABC algorithm and the other algorithms (H

= 0.31506, p = 0.98882). However, for CPU performance, the

Kruskal-Wallis test demonstrated a statistically significant

difference between the MABC algorithm and the other

algorithms (H = 84.90850, p = 0). Thus, it can be concluded

that the MABC algorithm has a significantly different CPU

efficiency compared with other state-of-the-art algorithms,

with very short execution times.

However, increasing the parameter configuration values

(limit and maxCycle parameters) may improve the quality of

the obtained solutions, but with a significant computational

time cost. Therefore, using the Hamming distance during the

exploitation process to limit the local search to a finite number

of groups (items) significantly reduces the time complexity of

the algorithm. However, this may lead to a loss of information.

Therefore, the MABC algorithm is effective for solving

optimization problems with complex constraints and

objective functions. Nevertheless, the performance of the

algorithm may depend on the selection of parameters, and it

may not be suitable for problems requiring high precision or

a large number of variables.

In future work, we aim to improve the quality of the

obtained solutions without increasing the computational

weight of the algorithm. This study was restricted to feasible

exchanges between items. Thus, complex moves that traverse

the solutions from the feasible search space to the infeasible

space, and vice versa, can be examined. In addition, a

systematic empirical study on the general swarm intelligence

performance (including that of ABC and ant colony) can be

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-
Choice Multidimensional Knapsack Problem

14 VOLUME XX, 2017

conducted to achieve an efficient and consistent solution

quality for the MMKP.

REFERENCES
[1] S. Khan, K. F. Li, E. G. Manning, and M. M. Akbar, “Solving the

Knapsack Problem for Adaptive Multimedia Systems,” Studia
Informatica Universalis, vol. 2, pp. 157–178, 2002, [Online].

Available:

http://studia.complexica.net/index.php?option=com_content&view=a
rticle&id=61:article-8&catid=35:number-1&Itemid=64&lang=en

[2] H. Pirkul, “An integer programming model for the allocation of

databases in a distributed computer system,” Eur J Oper Res, vol. 26,
pp. 401–411, 1986.

[3] J. Tang, R. Yu, S. Liu, and J. L. Gaudiot, “A Container Based Edge

Offloading Framework for Autonomous Driving,” IEEE Access, vol.
8, pp. 33713–33726, 2020, doi: 10.1109/ACCESS.2020.2973457.

[4] C. Basnet and J. Wilson, “Heuristics for determining the number of
warehouses for storing non-compatible products,” International

Transactions in Operational Research, vol. 12, no. 5, pp. 527–538,

2005, doi: 10.1111/j.1475-3995.2005.00523.x.
[5] H. Cao, X. Feng, Y. Sun, Z. Zhang, and Q. Wu, “A Service Selection

Model with Multiple QoS Constraints on the MMKP,” Apr. 2008, pp.

584–589. doi: 10.1109/npc.2007.35.
[6] C. Lee, J. Lehoezky, R. Rajkumar, and D. Siewiorek, “On quality of

service optimization with discrete QoS options,” Real-Time

Technology and Applications - Proceedings, pp. 276–286, 1999, doi:
10.1109/RTTAS.1999.777680.

[7] M. Moghaddam and J. G. Davis, “Service selection in web service

composition: A comparative review of existing approaches,” Web
Services Foundations, vol. 9781461475, pp. 321–346, 2013, doi:

10.1007/978-1-4614-7518-7_13.

[8] Q. Jiang, Y. Zhang, and J. Yan, “Neural Combinatorial Optimization
for Energy-Efficient Offloading in Mobile Edge Computing,” IEEE

Access, vol. 8, pp. 35077–35089, 2020, doi:

10.1109/ACCESS.2020.2974484.
[9] S. Liang, Y. Li, Q. Dong, and X. Chen, “MMKP: A mind mapping

knowledgebase prototyping tool for precision medicine,” Front

Immunol, vol. 13, Aug. 2022, doi: 10.3389/fimmu.2022.923528.

[10] D. Pisinger, “Budgeting with bounded multiple-choice constraints,”

Eur J Oper Res, vol. 129, no. 3, pp. 471–480, 2001, doi:

10.1016/S0377-2217(99)00451-8.
[11] J. White, B. Doughtery, and D. C. Schmidt, “ASCENT: An

algorithmic technique for designing hardware and software in

tandem,” IEEE Transactions on Software Engineering, vol. 36, no. 6,
pp. 838–851, 2010, doi: 10.1109/TSE.2010.77.

[12] T. Wu, S. Zhang, X. Wu, and W. Dou, “A consumer-oriented service

selection method for service-based applications in the cloud,”
Proceedings - 16th IEEE International Conference on Computational

Science and Engineering, CSE 2013, pp. 838–845, 2013, doi:

10.1109/CSE.2013.127.
[13] F. Glover and G. A. Kochenberger, “CRITICAL EVENT TABU

SEARCH FOR,” Meta-heuristics Springer, Boston, MA, pp. 407–427,

1996.
[14] W. C. Healy, “Multiple Choice Programming (A Procedure for Linear

Programming with Zero-One Variables),” Oper Res, vol. 12, no. 1, pp.

122–138, 1964, doi: 10.1287/opre.12.1.122.
[15] H. Kellerer, U. Pferschy, and D. Pisinger, “The multiple choice

knapsack problem,” pp. 317–347, 2004, doi: doi:10.1007/978-3-540-

24777-7_11.
[16] D. Pisinger, “A minimal algorithm for the multiple-choice knapsack

problem,” Eur J Oper Res, vol. 83, no. 2, pp. 394–410, 1995, doi:

10.1016/0377-2217(95)00015-I.
[17] J. Puchinger, G. R. Raidl, and U. Pferschy, “The Multidimensional

Knapsack Problem: Structure and Algorithms,” INFORMS J Comput,

vol. 22, no. 2, pp. 250–265, 2010, [Online]. Available:
http://people.brunel.ac.uk/

[18] Q. H. K.S. Tang, K.F. Man, S. Kwong, “Genetic Algorithms and their

applications,” IEEE Signal Process Mag, no. November, pp. 22–37,
1996.

[19] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” IEEE
International Conference on Neural Networks IV, vol. 23, no. 2, pp.

1942–1948, 1995.

[20] M. Dorigo, M. Birattari, and T. Stuzle, “Ant colony optimisation,”
IEEE Comput Intell Mag, vol. 1, no. 4, pp. 28–39, 2006, doi:

10.1007/978-3-319-93025-1_3.

[21] Z. H. Zhan et al., “An efficient ant colony system based on receding
horizon control for the aircraft arrival sequencing and scheduling

problem,” IEEE Transactions on Intelligent Transportation Systems,

vol. 11, no. 2, pp. 399–412, Jun. 2010, doi:
10.1109/TITS.2010.2044793.

[22] D. Simon, “Biogeography-based optimization,” IEEE Transactions on

Evolutionary Computation, vol. 12, no. 6, pp. 702–713, 2008, doi:
10.1109/TEVC.2008.919004.

[23] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuristic

optimization algorithm: Harmony Search,” Simulation, vol. 76, no. 2,
pp. 60–68, 2001, doi: 10.1201/b18469-3.

[24] D. Karaboga, “An idea based on honey bee swarm for numerical

optimization,” Technical report-tr06, no. 2009, pp. 1–9, 2005.
[25] M. C. Yuen, S. C. Ng, M. F. Leung, and H. Che, “A metaheuristic-

based framework for index tracking with practical constraints,”

Complex and Intelligent Systems, vol. 8, no. 6, pp. 4571–4586, Dec.
2022, doi: 10.1007/s40747-021-00605-5.

[26] R. Hongge, H. Jian, C. Wenbin, and X. Caihua, “Modeling and

identification of rate-dependent and asymmetric hysteresis of soft
bending pneumatic actuator based on evolutionary firefly algorithm,

Mechanism and Machine Theory,” Mech Mach Theory, vol. 181, no.
105169, 2023.

[27] S. Bitam, M. Batouche, and E. G. Talbi, “A survey on bee colony

algorithms,” in Proceedings of the 2010 IEEE International
Symposium on Parallel and Distributed Processing, Workshops and

Phd Forum, IPDPSW 2010, 2010, no. June 2014. doi:

10.1109/IPDPSW.2010.5470701.
[28] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for

numerical function optimization: Artificial bee colony (ABC)

algorithm,” Journal of Global Optimization, vol. 39, no. 3, pp. 459–
471, 2007, doi: 10.1007/s10898-007-9149-x.

[29] D. Karaboga and B. Akay, “A comparative study of Artificial Bee

Colony algorithm,” Appl Math Comput, vol. 214, no. 1, pp. 108–132,
2009, doi: 10.1016/j.amc.2009.03.090.

[30] M. S. Kiran, H. Hakli, M. Gunduz, and H. Uguz, “Artificial bee colony

algorithm with variable search strategy for continuous optimization,”
Inf Sci (N Y), vol. 300, no. 1, pp. 140–157, 2015, doi:

10.1016/j.ins.2014.12.043.

[31] A. Banitalebi, M. I. A. Aziz, A. Bahar, and Z. A. Aziz, “Enhanced
compact artificial bee colony,” Inf Sci (N Y), vol. 298, pp. 491–511,

Mar. 2015, doi: 10.1016/j.ins.2014.12.015.

[32] D. C. Secui, “A new modified artificial bee colony algorithm for the
economic dispatch problem,” Energy Convers Manag, vol. 89, pp. 43–

62, 2015, doi: 10.1016/j.enconman.2014.09.034.

[33] E. Kaya, B. Gorkemli, B. Akay, and D. Karaboga, “A review on the
studies employing artificial bee colony algorithm to solve

combinatorial optimization problems,” Eng Appl Artif Intell, vol. 115,

no. 105311, 2022.
[34] S. S. Choong, L. P. Wong, and C. P. Lim, “An artificial bee colony

algorithm with a Modified Choice Function for the traveling salesman

problem,” Swarm Evol Comput, vol. 44, pp. 622–635, Feb. 2019, doi:
10.1016/j.swevo.2018.08.004.

[35] M. Alzaqebah, S. Abdullah, and S. Jawarneh, “Modified artificial bee

colony for the vehicle routing problems with time windows,”
Springerplus, vol. 5, no. 1, Dec. 2016, doi: 10.1186/s40064-016-2940-

8.

[36] A. S. Bhagade and P. v. Puranik, “Artificial Bee Colony (ABC)
Algorithm for Vehicle Routing Optimization Problem,” International

Journal of Soft Computing and Engineering, vol. 2, no. 2, pp. 329–

333, 2012.
[37] A. Draa and A. Bouaziz, “An artificial bee colony algorithm for image

contrast enhancement,” Swarm Evol Comput, vol. 16, pp. 69–84, 2014,

doi: 10.1016/j.swevo.2014.01.003.
[38] T. Cura, “An artificial bee colony algorithm approach for the team

orienteering problem with time windows,” Comput Ind Eng, vol. 74,

no. 1, pp. 270–290, 2014, doi: 10.1016/j.cie.2014.06.004.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-
Choice Multidimensional Knapsack Problem

15 VOLUME XX, 2017

[39] V. Coleto-Alcudia and M. A. Vega-Rodríguez, “Artificial Bee Colony
algorithm based on Dominance (ABCD) for a hybrid gene selection

method,” Knowl Based Syst, vol. 205, Oct. 2020, doi:

10.1016/j.knosys.2020.106323.
[40] N. Arunachalam and A. Amuthan, “Integrated probability multi-

search and solution acceptance rule-based artificial bee colony

optimization scheme for web service composition,” Nat Comput, vol.
20, no. 1, pp. 23–38, Mar. 2021, doi: 10.1007/s11047-019-09753-7.

[41] T. T. Aung, T. Thi, and S. Nyunt, “Discrete Artificial Bee Colony

Algorithm for Community Detection in Social Networks,” MERAL
Portal, 2019.

[42] M. Alzaqebah and S. Abdullah, “Artificial bee colony search

algorithm for examination timetabling problems,” International
Journal of the Physical Sciences, vol. 6, no. 17, pp. 4264–4272, 2011,

doi: 10.5897/IJPS11.200.

[43] M. Alzaqebah and S. Abdullah, “An adaptive artificial bee colony and
late-acceptance hill-climbing algorithm for examination timetabling,”

Journal of Scheduling, vol. 17, no. 3, pp. 249–262, 2014, doi:

10.1007/s10951-013-0352-y.
[44] M. Alzaqebah and S. Abdullah, “Hybrid Artificial Bee Colony Search

Algorithm Based on Disruptive Selection for Examination

Timetabling Problems,” in In Combinatorial Optimization and
Applications: 5th International Conference, COCOA 2011, Aug.

2011, vol. 6831, pp. 31–45.

[45] M. J. Mahmoodabadi and M. M. Shahangian, “A New Multi-objective
Artificial Bee Colony Algorithm for Optimal Adaptive Robust

Controller Design,” IETE J Res, vol. 68, no. 2, pp. 1251–1264, 2022,
doi: 10.1080/03772063.2019.1644211.

[46] Ş. Öztürk, R. Ahmad, and N. Akhtar, “Variants of Artificial Bee

Colony algorithm and its applications in medical image processing,”
Applied Soft Computing Journal, vol. 97. Elsevier Ltd, Dec. 01, 2020.

doi: 10.1016/j.asoc.2020.106799.

[47] W. Gao, S. Liu, and L. Huang, “A novel artificial bee colony algorithm
based on modified search strategy and generalized opposition-based

learning,” IEEE Trans Cybern, vol. 43, no. 3, pp. 1011–1024, 2013,

doi: 10.3233/IFS-141386.
[48] W. Bai, I. Eke, and K. Y. Lee, “An improved artificial bee colony

optimization algorithm based on orthogonal learning for optimal

power flow problem,” Control Eng Pract, vol. 61, no. February, pp.
163–172, 2017, doi: 10.1016/j.conengprac.2017.02.010.

[49] J. Ng and D. Abbott, “Solid state quantum computers: A nanoscopic

solution to the Moore’s Law problem,” 2001. [Online]. Available:
http://spiedl.org/terms

[50] T. Ghasemi and M. Razzazi, “Development of core to solve the

multidimensional multiple-choice knapsack problem,” Comput Ind
Eng, vol. 60, no. 2, pp. 349–360, 2011, doi: 10.1016/j.cie.2010.12.001.

[51] A. Sbihi, “A best first search exact algorithm for the Multiple-choice

Multidimensional Knapsack Problem,” J Comb Optim, vol. 13, no. 4,
pp. 337–351, 2007, doi: 10.1007/s10878-006-9035-3.

[52] Khan, “Quality Adaptation in a Multisession Multimedia System:

Model, Algorithms and Architecture,” Dissertation. University of
Victoria, Canada, p. 274, 1998.

[53] M. R. Razzazi and T. Ghasemi, “An exact algorithm for the multiple-

choice multidimensional knapsack based on the core,”
Communications in Computer and Information Science, vol. 6 CCIS,

no. 3, pp. 275–282, 2008, doi: 10.1007/978-3-540-89985-3_34.

[54] Y. Chen and J. K. Hao, “A ‘reduce and solve’ approach for the
multiple-choice multidimensional knapsack problem,” Eur J Oper

Res, vol. 239, no. 2, pp. 313–322, 2014, doi:

10.1016/j.ejor.2014.05.025.
[55] M. , Moser, D. Jokanovic, and N. Shiratori, “An algorithm for the

multidimensional multiple-choice knapsack problem,” IEICE

transactions on fundamentals of electronics, communications and
computer sciences, vol. 80, no. 3, pp. 582–589, 1997.

[56] M. M. Akbar, E. G. Manning, G. C. Shoja, and S. Khan, “Heuristic

solutions for the multiple-choice multi-dimension knapsack problem,”
in International Conference on Computational Science, 2001, vol.

2074, pp. 659–668. doi: 10.1007/3-540-45718-6_71.

[57] M. Hifi, M. Michrafy, and A. Sbihi, “A reactive local search-based
algorithm for the multiple-choice multi-dimensional knapsack

problem,” Comput Optim Appl, vol. 33, no. 2–3, pp. 271–285, 2006,

doi: 10.1007/s10589-005-3057-0.

[58] N. Cherfi and M. Hifi, “Hybrid algorithms for the Multiple-choice
Multi-dimensional Knapsack Problem,” International Journal of

Operational Research, vol. 5, no. 1, pp. 89–109, 2009, doi:

10.1504/IJOR.2009.024531.
[59] S. Hanafi and C. Wilbaut, “Improved convergent heuristics for the 0-

1 multidimensional knapsack problem,” Ann Oper Res, vol. 183, no.

1, pp. 125–142, 2011, doi: 10.1007/s10479-009-0546-z.
[60] R. Mansi, C. Alves, J. M. Valério De Carvalho, and S. Hanafi, “A

hybrid heuristic for the multiple choice multidimensional knapsack

problem,” Engineering Optimization, vol. 45, no. 8, pp. 983–1004,
2013, doi: 10.1080/0305215X.2012.717072.

[61] C. Gao, G. Lu, X. Yao, and J. Li, “An iterative pseudo-gap

enumeration approach for the Multidimensional Multiple-choice
Knapsack Problem,” Eur J Oper Res, vol. 260, no. 1, pp. 1–11, 2017,

doi: 10.1016/j.ejor.2016.11.042.

[62] N. Cherfi and M. Hifi, “A column generation method for the multiple-
choice multi-dimensional knapsack problem,” Comput Optim Appl,

vol. 46, no. 1, pp. 51–73, 2010, doi: 10.1007/s10589-008-9184-7.

[63] Z. Ren and Z. Feng, “An Ant Colony Optimization Approach to
the Multiple-Choice Multidimensional Knapsack Problem,” in

Proceedings of the 12th Annual Conference on Genetic and

Evolutionary Computation : Portland, Oregon, USA, July 07-11, ,
2010, pp. 275–283.

[64] I. Crévits, S. Hanafi, R. Mansi, and C. Wilbaut, “Iterative semi-

continuous relaxation heuristics for the multiple-choice
multidimensional knapsack problem,” Comput Oper Res, vol. 39, no.

1, pp. 32–41, 2012, doi: 10.1016/j.cor.2010.12.016.
[65] S. Htiouech, S. Bouamama, and R. Attia, “Using surrogate

information to solve the multidimensional multi-choice knapsack

problem,” in 2013 IEEE Congress on Evolutionary Computation,
2013, pp. 2102–2107.

[66] S. Htiouech and A. Alzaidi, “Smart Agents for the Multidimensional

Multi-choice Knapsack Problem,” Int J Comput Appl, vol. 174, no. 6,
pp. 5–9, 2017, doi: 10.5120/ijca2017915404.

[67] Y. Xia, C. Gao, and J. L. Li, “A stochastic local search heuristic for

the multidimensional multiple-choice knapsack problem,”
Communications in Computer and Information Science, vol. 562, pp.

513–522, 2015, doi: 10.1007/978-3-662-49014-3_46.

[68] H. Dong, X. Yang, X. Teng, and Y. Sha, “A diversity reserved
quantum particle swarm optimization algorithm for MMKP,” in 2016

IEEE/ACIS 15th International Conference on Computer and

Information Science, ICIS 2016 - Proceedings, Aug. 2016. doi:
10.1109/ICIS.2016.7550941.

[69] M. Caserta and S. Voß, “The robust multiple-choice multidimensional

knapsack problem,” Omega (United Kingdom), vol. 86, pp. 16–27,
2019, doi: 10.1016/j.omega.2018.06.014.

[70] A. Mkaouar, S. Htiouech, and H. Chabchoub, “Solving the Multiple

choice Multidimensional Knapsack problem with ABC algorithm,”
2020 IEEE Congress on Evolutionary Computation, CEC 2020 -

Conference Proceedings, pp. 1–6, 2020, doi:

10.1109/CEC48606.2020.9185872.
[71] R. Mansini and R. Zanotti, “A Core-Based Exact Algorithm for the

Multidimensional Multiple Choice Knapsack Problem,” INFORMS J

Comput, no. April, 2020.
[72] A. Syarif, D. Anggraini, K. Muludi, Wamiliana, and M. Gen,

“Comparing various genetic algorithm approaches for multiple-choice

multi-dimensional knapsack problem (mm-KP),” International
Journal of Intelligent Engineering and Systems, vol. 13, no. 5, pp.

455–462, Oct. 2020, doi: 10.22266/ijies2020.1031.40.

[73] J. Yang, Y. H. Kim, and Y. Yoon, “A Memetic Algorithm with a
Novel Repair Heuristic for the Multiple-Choice Multidimensional

Knapsack Problem,” Mathematics, vol. 10, no. 4, Feb. 2022, doi:

10.3390/math10040602.
[74] L. Lamanna, R. Mansini, and R. Zanotti, “A two-phase kernel search

variant for the multidimensional multiple-choice knapsack problem,”

Eur J Oper Res, vol. 297, no. 1, pp. 53–65, Feb. 2022, doi:
10.1016/j.ejor.2021.05.007.

[75] A. Dellinger, Y. Lu, M. S. Song, and F. J. Vasko, “Simple strategies

that generate bounded solutions for the multiple‐choice multi‐
dimensional knapsack problem: a guide for OR practitioners,”

International Transactions in Operational Research, 2022.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 A. Mkaouar et al.: Modified Artificial Bee Colony Algorithm for Multiple-
Choice Multidimensional Knapsack Problem

16 VOLUME XX, 2017

[76] A. F. Achwak, B. M. Walid, B. Widad, B. Sarra, and S. Sara,
“Algorithme génétique sophistiqué et schémas de parallélisation sur

une grille de calcul pour la résolution du problème du sac à dos (

Unbounded Knapsack),” 2016.
[77] G. Zhu and S. Kwong, “Gbest-guided artificial bee colony algorithm

for numerical function optimization,” Appl Math Comput, vol. 217, no.

7, pp. 3166–3173, 2010, doi: 10.1016/j.amc.2010.08.049.
[78] A. Bookstein, V. A.Kulyukin, and T. Raita, “Generalized Hamming

Distance,” Inf Retr Boston, vol. 5, pp. 353–375, 2002, doi: 10.1023/A.

[79] F. Glover, “A multiphase-dual algorithm for the zero-one integer
programming problem.” pp. 879–919, 1965.

[80] C. J. Lin, M. S. Chern, and M. Chih, “A binary particle swarm

optimization based on the surrogate information with proportional
acceleration coefficients for the 0-1 multidimensional knapsack

problem,” Journal of Industrial and Production Engineering, 2015,

doi: 10.1080/21681015.2015.1111263.
[81] H. T. Jadhav and R. Roy, “Gbest guided artificial bee colony algorithm

for environmental/economic dispatch considering wind power,”

Expert Syst Appl, vol. 40, no. 16, pp. 6385–6399, 2013, doi:
10.1016/j.eswa.2013.05.048.

[82] “MMKP benchmarks,” 2012. http://www.es.ele.tue.nl/pareto/mmkp/.

ARIJ MKAOUAR received the B.Sc. degree in

IT applied to industrial management and the M.Sc.
degree in new information technologies and

dedicated systems from the University of Sfax,

Tunisia, in 2009 and 2012, respectively. She is
currently pursuing the Ph.D. degree in information

systems engineering at National Engineering

School of Sfax, University of Sfax, Tunisia. Her
research interests are optimization problems,

artificial immune system, artificial bee colony

algorithm and the multiple-choice multidimensional knapsack problem.

SKANDER HTIOUECH received the M.Sc.

degree from the University of Valenciennes,

Academy of Lille, France, and the Ph.D. degree
from the National Engineering School of Tunis

(ENIT), Tunisia. He is an assistant professor at the

National Engineering School of Bizerte (ENIB),
University of Carthage, Tunisia. Since 2016 he

joined the University of Jeddah, KSA. His

research interests are in the areas of modeling and
optimization problems, linear programming,

surrogate, lagrangian information, smart agent, multiple-choice

multidimensional knapsack problem and crowd management and analysis
via drones.

HABIB CHABCHOUB received a Ph.D. degree

in administration sciences from Laval University,
Canada. He is the Founding Director of the High

Institute of Industrial Management at the

University of Sfax, Tunisia. He is currently a Full
Professor at the School of Business at Al Ain

University, United Arab Emirates. His research

focuses on multi-criteria decision aid, logistics and
transport, mathematical programming, and

operations management. He has published many

articles in different international journals. He chaired sessions and

conferences at the national and international levels. He acts as a referee in

several journals.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3264966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

